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Abstract

Camera Calibration with one-dimensional objects is
based on an algebraic constraint on the image of the ab-
solute conic. We will give an alternative derivation to this
constraint, allowing a geometrical interpretation. From
this we derive the degenerate cases, or critical motions,
where the calibration algorithm will fail. We also show that
constraints on the intrinsic parameters lead to simplified
closed-form solutions and a reduced set of critical motions.
A simulation and a real data experiment is performed to
evaluate the accuracy of the calibration result for motions
close to being critical.

1. Introduction

In computer vision, metric 3D reconstruction from im-
ages requires the camera to be calibrated. The main cam-
era calibration techniques can be classified into five groups.
In 3D reference object calibration an object with known
geometry is used [12, 3]. In 2D plane based calibration
planar patterns are used [10, 13]. 1D object calibration is
discussed in this paper. The remaining two groups are self-
calibration, where point correspondences between images
of an unknown scene are used [7, 6, 5, 3], and motion con-
strained calibration, where the camera is confined to some
special kind of motion [1, 4, 8]. In some cases of cam-
era motion, known as critical motions, the calibration al-
gorithms will fail. This has been studied in detail for 3D
reference object calibration in [2] and for self-calibration
in [9].

In this paper we aim to complete the theory of 1D object

calibration by identifying the critical motions. We show
how to reduce them when partial knowledge of the cam-
eras calibration parameters is given. Camera calibration us-
ing one-dimensional (1D) objects was recently proposed in
[14]. Here, the calibration object consists of a set of at
least three collinear points. The motion of the object is
constrained by one point being fixed. One advantage of
using 1D objects for calibration are that 1D objects with
known geometry are easy to construct. Another advantage
is that in a multi-camera environment, all cameras can ob-
serve the entire calibration object simultaneously, which is
a prerequisite for calibration and hard to obtain with 3- and
2-dimensional calibration objects. In practice, the 1D object
can be constructed by marking three points on a stick.

The paper is organized as follows: In Section 2 a brief
review of camera calibration with 1D objects is given. In
Section 3 a geometrical interpretation of the calibration con-
straint is presented, from which the critical motions are
identified in Section 4. Section 5 describes how simplified
closed-form solutions reduce the critical motions. Section 6
validates the theoretical results by two sets of experiments.

2 Preliminaries

2.1 Notation

We will use the standard pin-hole camera model:
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Here, f denotes the focal length, γ the aspect ratio, s the
skew and (u0, v0) the principal point. These are called
the intrinsic parameters and are contained in the upper-
triangular calibration matrix K. Furthermore, R and t de-
note the relation between the camera coordinate system and
the object coordinate system, where R is a rotation matrix
and t a translation vector, i.e. a Euclidean transformation.
P is the camera matrix and λp is the projective depth of
m̃. A 2D point is denoted by either m = [x, y]T or m̃ =
[x, y, 1]T . A 3D point is denoted by either M = [X, Y, Z]T

or M̃ = [X, Y, Z, 1]T .

2.2 Camera Calibration with 1D Objects

We will now give a brief review of the theory for camera
calibration with one-dimensional objects, following [14]. In
the following, we often call the one-dimensional calibration
object a “stick”, for simplicity.

Refer to Figure 1 where point O is the camera center.
Point A is fixed relative to the camera, and the length of the
stick AB is

L = ‖B − A‖. (2)

The position of point C is given by

C = λAA + λBB, (3)

where λA and λB are known. Without loss of generality we
choose R = I and t = 0, which implies that the optical
center O is at the origin. Let the unknown depths of A, B
and C be zA, zB and zC , respectively. According to (1) we
have A = zAK−1

ã and similarly for B and C, so equation
(3) gives

zC c̃ = zAλAã + zBλB b̃. (4)

By performing cross products on both sides of (4) with c̃

and scalar products with (b̃× c̃) we obtain

zB = −zA

λA(ã × c̃) · (b̃ × c̃)

λB(b̃× c̃) · (b̃ × c̃)
. (5)

