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Abstract

We present a tracking method where full camera posi-
tion and orientation is tracked from intensity differences in
a video sequence. The camera pose is calculated based on
plane equations, and hence does not depend on point corre-
spondences. The plane based formulation also allows addi-
tional constraints to be naturally added, e.g. perpendicular-
ity between walls, floor and ceiling surfaces, co-planarity
of wall surfaces etc. A particular feature of our method is
that the full 3D pose change is directly computed from tem-
poral image differences without making a commitment to a
particular intermediate (e.g. 2D feature) representation. We
experimentally compared our method with regular 2D SSD
tracking and found it more robust and stable. This is due
to 3D consistency being enforced even in the low level reg-
istration of image regions. This yields better results than
first computing (and hence committing to) 2D image fea-
tures and then from these compute 3D pose.
Keywords: visual tracking, structure estimation

1. Introduction

In visual tracking the pose of an object or the camera mo-
tion is estimated over time based on image motion informa-
tion. Some applications such as video surveillance only re-
quire that the target object is tracked in image space. For
other applications such as augmented reality and robotics
full 3D camera motion is needed. In this paper we concen-
trate on tracking full 3D pose.

One way to classify tracking methods is into feature-
based and registration based. In feature-based approaches
features in a (usually apriori) 3D model are matched with
features in the current image. Commonly a feature detec-
tor is used to detect either special markers or natural im-
age features. Pose estimation techniques can then be used
to compute the camera position from the 2D-3D corre-
spondences. Many approaches use image contours (edges
or curves) that are matched with an apriori CAD model of
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the object [11, 14, 6]. Most systems compute pose param-
eters by linearizing with respect to object motion. A char-
acteristic of these algorithms is that the feature detection is
relatively decoupled from the pose computation, but some-
times past pose is used to limit search ranges, and the global
model can be used to exclude feature mismatches [11, 2].

In registration based tracking the pose computation is
based on directly aligning a reference intensity patch with
the current image to match each pixel intensity as closely
as possible. These methods assume that the change in lo-
cation and appearance of the target in consecutive frames
is small. Image constancy can be exploited to derive effi-
cient gradient based schemes using normalized correlation,
or a sum-of-squared differences (e.g. L2 norm) criterion,
giving the technique its popular name SSD tracking. Un-
like the two previous approaches which build the definition
of what is to be tracked into the low level routine (e.g. a line
feature tracker tracks just lines), in registration based track-
ing any distinct pattern of intensity variation can be tracked.
The first such methods required spatial image derivatives to
be recomputed for each frame when “forward” warping the
reference patch to fit the current image [12], while more re-
cently, efficient “inverse” algorithms have been developed,
which allow the real time tracking for the 6D affine [7] and
8D projective warp [3]. A more complicated appearance
model can be used to compensate changes in intensity [7]
or can be learned as a mixture of stable image structure and
motion information [10].

In this paper we extend the registration-based techniques
by constraining the tracked regions to 3D planes. This will
allow tracking full 3D camera position like in the model-
based approaches but eliminates the need for explicit feature
matching. The update is based on the same SSD criterion as
the classical registration-based methods with the difference
that the update is done directly on the 3D parameters and
not on the 2D warp parameters. The approach is thus dif-
ferent from previous approaches that first estimate the ho-
mography warp from salient points and then the 3D mo-
tion parameters from the homography [15]. The 3D plane
parameters are estimated and optimized in a training phase
(typically ≈ 100 frames) using structure-from-motion tech-
niques. The algorithm does not require complete scene de-



composition in planar facets, but works with few planar
patches identified in the scene. Man-made environments
usually contain planar structures (e.g. walls, doors). Some
advantages of using a global 3D model and local surface
patches are that only surfaces with salient intensity varia-
tions need to be processed, while the 3D model connects
these together in a physically correct way. We show ex-
perimentally that this approach yields more stable and ro-
bust tracking than previous approaches, where each surface
patch motion is computed individually.

