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Abstract

We address the problem of finding optimal point correspondences between images related

by a homography: given a homography and a pair of matching points, determine a pair of

points that are exactly consistent with the homography and that minimize the geometric dis-

tance to the given points. This problem is tightly linked to the triangulation problem, i.e., the

optimal 3D reconstruction of points from image pairs. Our problem is non-linear and iterative

optimization methods may fall into local minima. In this paper, we show how the problem can

be reduced to the solution of a polynomial of degree eight in a single variable, which can be

computed numerically. Local minima are thus explicitly modeled and can be avoided. An ap-

plication where this method significantly improves reconstruction accuracy is discussed. Be-

sides the general case of homographies, we also examine the case of affine transformations,

and closely study the relationships between the geometric error and the commonly used Samp-

son�s error, its first order approximation. Experimental results comparing the geometric error

with its approximation by Sampson�s error are presented.
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1. Introduction

Homographies are used in many applications, e.g., in mosaicing [1] or wide base-

line stereo matching [2,3]. In many applications we also need to compute the error

(or the distance) of a point correspondence with respect to a given homography H.
This is necessary for instance in RANSACRANSAC [4], a commonly used robust estimation al-

gorithm. Some applications may require not only to compute the distance of a given

point correspondence to the model of homography but actually need to determine

points, which are consistent with the given homography and are in a small neighbor-

hood of the measured, thus noisy, given points.

This work addresses the problem of finding optimal point correspondences be-

tween images related by an homography: given a known homography and a pair

of matching noisy points, determine a pair of points that are exactly consistent with
the homography and that minimize the geometric distance to the given noisy points.

There are two approaches to achieve such a goal [5]: (1) non-linear optimization us-

ing iterative methods and (2) parametric approach, where the solution is parame-

trized so that it automatically satisfies the given constraint. The paper

concentrates on the latter strategy.

A similar problem, based on the geometric error for the epipolar geometry, has

been addressed by Hartley and Sturm [6]. The geometric error for homographies

was introduced by Sturm [7, Appendix B], and independently derived by Chum
and Pajdla in [8,9]. In this paper, previous results are reviewed from a common per-

spective, the derivation of the geometric error for homographies is described and a

mathematical proof of its correctness given. Furthermore, we discuss the commonly

used approximation of the geometric error, Sampson�s error. Links between the two

are studied in detail, for the general case of homographies, as well as the case of af-

fine transformations between images.

The rest of the paper is structured as follows. Basic concepts are introduced in

Section 2. Section 3 contains the derivation of the formulae for the geometric error.
In Section 4, Sampson�s approximation is derived and studied. Geometric properties

of both error measures are studied in Section 5. Experiments are presented in Section

6. An application of the proposed method is described in Section 7 and conclusions

are given in Section 8.
2. Basic concepts

We assume that a planar homography H [10] and a noisy correspondence x $ x0

measured in the images are given. Let the homogeneous coordinates of the corre-

sponding points be x ¼ ðx; y; 1ÞT and x0 ¼ ðx0; y 0; 1ÞT and the homography be repre-

sented by the (regular) matrix
H ¼
h1 h2 h3
h4 h5 h6
h7 h8 h9

0@ 1A:
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There are several possible ways to measure the ‘‘error’’ of that point correspondence

with respect to the homography. We will mention the geometric error and Sampson�s
approximation of it.

Supposing the Gaussian noise model for perturbations of image coordinates, the

maximum likelihood estimation of the position of the noise-free correspondence
x̂ $ Hx̂ is obtained by minimizing the geometric error d2

? ¼ dðx; x̂Þ2 þ dðx0;Hx̂Þ2 over
all x̂ (Fig. 1). This error measure could be thought of as the Euclidean distance of

point X ¼ ðx; y; x0; y0Þ 2 R4, representing the given point correspondence, to the

two-dimensional variety VH (Fig. 2) defined as
Fig. 2

dence

error a

Fig. 1

ing d2
VH ¼ fY 2 R4 j tðYÞ ¼ 0g; ð1Þ

where t ¼ ðtx; tyÞT and
tx ¼ Y1h1 þ Y2h2 þ h3 � Y1Y3h7 � Y2Y3h8 � Y3h9; ð2Þ

ty ¼ Y1h4 þ Y2h5 þ h6 � Y1Y4h7 � Y2Y4h8 � Y4h9; ð3Þ

i.e., such Y represent point correspondences that are consistent with H.
. The variety VH and points where different error measures of the measured noisy point correspon-

X with respect to homography H are minimized. The geometric error is minimized at X̂, Sampson�s
t XS, and the error in the second image at X2.