From (2) we have

‖K−1(zBb̃ − zAã)‖ = L (6)

and by substituting zB by (5) in this equation we get

zA‖K
−1

h‖ = L (7)

where

h = [h1, h2, h3]
T =

(zBb̃− zAã)

zA

= (8)

= ã +
λA(ã × c̃) · (b̃ × c̃)

λB(b̃ × c̃) · (b̃ × c̃)
b̃. (9)

Equation (7) is equivalent to

z2
Ah

T ωh = L2 (10)

where
ω = K−T K−1 = (11)
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(12)
is the image of the absolute conic [3]. Let ωij be the element
of ω at row i and column j. Then ω, which is symmetric,
can be defined by

d = [ω11, ω12, ω22, ω13, ω23, ω33]
T .

With x = z2
Ad and

u = [h2
1, 2h1h2, h

2
2, 2h1h3, 2h2h3, h

2
3]

T ,

equation (10) becomes

u
T
x = L2,

giving one constraint on zA and the intrinsic parameters in
K per image. In the most general case with six unknowns,
we need at least six observations of the stick for calibration.

Given N images, the solution to (10) is found by solving
a linear system of one equation per image, such that sym-
metry of ω is enforced:

Ux = L21 (13)

where U = [u1, . . . ,uN ]T and 1 = [1, . . . , 1]T . The least
squares solution is then given by

x = L2(UT
U)−1

U
T 1.

K and zA can then be found by Cholesky decomposition of
z2

Aω (which is given by x).

3 Geometrical Interpretation

In order to identify the critical motions of the stick for
which calibration will fail, we will now interpret equation
(10) in geometrical terms. Refer to Figure 2. Let the line
through A and B be lAB . The intersection of lAB and the
plane at infinity π∞ is given by X∞ = B̃ − Ã. Projecting
this point onto the image we obtain the vanishing point

v = [v1, v2, v3]
T

of the line lAB :

v = PX∞ = K[I |0](B̃ − Ã) = K(B − A)

= zB [xB , yB , 1]T − zA[xA, yA, 1]T

= zBb̃− zAã.
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Figure 1. Illustration of 1D calibration objects

Using (8) we have
v = zAh. (14)

Alternatively, let X = B − A. With v = KX we get

1 =
XT X

XT X
=

XT KT K−T K−1KX

‖X‖2
=

v
T ωv

L2
⇒

v
T ωv = L2, (15)

so that (14) holds, since (15) ⇔ (10). We can now interpret
(15) as follows: the algebraic distance between the vanish-
ing point of the stick and the image of the absolute conic
equals L2.

Notice that for calibration only, the actual length of the
stick does not have to be known; using the constraint (10)
will give us zA in units of L (i.e. zA will be the unit-less
ratio of stick length and the actual metric depth of A), and
always the correct calibration K. This is the typical scale-
depth ambiguity in reconstruction; a change in scale can
be compensated by a change in depth without changing the
calibration matrix.

4 Degenerate cases

A motion of the stick is critical if and only if (15) has
more than one solution. Given a number of observations
of the stick, let vi be the vanishing point in image i. The
motion is now critical when the vanishing points of the stick
vi lie on a conic ω′ so that

v
T
i ω′

vi = 0 ∀i,

since then, if ω is a solution to (15), ω +kω′, k ∈ R, is also
a solution by

v
T
i (ω + kω′)vi = v

T
i ωvi + kvT

i ω′
vi = L2.

Figure 2. Geometrical interpretation of cali-
bration from 1D objects

When solving for ω in (13), the actual solution ω + kω′ is
constrained to a symmetric matrix, therefore ω′ must also
be symmetric. If additional constraints are placed on ω,
such that ω is of a more constrained form, then ω′ must also
be of the same, more constrained, form. This is done by
incorporating knowledge on the intrinsic parameters as will
be described in section 5.

Note that equation (10) would have no solutions (with
L 6= 0) if vi would lie on ω such that v

T
i ωvi = 0. Since

ω is a virtual conic and the vanishing points are real (from
v = P (B̃ − Ã)), this however only happens if vi = 0 ∀i.
This corresponds to the uninteresting case where A and B
both lie on an optical ray of the camera in all images so that
a and b coincide.