Related work of incorporating a 3D model into registra-
tion based tracking involve a full 3D model (3D patches
defined by estimated 3D points) of the regions that are
tracked [5]. Another similar approach is presented by Baker
et al. [16] where the 3D model is calculated from a 2D active
appearance model (AMM) and used to improve the track-
ing. In the proposed technique we loosen this constraint and
require only the plane parameters to be estimated. Any re-
gions on these planes can then be tracked.

The rest of the paper is organized as follows: The
next section describes the tracking algorithm, then Sec-
tion 3 presents the method for estimating plane equations
from images. The complete tracking system is presented in
Section 4 and its qualitative and quantitative evalua-
tion in Section 5 followed by conclusions and a discussion
in Section 6.

2. Tracking 3D planes

We consider the problem of tracking the motion of a
camera looking at a rigid structure using image registration.
The structure is represented by a set of 3D planes that are
estimated a-priori as described later in Section 3. Full 3D
camera motion is tracked by registering image regions on
corresponding planes through the induced homography.

2.1. Homography induced by a plane

It is well known that images of points on a plane in two
views are related by a homography [8]. For planes in gen-
eral position this homography is uniquely determined by the
plane equation. A 3D plane is represented as π = [nT , d],
where n is the unit normal and d is the signed distance
from the origin to the plane. For points X on the plane
nT X + d = 0. If the world coordinate system is aligned
with the first camera coordinate system, the calibrated pro-
jection matrices have the form:

P0 = K[I |0] Pt = K[R|t] (1)

where K is the camera matrix (internal parameters) and R, t
represents the 3D motion of the second camera with respect
to the first one. Now, the homography induced by the plane
π has the form:

H = K(R − tnT /d)K−1 (2)

Image points in the two views I1, I2 are then related by
u2 = Hu1. If the image points are normalized with re-
spect to camera internal parameters x = K−1u = [R|t]X
the homography becomes:

H = R − tnT /d (3)

In the tracking problem formulation the goal is to directly
estimate camera motion R, t that corresponds to the homog-
raphy that best aligns the image points in two views assum-
ing that the plane parameters are known.

2.2. Region-based tracking for planes

Assume we have estimated parameters in the plane equa-
tions for several planar regions in the scene. Let xk =
{x1,x2, . . .xKk

} denote all the (interior) normalized im-
age pixels that define the projection of the planar region
πk = [nT

k , dk] in image I . We refer to I0 = T as the ref-
erence image and to the union of the projections of the pla-
nar regions in T , ∪kT (xk) as the reference template. The
goal of the tracking algorithm is to find the (camera) mo-
tion Pt = [Rt, tt] that best aligns the reference template
with the current image It. The problem is formulated as
finding an incremental motion update ∆p from frame It−1

to It that is added to the current motion. The model is de-
fined so it is aligned with the first frame (template). A more
precise formulation follows next (refer to Figure 1).

As described in the previous section the image motion
in image t for each individual planar region k can be per-
fectly modeled by a homography warp H(xk; Pt, πk) =
Rt − ttn

T
k /dk. In the following we denote the homogra-

phy warp by H(xk ;pt) where p = [αx, αy, αz , tx, ty, tz]
T

are column vectors of the 3D motion parameters that de-
fine the camera motion (Euler angles and translation). The
main difference from the previous approaches in registra-
tion based tracking [3] is that we directly compute 3D mo-
tion parameters unified over the whole scene as opposed to
2D warp parameters for each individual patch.

Under the common image constancy assumption (e.g. no
illumination variation, no occlusion) used in motion detec-
tion and tracking [9] the tracking problem can be formu-
lated as finding pt such as:

∪kT (xk) = ∪kIt(H(xk ;pt)) (4)

pt = pt−1 ◦∆p (where ’◦’ denotes the composition opera-
tion) can be obtained by minimizing the following objective
function with respect to ∆p:

∑

k

∑

x

[T (xk) − It(H(xk;pt−1 ◦ ∆p))]2 (5)

The update in position ∆p is based on the image difference
between the template image and the current image warped
in the space of the template, the update in position being
place on the side of the current image. As a consequence,
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Figure 1. Overview of the 3D plane based
tracking system. In standard SSD tracking
2D surface patches are related through a ho-
mography H between frames. In our system
a 3D planes are estimated (from video alone),
and global 3D pose change ∆p is computed,
and used to enforce a consistent update of all
the surface warps.

the computations are performed in the space of the current
image.