. Two images linked by homography H. Points x and x0 are measured points, x̂ is the point minimiz-

þ d 02 where d and d 0 are the distances x to x̂ and x0 to Hx̂.
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The first-order approximation of this error measure, called Sampson’s error, was
first used by Sampson [11] for conics. The derivation of Sampson�s error for homog-

raphies is described in Section 4.

The exact computation of the geometric error is equivalent to finding the point

X̂ 2 R4 on the variety VH, that minimizes the Euclidean distance to the measured
point X. We show that the geometric error can be exactly determined by solving a

polynomial of degree eight.
3. The geometric error

In this section the problem of computing the geometric error is transformed, so

that it reduces to finding roots of a polynomial of degree eight.

The distance of points lying on the variety VH to the measured point correspon-

dence X can be written as a function of the matrix H, the measured image points

x, x0, and a point x̂ in the first image. If we expand the matrix multiplication, we

have
eðx̂Þ ¼ ðx� x̂Þ2 þ ðy � ŷÞ2 þ ðx0 � x̂0Þ2 þ ðy0 � ŷ0Þ2; ð4Þ

where
x̂0 ¼ h1x̂þ h2ŷ þ h3
h7x̂þ h8ŷ þ h9

ð5Þ
and
ŷ0 ¼ h4x̂þ h5ŷ þ h6
h7x̂þ h8ŷ þ h9

: ð6Þ
Directly solving the equation ðoe=oŷÞ ¼ 0 leads to a polynomial in two variables of

order four in x̂ and order five in ŷ. The same happens for the partial derivative of e
with respect to x̂. Therefore, we first transform the images such as to lower the degree

of the polynomial. We use Euclidean transformations, which do not change dis-

tances, and thus the solution of the transformed problem will be the transformed

solution of the original problem.
At first we shift the points x and x0 to the origin of the first and the second image,

respectively. This is achieved by applying the following translations:
L ¼
1 0 �x
0 1 �y
0 0 1

0@ 1A; L
0 ¼

1 0 �x0

0 1 �y0

0 0 1

0@ 1A:
After translating the images we have
L
0x̂0 � L

0
HL

�1
Lx̂: ð7Þ
In this equation, � stands for ‘‘equal up to a nonzero scale.’’ Let B ¼ L0HL�1 be the

homography between the transformed images and �x ¼ Lx̂. We can easily verify that
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the first two entries in the third row of the matrix B equal the corresponding entries

in H after applying the translations, and so
1 T

for eðx̂
B ¼
b1 b2 b3
b4 b5 b6
h7 h8 b9

0@ 1A: ð8Þ
We can now rewrite (re-parameterize) the error term e as follows:1
eðx̂Þ ¼ eð�xÞ ¼ �x2 þ �y2 þ b1�xþ b2�y þ b3
h7�xþ h8�y þ b9

 !2

þ b4�xþ b5�y þ b6
h7�xþ h8�y þ b9

 !2

: ð9Þ
From (9) we can observe, that solving for the minimum of e would be simple if h8
were equal to 0, as oe=o�y would be linear in �y (e would be quadratic in �x). To achieve
this situation, we simply rotate the first image appropriately: we design a rotation

matrix R so that the homography between the rotated first image and the second

image, i.e., Q ¼ BR�1, satisfies q8 ¼ 0. With
R ¼
cosðaÞ � sinðaÞ 0
sinðaÞ cosðaÞ 0