4.1 Critical motions

We now want to identify the critical motions of the stick
that give rise to the degenerate cases where the vanishing
points lie on a conic ω′ in the image plane.

Assume viω
′
vi = 0. Let Di be any point on the stick

in image i and Ei = Di − A the same point expressed
in a coordinate system with origin translated to A. With
P = K[I |0] and vi = K[I |0](D̃i − Ã) = KEi we get

v
T
i ω′

vi = 0 ⇔ ET
i KT ω′KEi = 0 ⇔

ET
i ω′′Ei = 0 ⇔ ẼT

i

[
ω′′ 0
0 0

]
Ẽi = 0 (16)

where ω′′ is symmetric. Equation (16) tells us that all points
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on the stick in all positions lie on a quadric of rank less than
or equal to 3, in this case a cone, centered at A.

In other words: the motion is critical if and only if the
vanishing points of the stick lie on a conic ω′. Since we
deal with perspective projection, this is exactly the case if
the stick’s point at infinity traces out a conic on the plane at
infinity during the motion (which can be a degenerate conic,
e.g. consisting of 2 straight lines). This in turn means that
the stick, when seen as an infinite line, traces out a cone,
with the fixed point A as vertex and the above conic as “gen-
erator”. Note that the cone does not need to be circular, i.e.
the locus of an individual point on the stick does not need to
be a planar circle for the degeneracy to occur. Furthermore,
as mentioned above, the generating conic may be degener-
ate, e.g. consisting of 2 straight lines. As for the stick’s
motion, this means that it is waved in 2 different planes.

Note that critical motions do not depend on the actual
position of the stick’s fixed point A; they only depend on
the stick’s orientation (and in special cases, see below, on
its orientation with respect to the camera).

In [14] some partial results on critical motions are given;
the case of a circular cone. This is of course degenerate, but
there are many more critical motions, as we have seen.

4.2 Safe motions

In practice, all critical motions should of course be
avoided. From the above said, we observe that this can be
achieved by for example moving the stick in three or more
non-parallel planes, which may be realized by some zig-zag
motion. Many other examples can be found, e.g. moving
the stick in a spiral.

5 Closed-Form Solutions

We will now look at the closed-form solutions for the
cases where some of the intrinsic parameters of the cam-
era are known and show what degeneracies there are in
these cases. We also show that the number of images re-
quired for calibration using these closed-form solutions will
be smaller than in the general case.

5.1 Unknown focal length

Assume that only the focal length of the camera is un-
known. The image coordinate system can then be trans-
formed such that s = 0, γ = 1 and (x0, y0) = (0, 0). Then

ω =




1
f2 0 0

0 1
f2 0

0 0 1




so that the calibration problem reduces to solving equation
(13) where (in the minimal case of only two images)

U =

[
h2

11 + h2
21 h2

31

h2
12 + h2

22 h2
32

]
, x =

[
z2

A

f2

z2
A

]

and hji is hj in image i. We observe that here, only two
images are needed for calibration since then U is invertible.
Modifying the calibration algorithm in this way fixes known
camera parameters to their correct value and reduces the set
of critical motions to the case where the vanishing points all
lie on a circle centered in the image.

This can also be verified by noting that (13) has a unique
solution if and only if det(U) 6= 0. Now, denoting vj in
image i by vji,

det(U) = h2
32(h

2
11 + h2

21) − h2
31(h

2
12 + h2

22) = 0 ⇔

v2
32(v

2
11 + v2

21) − v2
31(v

2
12 + v2

22) = 0, (17)

since v = zAh (by (14)) and zA 6= 0 since all depths are
positive. The condition for a critical motion (17) is fulfilled
if v3i = 0 ∀i, which corresponds to the case where the
vanishing point of the stick is a point at infinity so that the
stick is moving in a plane parallel to the image plane, or if