For efficiency, we solve the problem by an inverse com-
positional algorithm [3] that minimizes the error between
the template image and the current image warped in the
space of the template image, with the update on the tem-
plate image (see Equation 7). As shown below, working in
the space of the template image allow more computations
to be done only once at the initialization speeding up the
tracking. H becomes the homography from the image t to
the template image (inverse of Equation 3). The goal is to
find ∆p that minimizes

∑

k

∑

x

[T (H(xk; ∆p)) − It(H(xk ;pt−1))]
2 (6)

where in this case the 3D motion parameters are updated as:

Pt = Pt−1 ◦ inv(∆P ) (7)

where inv(P ) = [RT | − RT t] for P = [R|t]. As a conse-
quence the homography warp update is:

H(xk;pt) = H(xk ; ∆p)−1 ◦ H(xk;pt−1) (8)

Performing a Taylor expansion of Equation 6 gives:

∑

k

∑

x

[T (H(xk;0))+∇T
∂H

∂p
(xk ;0)∆p−It(H(xk ;pt))]

(9)
As the motion of the template image is zero (the model is
aligned with the template frame) T = T (H(xk;0)). Denot-
ing the image derivatives by M

M =
∑

k

∑

x

∇T
∂H

∂p
(10)

equation 9 can be rewritten as:

M∆p ' et (11)

where et represents the image difference between the tem-
plate regions and warped image regions, and the motion ∆p

is computed as the least squares solution to Equation 11.
The image derivatives M are evaluated at the reference

pose p = 0 and they are constant across iterations and can
be precomputed, resulting in an efficient tracking algorithm
that can run in real time (see Section 4).

3. Estimating planes equations from images

The tracking algorithm described in Section 2.2 requires
knowledge of the plane parameters for each planar region
that is tracked. The plane equations are estimated from im-
ages in a bootstrapping phase. Salient feature points on each
plane are tracked using standard (2D image-plane) SSD
trackers as in [3, 7]. The grouping of the points depend-
ing on the plane can be easily solved by having the user
mark planar regions in the first frame.

We first present the algorithm that computes a plane
equation from images of points on the plane in two im-
ages. It is a special case of the structure from motion prob-
lem where the camera is internally calibrated and the fea-
ture points belong to a physical plane. The homography in-
duced by the plane H is robustly computed using RANSAC
from 4 or more corresponding points. Knowing that it is of
the form H = R− tnT /d, the motion and structure param-
eters {R, 1

d
t,n} can be computed [13]. There are in gen-

eral four solutions but only at most two are physically valid
by imposing the positive depth constraint (model points are
in front of the camera).

In a more general case, when multiple planes are viewed
in several images, a reference view is chosen and the cor-
responding plane homographies that relate the reference
view with additional views are computed. The motion for
each frame is averaged over the motions estimated from
each plane homography and the plane parameters are av-
eraged over the ones computed from several views. Assum-
ing a smooth motion between adjacent views only the so-
lution that corresponds to the motion closest to the motion
of the previous frame is chosen. For the first pair one of the



two physically valid solutions is chosen. The scale of the
scene is also disambiguated by fixing the distance to one
plane. At the end a nonlinear optimization using Levenberg-
Marquardt algorithm over all the frames is performed. The
error that we optimize is the symmetric transfer error for
points related through a homography:

{R2, t2, . . . Rm, tm;n1, d1, . . . ,nk, dk} =
argmin

∑
t

∑
k

∑
xtk

d2(xtk , Htkx1k) + d2(x1k , H−1

tk xtk)
(12)

This is not exactly the maximum likelihood estimator under
Gaussian noise but is more practical in our case as it will
give the best motion and plane structure without explicitly
computing the 3D points coordinates.

