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Abstract

We address the problem of camera motion and 3D structure reconstruction from line cor-
respondences across multiple views, from initialization to final bundle adjustment. One of the
main difficulties when dealing with line features is their algebraic representation. First, we con-
sider the triangulation problem. Based on Plücker coordinates to represent the 3D lines, we
propose a maximum likelihood algorithm, relying on linearizing the Plücker constraint and
on a Plücker correction procedure, computing the closest Plücker coordinates to a given 6-vec-
tor. Second, we consider the bundle adjustment problem, which is essentially a nonlinear opti-
mization process on camera motion and 3D line parameters. Previous overparameterizations
of 3D lines induce gauge freedoms and/or internal consistency constraints. We propose the
orthonormal representation, which allows handy nonlinear optimization of 3D lines using
the minimum four parameters with an unconstrained optimization engine. We compare our
algorithms to existing ones on simulated and real data. Results show that our triangulation
algorithm outperforms standard linear and bias-corrected quasi-linear algorithms, and that
bundle adjustment using our orthonormal representation yields results similar to the standard
maximum likelihood trifocal tensor algorithm, while being usable for any number of views.
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1. Introduction

The goal of this paper is to give methods for reconstruction of line features from
image correspondences over multiple views, from initialization to final bundle
adjustment. Reconstruction of line features is an important topic since it is used in
areas such as scene modeling, augmented reality, and visual servoing. Bundle adjust-
ment is the computation of an optimal visual reconstruction of camera motion and
3D scene structure, where optimal means maximum likelihood in terms of reproject-
ed image error. We make no assumption about the calibration of the cameras. We
assume that line correspondences over at least three views are available.1

While the multiple-view geometry of lines is well-understood, see, e.g. [5,11], there
is still a need for practical structure and motion algorithms. The factorization algo-
rithms [15,18,25] yield reliable results but requires all lines to be visible in all views.
We focus on the common three-stage approach, see e.g. [11, Section 17.5] consisting
in (i) computing camera motion using inter-image matching tensors, (ii) triangulat-
ing the features, and (iii) running bundle adjustment.

There exist reliable algorithms for step (i). In particular, it can be solved by com-
puting trifocal tensors for triplets of consecutive images, using, e.g., the automatic
computation algorithm described in [11, Section 15.6], and registering the triplets
in a manner similar to [6]. Other integrated motion estimation systems are [20], based
on Kalman filtering techniques and [26], registering each view in turn.

In steps (ii) and (iii), one of the main difficulties when dealing with line features
arises: the algebraic representation. Indeed, there is no minimal, complete and glob-
ally nonsingular parameterization of the four-dimensional set of 3D lines, see, e.g.
[11, Section 2.2]. Hence, they are often overparameterized, e.g., as the join of two
points or as the meet of two planes (eight parameters), or by the six coefficients of
their Plücker coordinates, which must satisfy the bilinear Plücker constraint. Anoth-
er overparameterization is two images of the line (six parameters). The most appro-
priate representation depends upon the problem considered. For example, the
algorithm in [11, Section 15.2] shows that the �two image lines� representation is
well-adapted to the computation of the trifocal tensor, while the sequential algo-
rithm of [20] is based on Plücker coordinates.

Concerning step (ii), many of the previous works assume calibrated cameras, e.g.
[14,21,23,27] and use specific Euclidean representations. The linear three view algo-
rithm of [27] and the algorithm of [23] utilize a �closest point + direction� representa-
tion, while [21] uses the projections of the line on the x = 0 and the y = 0 planes,
which has obvious singularities. These algorithms yield sub-optimal results in that
none of them maximizes the individual likelihood of the reconstructed lines.

Bundle adjustment, step (iii), is a nonlinear procedure involving camera and 3D line
parameters, attempting to maximize the likelihood of the reconstruction, correspond-
ing to minimizing the reprojection error when the noise on measured features has an
1 Line correspondences over two views do not constrain the camera motion.
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identical and independent (i.i.d.) normal distribution. Previously mentioned overpa-
rameterizations are not well-adapted to standard nonlinear optimization engines.
The �two point� and the �two plane� overparameterizations have four degrees of internal
gauge freedoms2 which may induce numerical instabilities. The �two image lines�
parameterization has two degrees of internal gauge freedoms and implies that one
may have to choose different images for different lines since all lines may not be visible
in all images. Also, one must check that the chosen images are not too close to each
other. Finally, direct optimization of Plücker coordinates makes sense only if a con-
strained optimization technique is used to enforce the bilinear Plücker constraint. An
appropriate representation would not involve internal constraint or gauge freedom.