(
v11

v31
)2 + (

v21

v31
)2 = (

v12

v32
)2 + (

v22

v32
)2 ⇔

v2
x1 + v2

y1 = v2
x2 + v2

y2

where vxi and vyi are the x- and y- coordinates of the van-
ishing point in image i (since v is expressed in homoge-
neous coordinates), meaning that the vanishing points lie
on a centered circle. Now equation (16) gives that the stick
lies on a quadric of the form




a 0 0 0
0 a 0 0
0 0 b 0
0 0 0 0




centered at A, where a, b ∈ R, which is a circular cone
whose axis of symmetry is parallel to the z axis (see Figure
3). Waving the stick in a plane parallel to the image plane
is then also a degenerate motion, since it is a special case of
a circular cone (it’s like a cone that is squashed to a plane).
In this case, the vanishing points of the stick are points at
infinity of the image plane. The line at infinity of the image
plane is a (degenerate) conic, of the required form (centered
circle).

5.2 Unknown focal length and aspect ratio

In this case

ω =




1
f2γ2 0 0

0 1
f2 0

0 0 1


 ..

4



Figure 3. Examples of critical quadric surfaces. If only the focal length is unknown, the critical
surface is a circular cone with axis of symmetry is parallel to the z axis (far left). With also the aspect
ratio unknown the surface is an elliptical cone with main axis parallel to any two coordinate axes, and
axis of symmetry parallel to the third one (center left). Examples of general quadrics representing
critical surfaces in the general case (right). The camera has the optical axis coinciding with the z-axis
and the image plane coordinate axes coinciding with the x- and y-axis

The calibration problem reduces to solving equation (13)
where (in the minimal case of three images)

U =



h2

11 h2
21 h2

31

h2
12 h2

22 h2
32

h2
13 h2

23 h2
33


 , x =
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and hji is hj in image i, which has a unique solution if and
only if det(U) 6= 0. Now det(U) = 0 if and only if

v2
11v

2
22v

2
33 + v2

21v
2
32v

2
13 + v2

31v
2
22v

2
13−

v2
31v

2
22v

2
13 − v2

21v
2
12v

2
33 − v2

11v
2
23v

2
32 = 0 (18)

which is the condition for a critical motion. It is fulfilled
either if vj0i = 0 ∀i and for some fixed j0, corresponding
to a motion of the stick in any of the two image coordinate
axis planes (v1 = 0 or v2 = 0) or in a plane parallel to the
image plane (v3=0), or (by rewriting (18) by dividing with
v2
31v

2
32v

2
33, renaming v1i

v3i
to vxi and v2i

v3i
to vyi, which then

are the image coordinates of the vanishing point) if

v2
x1v

2
y2 +v2

y1v
2
x3 +v2

x2v
2
y3−v2

y2v
2
x3−v2

y1v
2
x2−v2

x1v
2
y3 = 0.

This means that the vanishing points are on a ellipse cen-
tered in the image, with axes coinciding with the image x
and y axes. Equation (16) gives that the stick then moves
on the surface of an elliptical cone with main axis parallel
to any two coordinate axis, and axis of symmetry parallel to
the third one, see Figure 3.

5.3 Unknown focal length and principal point

Another frequently occurring condition in camera cali-
bration is that of s = 0 and γ = 1. In this case we find the

simplified closed-form solution by observing that

ω =




1
f2 0 −x0

f2

0 1
f2 − y0

f2

−x0

f2 − y0

f2

x2

0

f2 +
y2

0

f2 + 1


 ..

This reduces the problem to solving equation (13) where (in
the minimal case of four images)

U =
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21 2h11h31 2h21h31 h2
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 ,

x = z2
A

[
1
f2 , −x0

f2 , − y0

f2 ,
x2

0

f2 +
y2

0

f2 + 1
]T

and hji is hj in image i. The critical motions are according
to equation (16) reduced to quadrics of the form




a 0 c 0
0 a d 0
c d b 0
0 0 0 0




centered at A, where a, b, c, d ∈ R. Other cases where a
subset of the intrinsic parameters is known can be treated
similarly.