3.1. Incorporating constraints between planes

Known constraints between planes such as perpen-
dicularity or parallelism of walls can potentially stabi-
lize the tracking. We impose constraints by a minimum
parametrization of the plane parameters as in [4].

Consider two planes π1 = [nT
1
, d1],π2 = [nT

2
, d2]. A

perpendicularity constraint can be algebraically expressed
by a vanishing dot product between the plane normals:

n11n21 + n12n22 + n13n23 = 0 (13)

This bilinear constraint can be enforced by eliminating one
plane parameter. We chose to eliminate the parameter nik

such that the absolute value of the corresponding parameter
on the second plane njk is maximal over all the parameters.

For the other type of constraint when the planes are par-
allel we impose that the normals of the two planes are the
same. This eliminates all parameters that represent the unit
normal of one plane.

n1k = n2k, k = 1, 2, 3 (14)

The resulting plane parameters and the originally re-
covered motions are then optimized using the same Equa-
tion 12. A full parametrization of the planes is recovered for
every plane from Equations 13,14. A potentially somewhat
more accurate approach would involve obtaining a minimal
parameterization of 3D points on constrained planes and es-
timating the structure of those points and the camera mo-
tion from feature correspondences. This would allow defin-
ing a maximum likelihood estimator under Gaussian image
noise. The plane parameters are then computed from the es-
timated 3D points.

4. Tracking system overview

We incorporated the proposed plane tracking algorithm
into a system that first initializes plane equations from 2D
image tracking over a limited motion and then switches to
track points on the estimated 3D planes.

Bootstrapping phase

1. The user marks planar regions in the first frame and
specifies plane constraints (parallelism, perpendicular-
ity) as applicable. Feature points inside these regions
are tracked using standard SSD 2D trackers.

2. Plane parameters are first initialized by averaging close
form solutions from homographies and then a minimal
parametrization is optimized together with the esti-
mated motion over all the training frames as described
in Section 3.

3. The 3D planes are related to the current frame using
the 2D tracked points. This will align the origin of the
world coordinate system with the current frame. Then
the plane based tracking is initialized by computing the
derivative images M (Equation 10).

Tracking phase

The tracking now continues with 2D surface patches inte-
grated in the 3D model of the planes that enforces a glob-
ally consistent motion for all surface patches as described
in Section 2.2.

1. An incremental position update ∆p is computed based
on image differences between the regions in the refer-
ence template and the warped regions from the current
image (Equation 11).

2. The global camera position is updated based on Equa-
tion 7.

5. Experiments

Two important properties of tracking methods are con-
vergence and accuracy. Tracking algorithms based on opti-
mization and spatio-temporal derivatives (Equation 9) can
fail to converge because the image difference between con-
secutive frames It−1, It is too large (more than just few
pixels), and the first order Taylor expansion (Equation 9)
around pt−1is no longer valid, or some disturbance causes
the image constancy assumption to be invalid.

In the numerical optimization the pose update ∆p is
computed by solving an overdetermined equation system,
Equation 11. Each pixel in a tracking patch provides one
equation and each model freedom (DOF) one variable. The
condition number of the linearized motion model M affects
how measurement errors propagate into ∆p, and ultimately
if the computation converges or not. In general, it is more
difficult to track many DOF. In particular, the homography
warp (that incorporates scaling and out-of-plane rotations)
causes less apparent image change compared to a 2D trans-
lational warp. By tracking a connected 3D model, the track-
ing convergence is no longer solely dependent on one sur-
face patch alone, and the combination of differently located
and oriented patches can give an accurate 3D pose estimate
even when each patch would be difficult to track individu-
ally.