0 0 1

0@ 1A

the rotation angle a for which q8 ¼ h7 sinðaÞ þ h8 cosðaÞ ¼ 0 is obtained as
a ¼ arctan

�
� h8
h7

�
: ð10Þ
Now we can rewrite the term e as follows:
eð~xÞ ¼ ~x2 þ ~y2 þ q1~xþ q2~y þ q3
q7~xþ q9

 !2

þ q4~xþ q5~y þ q6
q7~xþ q9

 !2

; ð11Þ
where ~x ¼ R�x ¼ RLx̂. The partial derivative oe=o~y is linear in ~y. The minimum is

reached in oe=o~y ¼ 0, so
~y ¼ � q2q3 þ q5q6 þ q1q2~xþ q4q5~x
q22 þ q25 þ q29 þ 2q7q9~xþ q27~x2

: ð12Þ
Now we can simply substitute (12) into (11) and find the minimum of e. Solving
oe
o~x

ð~x; ~yÞ ¼ 0
gives a polynomial of degree eight which is completely given in Appendix B. The

proof of correctness of the procedure described above, i.e., the proof that a global

minimum of the function e exists and that the partial derivatives are defined at it, can

be found in Appendix A.
he function e is parametrized not only by x̂, but also by x, x0, and H. The term eðx̂Þ actually stands

; x;x0;HÞ, whereas eð�xÞ stands for eð�x;Lx;L0x0;BÞ.
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3.1. The affine case

Eqs. (2) and (3) are linear in the entries of the mapping matrix and bilinear in the

entries of Y when a full homography matrix is sought.

Proposition 1. Eqs. (2) and (3) are linear in the entries of Y if and only if the mapping
is affine.

Proof. If (and only if) both h7 ¼ 0 and h8 ¼ 0, then (2) and (3) are linear in the entries

of Y. This exactly corresponds to affine mappings. �

For an affine transformation, x0 ¼ Ax, where
A ¼
a1 a2 a3
a4 a5 a6
0 0 1

0@ 1A;
the geometric error can be easily obtained in closed form. As the error function
e ¼ ðx̂� xÞ2 þ ðŷ � yÞ2 þ ða1x̂þ a2ŷ þ a3 � y0Þ2 þ ða4x̂þ a5ŷ þ a6 � y 0Þ2
is order of two in both x̂ and ŷ, partial derivatives oe=ox and oe=oŷ are linear in both

x̂ and ŷ. Solving the system oe=ox̂ ¼ 0 and oe=oŷ ¼ 0 using, e.g. [12] yields (in the

general case) a unique solution
N ¼ ða25 þ 1Þða21 þ 1Þ � 2a1a2a4a5 þ a22 þ a22a
2
4 þ a24;

x̂ ¼ 1

N
a1ða2a5a6
�

� a3 � a3a25Þ þ a2a3a4a5 � ða4a6Þða22 þ 1Þ þ xða25 þ a22 þ 1Þ

� yða1a2 þ a4a5Þ þ x0ða1 þ a1a25 � a2a4a5Þ þ y 0ða4 � a1a2a5 þ a22a4Þ
�
;

ŷ ¼ 1

N
a1ða3a4a5
�

þ a2a4a6Þ � ða5a6Þða21 þ 1Þ � ða2a3Þða24 þ 1Þ � xða1a2 þ a4a5Þ

þ yða21 þ a24 þ 1Þ þ x0ða2 � a1a4a5 þ a2a24Þ þ y0ða5 � a1a2a4 þ a21a5Þ
�
:

4. Sampson’s error

To find the closest point on the variety VH to our measured correspondence

x $ x0, or X 2 R4, requires solving a polynomial of degree eight, which is computa-

tionally expensive. Another possibility is to compute an approximation of the geo-

metric error.