To summarize, there is a need for an efficient optimal triangulation algorithm, and
a representation of 3D lines well-adapted to nonlinear optimization. We address
both of these problems through the following contributions.

In Section 3, we give an overview of various 3D line representations an their
characteristics.

In Section 4, we propose triangulation methods based on using Plücker coordi-
nates to represent the lines. A simple and optimal algorithm is obtained based on lin-
earizing the bilinear Plücker constraint within an iteratively reweighted least squares
approach.

In Section 5, we propose a nonlinear representation of 3D lines that we call the
orthonormal representation. This representation allows efficient nonlinear optimiza-
tion since only the minimum four parameters are computed at each step which al-
lows the use of a standard unconstrained optimization engine. With this
representation, there is no internal gauge freedom or consistency constraint, and
analytic differentiation of the error function is possible.

Finally, Section 6 validates our algorithms and compares them to existing ones.
The next section gives some preliminaries and notations and states the problem.
2. Preliminaries and notation

2.1. Notation

We make no formal distinction between coordinate vectors and physical entities.
Everything is represented in homogeneous coordinates. Equality up to scale is denot-
ed by �, transposition and transposed inverse by > and �>. Vectors are typeset using
bold fonts (L, l), matrices using sans-serif fonts (S, A, R), and scalars in italics. Bars
represent inhomogeneous leading parts of vectors or matrices, e.g. M> � ð �M>jmÞ.
The L2-norm of vector V is denoted iVi. The identity matrix is denoted I. SO(2)
and SO(3) denote the 2D and 3D rotation groups.

The 2Dorthogonal (Euclidean) distance between point q and line lweighted by q3 is:

d2
?ðq; lÞ ¼ ðq>lÞ

2
=ðl21 þ l22Þ. ð1Þ
2 For the former one, the position of the points along the line, and the free scale factor of the
homogeneous representation of these points.
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2.2. Matrix factorization

We make use of the singular value decomposition of matrices, dubbed SVD. The
SVD of matrix A is Am�n ¼ Um�nRn�nV

>
n�n, where U and V are orthonormal, and R

is diagonal, containing the singular values of A in decreasing order. The QR factor-
ization of matrix A is Am·n = Qm·m Rm·n, with Q orthonormal and R upper triangu-
lar. More details on these matrix factorizations can be read in, e.g. [7].

2.3. Maximum likelihood estimation

As noted in [11, Section 15.7.2], no matter how many points are used to represent
an image line l, the quadratic error function on it can be expressed in the form
d2
?ðx; lÞ þ d2

?ðy; lÞ for two weighted points x, y on l. We will use this representation
for simplicity. If we have 3D lines S ¼ fL1; . . . ;Lmg and cameras M ¼ fP1; . . . ;Png,
the negative log likelihood function EðS;MÞ for the reconstruction, corresponding
to the reprojection error, can be written in terms of individual reprojection errors
EðLj;MÞ for each line j:

EðS;MÞ ¼
Xm
j¼1

EðLj;MÞ; ð2Þ
EðLj;MÞ ¼
Xn
i¼1
ðd2
?ðxij; lijÞ þ d2

?ðyij; lijÞÞ. ð3Þ
3. Representing 3D lines

We describe several representations for 3D lines in projective space and their char-
acteristics. Some of these representations are �partial� in the sense that they can only
represent a subset of all 3D lines. For example, some work on metric reconstruction,
particularly in photogrammetry, assume that the reconstructed lines do not lie at
infinity. The goal of this study is to choose a representation for the triangulation
and bundle adjustment problems. Concerning the triangulation, the most important
criterion is that the reprojected lines is a linear function of the 3D line. Bundle adjust-
ment is a nonlinear procedure allowing more flexibility in the choice of the parame-
terization. The quality of the parameterization is assessed based on criteria such as
the number of internal gauge freedoms or internal constraints. A summary of the re-
viewed representations is finally provided. The first representation that we describe is
the Plücker coordinates. We link all the other representations to Plücker coordinates.
3.1. Complete representations

3.1.1. Plücker coordinates
Given two 3D points M> � ð �M>jmÞ and N> � ð�N>jnÞ, one can represent the line

joining them by a homogeneous �Plücker� 6-vector L> � (a> | b>), see e.g. [11, Sec-
tion 2.2]:
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a ¼ �M� �N;

b ¼ m�N� n �M.