In the first experiment we compared the tracking stability
for the plane based tracker and the traditional homography
based tracker. The results are shown in Figure 2 (above).
When three regions are individually tracked using an 8DOF
homography by the algorithm from [3] (top images) the first
region is lost already after 70 frames. The condition num-
bers for M vary between 4 ∗ 106 and 1 ∗ 107, indicating a
numerically ill conditioned situation. When instead the re-
gions are related by the global model, pose is successfully
tracked through the whole sequence of 512 frames (middle,
bottom of Figure 2). The condition number of the 6DOF (3
rot, 3 trans) model is 1000, which is significantly better than
for the 8DOF homography. Imposing constraints on the esti-
mated planes (e.g. roof planes perpendicular to front plane)
further stabilizes the trackers (last row of Figure 2) . One of
the trackers (the window on the tall house) starts drifting at
about frame 250 when using the unconstrained model (mid-
dle row of Figure 2). The experiment is illustrated also in
video1 [1] where the red trackers use 8DOF homography
the green trackers use general 3D planes and the blue ones
constrained 3D planes. The planes that become occluded are
eliminated using a Z-buffer algorithm.

One of the main advantages of the proposed approach
over traditional SSD tracking is that actual 3D camera pose
can be tracked. This is useful for example in robotics or aug-
mented reality applications. In the next experiment we eval-
uate the accuracy of tracking in an indoor lab scene tracked
by a moving camera. Ground truth was obtained by mea-
suring the camera path and performing a Euclidean calibra-
tion of the model. Figure 3 shows two tracked frames, and
the sequence can be seen in video2 [1].

Figure 3. Tracking 3D planes. Pose accuracy
experiment. video2 [1]

The first test trajectory is a straight line in the horizon-
tal plane of 1m. Figure 4 (left) illustrates the recovered tra-
jectory. To measure the accuracy of the tracking algorithm
we calibrated the 3D model for the planes assuming given
real dimensions (distance from camera to one plane) so we
could get the translation in meters. Here the parallelism con-
straints imposed between planes (e.g. back wall and Syn-
crude sign) had a very small influence on the pose accu-
racy. We found that the trajectory had 0.41 cm mean devi-
ation from a straight line and 3.15 cm mean deviation from
the horizontal plane. The recovered line length was 1.10 m,
that result in an error of 10% with respect to the measured
ground truth. The camera was not rotated along the first tra-
jectory, that corresponds to the measured rotation (error was
less than 1.4 degree on average).

We tracked the second trajectory along two perpen-
dicular lines in the horizontal plane. In this experiment,
the physical motion was not particularly smooth and the



recorded data therefore also somewhat jumpy. We measured
the angle between the two lines fitted to the recovered posi-
tions (see Figure 4) as 76◦. Hence it had a considerable an-
gular error with respect to the ground truth. The MATLAB
implementation of the plane tracking runs at about 3Hz.
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Figure 4. Recovered positions (in 3D space)
for the straight line trajectory (left) and the 2
perpendicular lines trajectory (left). The red
line are the fitted 3D lines to each line seg-
ment.

6. Discussion

We have presented a tracking algorithm that extends the
existing SSD homography tracking by computing a global
3D position based on precomputed plane equations. The
parameters of the 3D planes are estimated from an initial
sequence (about 100 frames) where feature points on the
planes are tracked using regular SSD translational trackers.
Constraints between planes are also incorporated using a
minimal parametrization of the planes. We showed that the
proposed tracking algorithm is more stable due to the re-
duced DOF compared to tracking individual homographies
and can handle a large range of motion.

A main advantage of the method is that it tracks full 3D
camera position that might be required in applications like
robotics or augmented reality. The pose is computed di-
rectly from image derivatives with respect to pose param-
eters that guarantes the best 3D pose update from the lin-
earized model. This is unlike the other model based ap-
proaches where 3D pose is estimated from tracked 2D im-
age correspondences.

The present version of the algorithm does not handle par-
tial occlusions and illumination variation. This problem can
be solved by using a robust norm like in [7].
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