We can use the first-order Taylor approximation of tx and ty by their tangent hy-

perplanes in the measured point X. Let J be the Jacobian matrix
JH;x;x0 ¼
otxðXÞ
ox

otxðXÞ
oy

otxðXÞ
ox0

otxðXÞ
oy0

oty ðXÞ
ox

oty ðXÞ
oy

oty ðXÞ
ox0

oty ðXÞ
oy0

 !
:
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To simplify J for further use, we apply the observations that otxðXÞ
oy0 ¼ 0,

oty ðXÞ
ox0 ¼ 0,

and otxðXÞ
ox0 ¼ oty ðXÞ

oy0 . We obtain J in the following form:
JH;x;x0 ¼ J ¼ j1 j2 j3 0

j4 j5 0 j3

� �
;

where j1 ¼ h1 � h7x0, j2 ¼ h2 � h8x0, j3 ¼ �h7x� h8y � h9, j4 ¼ h4 � h7y 0, and

j5 ¼ h5 � h8y 0 are the respective partial derivatives. Then, the first order Taylor ap-

proximation of t is
~tð~XÞ ¼ tðXÞ þ Jð~X� XÞ: ð13Þ

The approximate solution (Sampson�s error) might be found as the closest point

to X on the two-dimensional variety VS defined as follows:
VS ¼ f~X 2 R4 j ~tð~XÞ ¼ 0g:
As VS is linear, the solution is given by
XS ¼ JþtðXÞ þ X;
where Jþ ¼ JTðJJTÞ�1
is the pseudo-inverse of the Jacobian J.

If we have a closer look at the function ~t (Eq. (13)), we can observe that it is sim-
ilar to the function t, but linear in the entries of ~X. If we examine it in more detail, we

find that Sampson�s error is in fact the geometric error for the affine transformation,

that locally approximates the homography H. The affine approximation x0 ¼ AHx of

the homography H in the measured points x $ x0 is as follows:
AH ¼ 1

j3

j1 j2 �j1x� j2y � j3x0 þ txðXÞ
j4 j5 �j4x� j5y � j3y0 þ tyðXÞ
0 0 j3

0@ 1A:
The affine transformation AH has the same partial derivatives as H in the measured

point X. Let us give a geometric interpretation of AH. The construction of AH based

on the points that are mapped identically by both, the homography H and its affine

approximation AH, gives an illustrative explanation. These points are given as the

fixed points of A�1
H
H. The eigenvectors and eigenvalues of A�1

H
H are in the general

case (using [12]) v1 ¼ ðh8;�h7; 0ÞT, k1 ¼ 1, v2 ¼ ð0; h7xþ h8y; h8ÞT, k2 ¼ 1, and
v3 ¼ H�1x0, k3 6¼ 1. Hence, there is a line of fixed points, passing through the points

v1 and v2 (including x ¼ xv1 þ v2) and a fixed point H�1x0. The point v1 is the only

point (in general) that is mapped by the non-affine homography from the line at

infinity to the line at infinity, i.e., H�1ðH�Tð0; 0; 1ÞT � ð0; 0; 1ÞTÞ, satisfying

ðh7; h8; h9Þv1 ¼ 0.
5. Geometric properties

An important property of an error measure is its independence of the choice of the

Cartesian coordinate system in the images. In this section, we study the behavior of
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the discussed error measures under the application of rigid transformations to the

images. The originally formulated relation x0 � Hx changes to
T
0x0 � ðT0

HT
�1ÞTx;
where T and T0 represent the rigid image transformations of the first and the second
image, respectively.

As distances in the images are not affected by rigid transformations and the new

homography links the transformed points, the geometric error remains the same. We

already used this property in Section 3.

Proposition 2. The Jacobian J is covariant to any affine transformation of the images.
Let T and T0 be affine transformations of the first and second image respectively, and
H1, H2 be homographies satisfying JH1;x;x0 � JH2;x;x0 . Then JT0H1T

�1;Tx;T0x0 � JT0H2T�1;Tx;T0x0 .