�
ð4Þ

Other conventions for Plücker 6-vectors are also possible. Each comes with a bilinear
constraint that the 6-vector must satisfy to represent valid line coordinates. For our
definition, the constraint is

CðLÞ ¼ 0 where CðLÞ ¼ a>b. ð5Þ
Similarly, one can construct the Plücker coordinates of a line defined as the meet of
two planes. The Plücker coordinates of a line defined as the meet of two planes
P> � ð�P>jpÞ and Q> � ð �Q>jqÞ are given by:

a ¼ p �Q� q�P;

b ¼ �P� �Q.

(
ð6Þ

As an example, triangulation from two views has the following closed-form solution.
Let P1 and P2 be the two projection matrices and l1 and l2 the two imaged lines. The
Plücker coordinates of the corresponding 3D line are given as the meet of the two
viewing planes pi � Pi>li.

Given a standard (3 · 4) perspective projection matrix P � ð�P jpÞ, a (3 · 6) matrix
projecting Plücker line coordinates [2,5] is given by

~P � ðdetð�PÞ�P�>j½p���PÞ. ð7Þ
It can be easily derived by expanding the expression of the 2D line joining the pro-
jections of two points:

l � m ^ n

� ðPMÞ ^ ðPNÞ
� ð�P �Mþ mpÞ ^ ð�P�Nþ npÞ
� ð�P �MÞ ^ ð�P�NÞ þ mp ^ ð�P�NÞ � np ^ ð�P �MÞ
� detð�PÞ�P�>ð �M ^ �NÞ þ ½p� ^ �Pðm�N� n �MÞ
� ~PL.

Seo and Hong [20] use the Plücker coordinates representation for sequential struc-
ture-from-motion with a Kalman filtering technique. Pottmann et al. [17] use these
coordinates for 3D shape reconstruction and understanding from 3D data.

3.1.2. Pair of points or pair of planes

These are two dual representations, described in details in [11, Section 2.2.2]. In
the first case, the line is defined as the join of two points M and N, and in the second
case, it is defined as the intersection of two planes P and Q. These representations
have similar characteristics. They have eight parameters, hence four degrees of gauge
freedom, the position of the points along the line (respectively, the position of the
planes in the pencil of planes around the line) and the scale factors in the homoge-
neous coordinates of the points or the planes. For metric reconstruction, if one drops
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the lines at infinity, the two point representation has six parameters. There is a direct
link with Plücker coordinates using Eqs. (4) and (6). The reprojected line l is a bilin-
ear function of the entries of the point or the plane coordinates. For example, for the
two point representation, l � (PM) · (PN). Hartley [10] proposes a triangulation
algorithm based on these representations. Habib et al. [9] use the two point represen-
tation for bundle adjustment. They consider that the line is not at infinity. The ambi-
guity on the position of the points along the line is fixed by constraining them to
reprojected near the end-points observed in one of the images.

3.2. Partial representations

3.2.1. Closest point and direction

A 3D line is represented by its closest point to the origin, with coordinates
Q> � ð �Q>1Þ, and its direction, with coordinates Q1 � ð �Q

>
10Þ, giving a total of six

parameters. This representation does not include lines at infinity and hence cannot
be used in projective space. The link with the Plücker line coordinates L is given by

L �
�Q� �Q1

�Q1

 !
.

Reprojecting the line with the camera matrix P � ð�PpÞ is a bilinear function of the
line parameters: l � ð�P �Qþ pÞ � ð�P �Q1Þ. The line reconstruction algorithms pro-
posed by Weng et al. [27] for three views and by Taylor and Kriegman [23] for multi-
ple views use this representation. In the field of photogrammetry, Tommaselli and
Lugnani [24] use this representation for bundle adjustment. Mulawa and Mikhail
[16] use the additional constraint k �Q1k ¼ 1.