6 Experiments

6.1 Simulation

In order to evaluate the calibration accuracy for motions
close to being critical, an experiment on simulated data was
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Figure 4. Calibration errors with respect to angle of deviation of the 1D objects from a critical quadric

performed. The simulated camera had f = 1000, γ = 1,
s = 0 and (x0, y0) = (320, 240). A stick of length L = 70
with λA = λB = 0.5 and fixed point A = [0, 35, 150]T was
placed in 100 equally spaced positions on a critical cone.
Gaussian noise with mean 0 and varying standard devia-
tion was added to the angle between the stick and the axis
of symmetry of the critical cone as illustrated in Figure 5.
Gaussian noise with mean 0 and varying standard deviation
was added to the obtained image points.

The calibration algorithm for the general case where
all the intrinsic parameters are assumed to be unknown
was used. We measure the relative accuracy of the focal
length |∆f/f | and the dimensionless quantities |∆γ|, |∆s|,
|∆u0/f | and |∆v0/f | since errors in these contribute about
equally to the overall geometric accuracy in scene recon-
struction [11]. Results are given in Figure 4 for two differ-
ent levels of image noise.

We note that the calibration results are very inaccurate
for small angles of deviation from the critical surface as
expected. The improvement in accuracy is very dramatic
when increasing from close to 0◦ deviation from the cone,
to a few degrees. After around 5◦ there is no big improve-
ment and the results are quite good from this point on.

The fact that we get more accurate calibration results
than in [14] is probably due to the stick being far from par-
allel to the optical axis of the camera. Since the endpoints
of the image of the stick then are far apart, the results are
less affected by noise.

Errors (%) Sequence 1 Sequence 2
f 1.3566 20.3945
γ 1.5918 23.7308
s 0.7971 1.1993
u0 4.6013 5.2164
v0 0.6743 3.7431

Table 1. Experimental results for calibration
from real data. In sequence 1, the stick is
moving randomly. In sequence 2, the motion
of the stick is such that it is close to a critical
quadric surface

6.2 Real Data Experiment

To evaluate the sensitivity of the calibration algorithm in
a real world scenario, a digital camera was calibrated us-
ing two separate image sequences containing images of a
stick moving in two different patterns. The image resolu-
tion was 640 × 480 pixels. In the first sequence the stick
was moved randomly. In the second sequence the stick was
moved close to a critical surface, as illustrated in Figure 6.
The camera was in both cases calibrated using the closed
form solution for calibration from one dimensional objects
given no knowledge of the intrinsic parameters, as described
above. To be able to compare the results, the camera was
also calibrated using the standard algorithm for calibration
from planar patterns [13], including nonlinear minimization
of the cameras intrinsic parameters from reprojection errors,
resulting in a very precise calibration. The results are given
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Figure 5. Simulation of sticks on a degener-
ate surface with added angular noise with a
standard deviation of 2◦ (left) and 5◦ (right)

in Table 1, where the errors in the intrinsic parameters from
each of the two calibration results are given with respect
to the calibration result from the planar patterns. The er-
rors from the sequence with the degenerate stick movement
is generally much larger than for the random movement se-
quence, suggesting that close-to-critical motions of the stick
has to be avoided in practice.

7. Summary and Conclusions

Based on a geometrical interpretation of the constraint
used in camera calibration with one-dimensional objects,
we have identified the critical motions where the calibra-
tion algorithm will fail. We have shown that constraints
on the intrinsic parameters of the camera lead to simplified
closed-form-solutions and a reduced set of critical motions,
and also proposed some safe non-critical motions that will
guarantee the success of the calibration algorithm in prac-
tice. A simulation and a real data experiment was performed
to evaluate the calibration accuracy for motions close to be-
ing critical, showing the sensitivity of the algorithm to these
motions.
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Figure 6. Two images from two image se-
quences, each consisting of 12 images. On
each of the two images, tracked points from
the entire sequence are superimposed. In se-
quence 1, the stick is moving in a random
fashion (top). In sequence 2, the motion of
the stick is such that it is close to a critical
quadric surface in each image (bottom)
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