Proof. Denote the affine transformations as
T ¼
t1 t2 t3
t4 t5 t6
0 0 1

0@ 1A and T
0 ¼

t01 t02 t03
t04 t05 t06
0 0 1

0@ 1A:
The Jacobian J after transforming the first and the second image, respectively can

be expressed in terms of the transformations T and T0 and the original Jacobian J as

follows:
JT0H;x;T0x0 ¼
j1t01 þ j4t02 j2t01 þ j5t02 j3 0

j1t04 þ j4t05 j2t04 þ j5t05 0 j3

� �
and ð14Þ

JHT�1;Tx;x0 ¼
�j2t4þj1t5
t1t5�t4t2

j2t1�j1t2
t1t5�t4t2

j3 0
�j5t4þj4t5
t1t5�t4t2

j5t1�j4t2
t1t5�t4t2

0 j3

 !
: ð15Þ
From Eqs. (14) and (15) it follows, that the transformed Jacobian can be expressed

as a function of the original Jacobian J and the affine transformations T and T0. The

proposition is a straightforward consequence of this fact. �

Proposition 3. Sampson’s error measure is invariant to the choice of Cartesian coor-
dinate system, i.e., any rotation or translation of the images does not affect it.

Proof. From its definition, the affine approximation AH of H has the same Jaco-

bian in the measured point X as H. From Proposition 2 the Jacobians

JT0HT�1;Tx;T0x0 � JT0AHT
�1;Tx;T0x0 for any affine transformations T and T0. The composition

of affine transformations T0AHT
�1 is an affine transformation, hence
AT0HT�1 ¼ T
0AHT

�1: ð16Þ

Both rotation and translation fall into the family of affine transformations and so the

Eq. (16) holds for any choice of Cartesian coordinates. Sampson�s error is then a

geometric error for AT0HT�1 , which we already know is invariant to the choice of
Cartesian coordinate system. �
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Note that a general affine transformation does preserve neither the geometric nor

Sampson�s error, since it does not preserve perpendicularity and distances. However,

Sampson�s error changes in the same manner as the geometric error does, because it

is the geometric error of the affine approximation AH of H that is covariant to affine

transformations of images.
6. Experiments

From Section 5, we already know, that Sampson�s and the geometric error are

equivalent for pure affine transformations. The aim of this experiment is to show

their behavior with respect to the influence of the non-affine part of a general homog-

raphy H.
Consider now the decomposition H ¼ PA, where A is an affine transformation and

P has the form
P ¼
1 0 0

0 1 0

p7 p8 1

0@ 1A:
Let the decomposition H ¼ PA exist. Let also P0 ¼ PT be of the same form as P and

let A0 ¼ T�1A be an affine transformation. Then it can be easily shown that if

H ¼ P0A0 then T must be the identity to keep both A0 affine and P0 in the desired form.
Hence, if such a decomposition exists then it is unique. Let G ¼ H�1. Then from

H�1P ¼ GP ¼ A�1 we get the equations for p7 and p8 as
p7 ¼ � g7
g9

and p8 ¼ � g8
g9

:

Thus, the decomposition exists iff g9 6¼ 0. The geometric meaning of this condition is
that the origin of the coordinate system of the second image does not lie on the image

of the line at infinity of the first image, i.e., ðH�Tl1ÞTð0; 0; 1ÞT 6¼ 0.

To acquire real data, we shot two images of a checkerboard, see Fig. 3. We

manually selected four corresponding points in each image. The four points form

rectangles R and R0 that are depicted in solid line in Figs. 3A and B, respectively.

From these four point-to-point correspondences the homography H was calculated.

The origin of the coordinate system was chosen to coincide with one of the corners

and is depicted by the �X� marker. The homography H was decomposed into
H ¼ PA. The dashed rectangle in Fig. 3B is the rectangle R mapped from the first

image to the second by the affine part A of H. The dashed line in Fig. 3A arose as a

mapping of the dashed rectangle in the second image back to the first by H�1, i.e.,

the image of R by H�1A within the first image.