3.2.2. Two projections

A 3D line can be represented by two projections [10,21]. This is related to the fact
that reconstructing a line from two views has in general a unique solution.

Spetsakis and Aloimonos [21] use the intersection of two planes, one parallel to
the plane x = 0, and the other one parallel to the plane y = 0. These two planes
are formulated using four parameters a, b, c, and d by x = az + b and y = cz + d,
respectively. The pencil of points Q on the 3D line is parameterized by the z
coordinate

Q �

azþ b

czþ d

z

1

0
BBB@

1
CCCA.

This representation has obvious singularities: lines which are parallel to the plane
z = 0 cannot be represented. Indeed, the points lying on such lines have a constant
z coordinate, and since the points are parameterized by this coordinate, one always
gets the same point if the z coordinate is constant. One can link this representation to
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the Plücker coordinates L of the line by considering any two points lying on the line,
e.g. for z = 0 and z = 1, and Eq. (4), giving

L �

d

�b
bc� da

a

c

1

0
BBBBBBBB@

1
CCCCCCCCA
.

Ayache and Faugeras [4] use this representation for mobile robot navigation. In the
field of photogrammetry, Habib [8] extends this representation by using different
pairs of planes depending on the 3D line, to avoid the singularities.

Hartley [10] uses two images of the line. This representation has the following sin-
gularities: all 3D lines lying in an epipolar plane induced by the two cameras have the
same images in both views. The 3D lines that cannot be uniquely represented thus
form a Linear Line Complex, see e.g. [22]. Note that these singularities can be
encountered in practice. The Plücker coordinates corresponding to this representa-
tion can be calculated by intersecting the two viewing planes induced by the two im-
age lines using Eq. (6). Hartley shows that the reprojection of the line in other views
in a bilinear function of the parameters.
3.2.3. The Denavit–Hartenberg parameters

The Denavit–Hartenberg representation [3] has become the standard way of rep-
resenting robots and modeling their motions. The idea is to relate each joint to the
next by using the minimal four parameters, namely two distances and two angles. A
general 3D Euclidean transformation, between two Euclidean coordinate frames, has
six degrees of freedom. For using the Denavit–Hartenberg representation, the x-axis
of one coordinate frame has to be aligned with the line orthogonal to the z-axes of
both coordinate frames, which cancels out two degrees of freedom, one in rotation,
and one in translation. This suggests to represent a 3D line by the z-axis of a coor-
dinate frame, and to parameterize it by the four Denavit–Hartenberg parameters
with respect to a reference coordinate frame, e.g. the world coordinate frame. The
Plücker coordinates corresponding to these parameters can be obtained by e.g.
applying the coordinate transformation given by the four parameters to the z-axis
L>z � ð0 0 0 0 0 1Þ of the reference frame using a 3D line rigid displacement matrix
[2]. The projection equation is nonlinear in the Denavit–Hartenberg parameters since
it involves products and trigonometric operators.

One problem with this parameterization is that two distances are used as param-
eters, which prevents from representing the lines at infinity. There is also an indeter-
minacy in the choice of one of the coordinate frame when the line is parallel to the
z-axis of the reference coordinate frame.

Roberts [19] proposes to model 3D lines using two distances and two angles. His
representation has drawbacks similar to those described above.
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Note that there are other representations for modeling robots. For example,
Hayati and Mirmirani [12] introduce an extra rotation parameter to the Denavit–
Hartenberg representation to model the error due to near parallel axes. This repre-
sentation is thus not minimal.

3.3. Summary

Table 1 summarizes the characteristics of the aforementioned representations, and
of the orthonormal representation that we propose in Section 5. We observe that the
only representation for which the reprojected lines is a linear function of the 3D line
parameters is the Plücker coordinates. It is also seen that besides our orthonormal
representation, no other complete representation allows a minimal update with four
parameters, which is due to gauge freedoms and/or internal consistency constraints.
Minimal update is an important criterion for using a representation within bundle
adjustment.
4. Triangulation

This section discusses computation of structure given camera motion. We propose
direct linear and iterative nonlinear methods to recover Plücker line coordinates.
These algorithms are general in the sense that they can be used with calibrated, par-
tially calibrated or uncalibrated cameras.