In this experiment, we will use the following notation: x and x0 stand for noise-free

points, i.e., x0 � Hx; x0 and x0
0 denote the noisy points. The points, where the geomet-

ric error is minimized are x̂ and bx0, and points where Sampson�s error is minimized

are xS and x0
S. Note that bx0 � Hx̂, but x0

S ¿HxS in general. In our experiment, we
measured different errors: d? and dS are the geometric and Sampson�s errors



Fig. 3. Experimental setup. Two images of a checkerboard taken by a digital camera. The homography H

was estimated from four point-to-point correspondences, shown as corners of the solid-line rectangles. The

dashed rectangles show the effect of the affine part of the decomposed H. The origin of the decomposition

is depicted by the �X� marker.
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respectively, d�
? ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðx; ~xÞ þ d2ðx0; ~x0Þ

p
, similarly d�

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðx; xSÞ þ d2ðx0; x0

SÞ
p

. The

displacement of points xS and x0
S is measured either as the distance in the second im-

age d2ðxS; x
0
SÞ ¼ dðHxS; x

0
SÞ or by using the geometric error d?ðxS; x

0
SÞ. The errors

were measured at points depicted in Figs. 3A and B. A Gaussian noise with

r ¼ 0:3 was added to each coordinate of a noise-free point correspondence. All val-

ues were obtained as averages over all points over 1010 realizations of noise and are
shown in Fig. 4.

The graphs in Fig. 4 show that the geometric (A,B) and Sampson�s (C,D) error

provide very similar results independently of the value of the non-affine part of

the planar homography. The same graphs show that the realization of the noise

has a much stronger influence than the values of p7 and p8 on both types of the error.

The value of r of the Gaussian noise was set to r ¼ 0:3 in this experiment. We ob-

served the same behavior for r 2 h10�4; 10i. Graphs E and F show that the displace-



Fig. 4. Dependency of: (A) d?, (B) dS, (C) d�
?, (D) d�

S , (E) dðHxS; x
0
SÞ, and (F) d?ðxS;x

0
SÞ on the non-affine

part of the homography H.
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ment of the points where the Sampson�s error is minimized, i.e., xS and x0
S, depends

on the value of p7 and p8. The more the homography ‘‘squeezes’’ the image, the more

displaced the points are. On the other hand, the displacement is in four orders of

magnitude smaller than the error itself.
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The main conclusion of the experiment conducted in this section is that Sampson�s
error gives sufficiently good results in 2D that are comparable with the geometric er-

ror. The displacement of points xS and x0
S is small, but still significantly higher than

machine precision and can cause problems while reconstructing 3D points (see Sec-

tion 7).
7. Triangulation

The method presented in this paper would be useful in applications where a high

accuracy is desired. In this section, we will mention one problem where we can use

the geometric error for homographies to improve the accuracy of the reconstruction

of planes in the scene. We call it planar triangulation. It is an extension of the trian-
gulation problem [6].

The two rays in space, the first one from camera center C through image point x

in the first image and the other one from C0 through x0, will intersect only if

x0TFx ¼ 0. If noise is attached to the image coordinates, then the rays may not

meet.

In the triangulation problem [6], it is assumed that the fundamental matrix F is

known exactly. For this fundamental matrix, the points ~x and ~x0 are found, so that
~x0TF~x ¼ 0 and the sum of the square distances dðx; ~xÞ2 þ dðx0; ~x0Þ2 is minimal.

Assume there is a (dominant) plane in the scene and H is the homography induced

by this plane. When the triangulation method [6] is used, the additional constraint of

the planarity is omitted and the reconstructed points will in general not lie in a single

plane. The homography H is compatible [10, Section 12] with the fundamental matrix

if, and only if for all x̂
ðHx̂ÞTFx̂ ¼ 0:
This means all the correspondences satisfying x̂0 � Hx̂ will automatically satisfy the
epipolar geometry x̂0TFx̂ ¼ 0 and hence the two rays in space, passing through x and

x0, respectively, will intersect. Moreover all these intersections in space given by

correspondences satisfying homography H lie on the plane inducing H.

7.1. Experiment

We have made synthetic experiments with the planar triangulation using images

of an artificial scene (Figs. 5A and B). From noise-free images we obtained the fun-
damental matrix F and the homography H. For testing purposes we used only the

points on the front face of the building. Then, we added Gaussian noise with stan-

dard deviation r to the image coordinates. From these noisy points we calculated

corrected points using the standard and the planar triangulation. Fig. 5 gives the

comparison of the distance of corrected points to the original noise-free points, de-

noted as 2D error (in pixels), and its standard deviation—graphs C and D. We then

computed a 3D reconstruction using the corrected points (both from the standard

and the planar triangulation). The distance of reconstructed 3D points to the



Fig. 5. Synthetic experiment with images (A) and (B). The graphs compare errors in triangulation using

the fundamental matrix F (standard) and the homography H (planar) in images (C) and (D) and in 3D

space (E) and (F). For testing, only points lying in the plane of the frontal side of the building were used.

The dimensions of the building are 9� 7� 1 units.
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original 3D points is denoted as 3D-error (in units, the building dimensions are

9� 7� 1)—graphs E and F.

The result of this experiment shows that the decrease in the 2D error is not signif-

icant. On the other hand, the 3D error is considerably decreased by the planar trian-

gulation.
When we tried to use Sampson�s approximation followed by the standard trian-

gulation (it consists of computing pseudo-inversion and solving a polynomial of de-

gree six), we got similar results to those when using the planar triangulation.

The experiment shows that the accuracy of the reconstruction of a planar scene

could be improved by using the planar triangulation instead of the standard one. Us-

ing Sampson�s approximation together with the standard triangulation gives very

similar results as the planar triangulation but it is computationally more expensive

and the planarity of the reconstructed scene is not guaranteed.
8. Conclusions

In this paper, a new method for computing the geometric error for homography

was introduced. The main contribution of the paper is the derivation of the formula

for computing the error. This formula has not been known before. It is interesting to

see that the error is obtained as a solution of a degree eight polynomial. We have also
proved that there indeed exist a corrected correspondence that minimizes the geo-

metric distance to the measured correspondence, and that the proposed method finds

it correctly.

We tested two different methods of measuring correspondence error with re-

spect to given homography H, the geometric error by the Sampson�s error. Our

experiments had shown that the Sampson�s error is sufficiently precise for a wide

range of applications including RANSACRANSAC. We also discovered (and proved) nice

properties of the Sampson�s error with respect to affine transformations of im-
ages. The applications where the use of the geometric error could bring higher

accuracy were shown. This statement is encouraged with experiments with the

planar triangulation.
Appendix A. Proof of correctness

Proposition 4. Let H be a regular matrix of the following form:
H ¼
h1 h2 h3
h4 h5 h6
h7 0 h9

0@ 1A:
Then the function
e ¼ x2 þ y2 þ x0

w0

� �2

þ y 0

w0

� �2

; ðA:1Þ
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where
F

x0 ¼ h1xþ h2y þ h3; ðA:2Þ

y0 ¼ h4xþ h5y þ h6; ðA:3Þ

w0 ¼ h7xþ h9 ðA:4Þ

has a global minimum. In this minimum the partial derivatives of e are defined and
equal to zero.

Proof. First of all we introduce the notation used throughout the proof. Let us write

e as a sum of three functions e1 ¼ x2 þ y2, e2 ¼ ðx0=w0Þ2, and e3 ¼ ðy 0=w0Þ2, i.e.,

e ¼ e1 þ e2 þ e3. Since all ei, i 2 f1; 2; 3g, are nonnegative, we have eP ei: We can

also define three lines, ‘x0 , ‘y0 , and ‘w0 in R2 letting x0, y 0, and w0 equal zero in (A.2),
(A.3), and (A.4), respectively. Let A be the point of intersection of ‘w0 with ‘x0 and B

be the point where ‘w0 intersects ‘y0 . Since H is regular, there does not exist any

x ¼ ðx; y; 1ÞT, so that Hx ¼ 0. Thus A and B are two different points. The situation is

depicted in the Fig. 6.

The function e is continuous and even differentiable throughout the region where

the denominator h7xþ h9 is nonzero and finite, i.e., in R2 n ‘w0 . The term e1 tends to
plus infinity in all points of ‘w0 except for A where it is guaranteed to be nonnegative.