First, we describe a somehow trivial linear algorithm where a biased error func-
tion (compared to the reprojection error) is minimized. This algorithm is subject
to the same kind of drawback as the eight-point algorithm for computing the funda-
mental matrix: due to possible noise in the data, the resulting 6-vectors do not gen-
erally satisfy the bilinear Plücker constraint (5), similarly to the matrix computed by
the eight-point algorithm not being rank deficient [11, Section 10.2]. We propose
what we call a Plücker correction procedure, which allows to compute the closest
Plücker coordinates to a 6-vector.

Second, we propose an algorithm where the reprojection error of the line is mini-
mized. The cornerstone of this algorithm is the linearization of the Plücker constraint.
Table 1
Summary of different representations for 3D lines with their characteristics

Representation Complete Gauge freedoms Constraints Reprojection Minimal update

Closest point and direction No 1 1 Bilinear No
Two image lines No 2 0 Bilinear No
Denavit–Hartenberg No 0 0 Nonlinear Yes
Two points or two planes Yes 4 0 Bilinear No
Plücker coordinates Yes 1 1 Linear No
Orthonormal representation Yes 0 0 Nonlinear Yes

The number of gauge freedoms and internal constraints are strongly linked. The �reprojection� column is
about the equation for reprojecting the 3D line with a perspective camera. The column �minimal update�
indicates if the representation can be updated with four parameters.
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Since the reconstruction of each line is independent from the others, we drop the j
index in this section.

4.1. Linear algorithm

Wedescribe a linear algorithm, �LIN.� In the reprojection error (3), each term is based
on the square of the 2D point-to-line orthogonal distance d^, defined by Eq. (1). The
denominator of this distance is the cause of the nonlinearity. Ignoring this denomina-
tor leads to an algebraic distance denoted da, biased compared to the orthogonal dis-
tance. It is linear in the predicted line l and defined by d2

aðq; lÞ ¼ d2
?ðq; lÞw2 ¼ ðq>lÞ2,

where the scalar factor w encapsulates the bias as w2 ¼ l21 þ l22

ðwiÞ2 ¼ ðð~Pi
LÞ1Þ

2 þ ðð~Pi
LÞ2Þ

2. ð8Þ
We define the biased linear least squares error function:

BðL;MÞ ¼
Xn
i¼1
ðxi> ~P

i
LÞ2 þ ðyi> ~Pi

LÞ2
� �

ð9Þ

¼kAð2n�6ÞLk2 with A ¼

. . .

xi> ~P
i

yi
> ~P

i

. . .

0
BBB@

1
CCCA. ð10Þ

Since L is an homogeneous vector, we add the constraint iLi2 = 1. The L that min-
imizes BðL;MÞ is then given by the singular vector of A associated to its smallest
singular value, that we compute using SVD. Due to noise, the recovered 6-vector does
not in general satisfy the Plücker constraint (5).

4.2. Plücker correction

The Plücker correction procedure is analogous to the standard rank correction of
the fundamental matrix based on SVD: the eight-point algorithm linearly computes a
full-rank matrix F, whose smallest singular value is nullified to obtained the rank-two
matrix F̂, see e.g. [11]. Matrix F̂ is the closest rank-two matrix to F, in the sense of the
Frobenius norm. It is used to initialize nonlinear algorithms.

The Plücker correction procedure computes the closest Plücker coordinates to a giv-
en 6-vector,where closest is to be understood in the sense of theL2-norm, equivalent to
thematrix Frobenius norm. It is also equivalent to the Euclidean distance between two
points inR6. This correction is necessary to initialize the nonlinear algorithms from the
solution provided by linear methods ignoring the Plücker constraint. Pottmann et al.
[17] use the Euclidean distance between Plücker coordinate vectors to compare 3D
lines. They underline the facts that this distance is practical for minimization purposes
and is in accordance with visualization in the region of interest, i.e., near the origin.

More formally, let L> � (a> | b>) be a 6-vector that does not necessarily satisfy
the Plücker constraint (5), i.e., a>b might be nonzero. We seek L̂

> � ðu>jv>Þ, defined
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by minL̂;u>v¼0kL̂� Lk2. This is a linear least squares optimization problem under a
nonlinear constraint. Although it has a clear and concise formulation, it is not trivial.

Obviously, one can modify one entry of the Plücker coordinates in accordance
with the Plücker constraint, e.g. set a1 = �(a2b2 + a3b3)/b1. This simple solution
has the disadvantage that the entry must be chosen depending on the actual values
of the coordinates since the correction rule uses a division. Also, all entries are clearly
not treated uniformly.

By comparison, our solution orthogonally projects the 6-vector on the Klein
quadric and treats all its entries the same way. Kanatani [13] proposes a general iter-
ative scheme for projecting points on nonlinear manifolds, such as projecting points
in R6 on the Klein quadric. Our algorithm performs this projection in a noniterative
manner, which thus guarantees that the optimal projected point on the Klein quad-
ric, i.e., the optimal 3D line, is found. Its derivation is quite tricky but it can be read-
ily implemented with few lines of code from its summary shown in Table 2.

4.2.1. A geometric interpretation

We interpret the 3-vectors a, b, u, and v as coordinates of 3D points. These points
are not directly linked to the underlying 3D line. This interpretation is just intended
to visualize the problem. The Plücker constraint u>v corresponds to the fact that the
lines induced by the origin with u and v are perpendicular. The correction criterion is
the sum of squared Euclidean distances between a and u and between b and v. Hence,
the problem may be formulated as finding two points u and v, as close as possible to
a and b, respectively, and such that the lines induced by the origin with u and v are
perpendicular. We begin by rotating the coordinate frame such that a and b are
transferred on the z = 0 plane. This is the reduction of the problem. We solve the re-

duced problem, by finding two points on the z = 0 plane, minimizing the correction
criterion and satisfying the Plücker constraint. Finally, we express the solution back
to the original space.

4.2.2. Reducing the problem

Let us define the (3 · 2) matrices �C � ðabÞ and Ĉ � ðuvÞ. The Plücker constraint is
fulfilled if and only if the columns of matrix Ĉ are orthogonal. We rewrite the cor-
rection criterion as

O ¼ kL� L̂k2 ¼ k�C� Ĉk2.
Table 2
The Plücker correction algorithm

• Compute the Singular Value Decomposition ðabÞ ¼ �U�R�V
>
.

• Let �Z ¼ �R�V
>
, form matrix T ¼ z21 z22

z12 �z11

� �
.

• Compute the singular vector v̂ associated to the smallest singular value of matrix T.

• Define �V ¼ v̂1 �v̂2
v̂2 v̂1

� �
and set ðuvÞ � �UV̂diagðV̂>�R�V>Þ.

Given a 6-vector L> � (a> Œ b>), this algorithm computes the closest Plücker coordinates L̂
> � ðu>jv>Þ,

i.e., u>v = 0, in the sense of the L2-norm, i.e., kL̂� Lk2 is minimized.
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Using the following SVD �Cð3�2Þ ¼ �Uð3�2Þ�Rð2�2Þ�V
>
ð2�2Þ

O ¼ k�U�R�V
> � Ĉk2 ¼ k�R�V

> � �U
>
Ĉk2;

since �U has orthonormal columns. We define �Z ¼ �R�V
>
and Ẑ ¼ �U

>
Ĉ. Matrix �V is

orthonormal and �R is diagonal, hence the rows of �Z are orthogonal (i.e., �Z�Z
>
is diag-

onal, but not �Z
>�Z). Note that Ẑ ¼ �U

>
Ĉ implies Ĉ ¼ �UẐ, even if �U�U

>
is not the iden-

tity.3 The problem is reduced to finding a column-orthogonal4 matrix Ẑ, as close as
possible to the row-orthogonal matrix �Z.

4.2.3. Solving the reduced problem

We parameterize the column-orthogonal matrix Ẑ as Ẑ ¼ V̂R̂, where V̂ is ortho-
normal and R̂ is diagonal. Hence

O ¼ k�R�V
> � V̂R̂k2 ¼ kV̂>�R�V

> � R̂k2.
The diagonal matrix R̂ which minimizes this expression is given by the diagonal en-
tries of V̂

>�R�V
>
, and does not depend on the solution for V̂. The orthonormal matrix

V̂ ¼ ðv̂1 v̂2Þ is given by minimizing the sum of squares of the off-diagonal entries of

V̂
>�Z, with �Z ¼ �R�V

> ¼ ðz1z2Þ

O ¼ ðv̂>1 z2Þ
2 þ ðv̂>2 z1Þ

2.