Analogously, the term e2 tends to plus infinity in all points of ‘w0 except for B where
it is guaranteed to be nonnegative. The sum of e1 and e2, and thus e, tends to plus

infinity in all points of ‘w0 .
ig. 6. Lines ‘x0 , ‘y0 , and ‘w0 are sets of points, where x0 ¼ 0, y 0 ¼ 0, and w0 ¼ 0, respectively.



O. Chum et al. / Computer Vision and Image Understanding 97 (2005) 86–102 101
We choose a point in R2 n ‘w0 and take the value of e in it for a constant K. The set
I ¼ fðx; yÞ 2 R2 n ‘w0 j eðx; yÞ6Kg

is nonempty and closed. It is also bounded because it is a subset of the circle
fðx; yÞ 2 R2 j x2 þ y2 6Kg:

Therefore I is a compact set and so it contains all global minima of e. At least one
global minimum of e exists because the values of e on I are images of a compact set

under a continuous mapping, thus they form a compact subset of R. �
Appendix B. Coefficients of the polynomial

In Section 3, we derived the formula for computing the geometric error. Here we

focus on the implementation.
First of all we can see that the image rotation matrix R depends only on h7 and h8

(10). From (8) we know that R stays unchanged by the translations L and L0. So the

matrix R could be computed directly from H. Matrix R is the same for all the corre-

spondences.

Coefficients of the resulting polynomial of degree eight are sums of products of

entries of the matrix Q, which are quite complicated. We can apply image rotation

matrix R0 to the second image. We have
R
0~x0 ¼ R

0
Q~x;
and Q0 ¼ R0Q. To decrease the number of summands, we can design this rotation in

the same way as the matrix R to make q04 ¼ 0. Note, that q08 stays unchanged by the

rotation R0, so q08 ¼ q8 ¼ 0. Matrix R0 differs for each correspondence.

After applying the rotations on both images, we have homography �Q in the

form
�Q ¼
�q1 �q2 �q3
0 �q5 �q6
�q7 0 �q9

0@ 1A:
The resulting polynomial is in the following form:
X8
i¼0

�pi~xi:
Here is the list of the coefficients pi expressed in entries �q of the matrix �Q. We use the

following substitutions:
t ¼ �q3�q5 � �q2�q6;

r ¼ �q22 þ �q25 þ �q29:
The polynomial coefficients are:
�p0 ¼ �q39ðð��q23 � �q26Þ�q7�q9 þ �q1�q3rÞ þ �q1�q5�q9rt � �q7ð�q29 þ rÞt2;
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�p1 ¼ � 4�q23�q
2
7�q

3
9 � 4�q26�q

2
7�q

3
9 þ 3�q1�q3�q7�q29r þ �q9rð�q21ð�q25 þ �q29Þ þ �q29rÞ

� �q1�q5�q7rt � 4�q27�q9t
2;

�p2 ¼ �q7ð�q9ð�6ð�q23 þ �q26Þ�q27�q9 � �q1�q3�q7ð�q29 � 3rÞ þ 4�q39r þ 3�q9r2

þ �q21�q9ð�q25 þ �q29 þ 3rÞÞ � 5�q1�q5�q7�q9t � 2�q27t
2Þ;

�p3 ¼ �q27ð�q9ð�4ð�q23 þ �q26Þ�q27 þ 4�q49 þ 14�q29r þ 3r2Þ þ �q21ð�ð�q25�q9Þ þ 3�q9ð�q29 þ rÞÞ
þ �q1�q7ð�q3ð�3�q29 þ rÞ � 3�q5tÞÞ;

�p4 ¼ �q37ðð��q23 � �q26Þ�q27 � 3�q1�q3�q7�q9 þ 16�q49 þ 18�q29r þ r2 þ �q21ð��q25 þ 3�q29 þ rÞÞ;

�p5 ¼ �q47ð�ð�q1�q3�q7Þ þ �q21�q9 þ 25�q39 þ 10�q9rÞ;

�p6 ¼ �q57ð19�q29 þ 2rÞ;

�p7 ¼ 7�q67�q9;

�p8 ¼ �q77:
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