Define the 2D rotation matrix with angle p/2 by M ¼ 0 �1
1 0

� �
and parameterize

the orthonormal matrix V̂ by a unit vector v̂, as:

v̂1 ¼ v̂;

v̂2 ¼ Mv̂;

�
The correction criterion can be rewritten as

O ¼ ðv̂>z2Þ2 þ ðv̂>M>z1Þ2 ¼ kTv̂k2 with T ¼
z>2

z>1 M

� �
.

The unit vector v̂ minimizing this expression is given by the singular vector associat-
ed to the smallest singular value of matrix T.

4.2.4. Expressing the solution
From vector v̂ which solves the reduced problem, we form the orthonormal matrix

V̂ ¼ v̂1 �v̂2
v̂2 v̂1

� �
. The diagonal matrix R̂ is given by R̂ ¼ diagðV̂>�R�V

>Þ.
3 Indeed, denote ui the columns of matrix �U and form U = (u1 u2 u1 · u2). We have
U> �U ¼ ðIð2�2Þ0ð2�1ÞÞ>. Let us multiply the correction criterion by U> : O ¼ kð�V�R0ð2�1ÞÞ> � U>Ĉk2.
Denote Yð3�2Þ ¼ U>Ĉ. The optimal solution has the form Y> ¼ ðẐ>0ð2�1ÞÞ, since, according to the
geometric interpretation, the corrected points u and v must lie on the plane defined by points a, b and the
origin, the plane z = 0. Therefore, we obtain Ĉ ¼ UY ¼ �U�Y.
4 The fact that matrix Ẑ ¼ �U

>
Ĉ is column-orthogonal is induced from the Plücker constraint. Indeed, this

constraint implies that Ĉ is column-orthogonal, hence Ĉ
>
Ĉ is diagonal. Matrix U>Ĉ, where

SOð3Þ 3 U ¼ ðu1 u2 u1 � u2Þ ¼ ð�U�uÞ, is also column-orthogonal. Observe that Ĉ
>
UU>Ĉ ¼ Ĉ

> �U�U
>
Ĉþ

Ĉ
>
�u�u>Ĉ ¼ Ĉ

> �U�U
>
Ĉ since �u>Ĉ ¼ 0>. Hence, matrix �U

>
Ĉ is column-orthogonal.
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4.3. Quasi-linear algorithms

We describe algorithms �QLIN1� and �QLIN2,� that consider the reprojection error (3).
They are based on an iterative bias-correction, through reweighting of the biased er-
ror function (9). Such algorithms are coined quasi-linear.

We showed previously that the orthogonal and the algebraic distances are related
by a scalar factor, given by Eq. (8), depending on the 3D line. The reprojection error
and the biased error functions are therefore related by a set of such factors, one for
each image of the line. The fact that these factors depend on the unknown 3D line
suggests an iterative reweighting scheme.

The first approach that comes to mind is �QLIN1.� The linear system considered for
method LIN is formed and solved. The resulting 6-vector L0 is corrected to be valid
Plücker coordinates. This yields a biased estimate of the 3D line. Using this estimate,
weight factors that contain the bias of the linear least squares error function are com-
puted, and used to reweight the equations. The process is iterated to compute succes-
sive refined estimates Lk until convergence, where k is the iteration counter.
Convergence is determined by thresholding the difference between two consecutive
errors. It is typically reached in three or four iterations.

Experimental results show that this naive approach performs very badly, see Sec-
tion 6. This is due to the fact that the Plücker constraint is enforced afterhand and is
not taken into account while solving the linear least squares system.

To remedy to this problem, we propose �QLIN2,� that linearizes and enforces the
Plücker constraint (5), as follows. The algorithm is summarized in Table 3. Rewrite

the constraint as CðLÞ ¼ L>GL where Gð6�6Þ ¼
0 I
I 0

� �
. By expanding this expres-

sion to first order around the estimate Lk, and after some minor algebraic manipu-
lations, we obtain the following linear constraint on Lk+1:

CkðLkþ1Þ ¼ L>k GLkþ1 ¼ 0.

We follow the constrained linear least squares optimization method summarized in
[11, Section A3.4.3] to enforce this linearized constraint, as well as iLk+1i = 1. The
idea is to find an orthonormal basis of all possible vectors satisfying the constraint
and to solve for a 5-vector c expressed in this basis. Such an orthonormal basis is
provided by computing the nullspace of L>k G using SVD. Let �V be a (6 · 5) orthonor-
mal matrix whose columns span the basis (i.e., L>k G

�V ¼ 0), we define Lkþ1 ¼ �Vc,
hence CkðLkþ1Þ ¼ L>k G

�Vc ¼ 0 and iLk+1i = ici. We solve for c by substituting in
Table 3
The quasi-linear algorithm �QLIN2� for optimal triangulation

1. Plücker correction procedure described in Section 4.2. Set k = 0
2. Constraint linearization: Compute the singular value decomposition

L>k G � u>diagð1; 0; 0; 0; 0; 0Þðvð6�1Þj�Vð6�5ÞÞ>
3. Estimation: Compute min

c;kck2¼1kA�Vck
2 and set Lkþ1 ¼ �Vc

4. Bias-correction: Reweight the linear system A by computing the weights according to Eq. (8)
5. Iteration: Iterate steps 2, 3, and 4 until convergence
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Eq. (10) ðkALkþ1k2 ¼ kA�Vck2Þ. The singular vector associated to the smallest singu-
lar value of matrix A�V provides the solution vector with unit L2-norm such that
BðLkþ1;MÞ is minimized.

5. Bundle adjustment

Bundle adjustment is the nonlinear minimization of the reprojection error (2),
over camera and 3D line parameters. We focus on the parameterization of 3D lines.
Parameterizing the camera motion has been addressed in e.g. [1,11, Section A4.6].

5.1. Problem statement

As said in Section 1, there are various possibilities to overparameterize the four-
dimensional set of 3D lines. In the context of nonlinear optimization, choosing an
overparameterized representation may induce the following problems. First, the
computational cost of each iteration is increased by superfluous parameters. Second,
artificial freedoms in the parameter set (internal gauge freedoms) are induced and
may give rise to numerical instabilities. Third, some internal consistency constraints,
such as the Plücker constraint, may have to be enforced.

These reasons motivate the need for a representation of 3D lines allowing nonlin-
ear optimization with the minimum four parameters. In that case, there is no free
scale induced by homogeneity or internal consistency constraints, and an uncon-
strained optimization engine can be used.

5.2. The orthonormal representation

The orthonormal representation has been introduced in [1] for the nonlinear opti-
mization of the fundamental matrix with the minimum seven parameters. It consists
in finding a representation involving elements of SO (n) and scalars (hence the term
�orthonormal representation�). In particular, no other algebraic constraints should be
necessary, such as the rank-two constraint of fundamental matrices or the bilinear
Plücker constraint. Using orthonormal matrices implies that the representation is
well-conditioned. Based on such a representation, local update using the minimum
number of parameters is possible.

Commonly used nonlinear optimization engine, e.g., Newton type such as Leven-
berg–Marquardt, often require the Jacobian matrix of the error function with respect
to the update parameters. In the orthonormal representation framework, we split it
as the product of the Jacobian matrix of the error function considered with respect to
the �standard� entity representation, e.g., the fundamental matrix or Plücker coordi-
nates, and the orthonormal Jacobian matrix, i.e., for the �standard� representation
with respect to the update parameters.

5.2.1. Example: representing P1

We derive the orthonormal representation of the one-dimensional projective
space P1. This is used in Section 5.3 to derive the orthonormal representation of
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3D lines. Let r 2 P1. Such a 2-vector is defined up to scale and has therefore only
one degree of freedom. We represent it by an SO (2) matrix W defined by

W ¼ 1

krk
r1 �r2

r2 r1

� �
. ð11Þ

The first column of this matrix is r itself, normalized to unit-norm. Let h be the
update parameter. A local update step is W‹ W R (h) where R (h) is the 2D rotation
matrix of angle h. The Jacobian matrix or

oh evaluated at h0 = 0 (the update is with re-
spect to a base rotation) is given by

or

oh

����
h0

¼ ow1

oh

����
h0

¼
�r2

r1

� �
¼ w2; ð12Þ

where wi is the ith column of W.

5.2.2. Updating SO(3)

A matrix U 2 SO (3) can be locally updated using three parameters by any well-
behaved (locally nonsingular) representation, such as three Euler angles
h> = (h1 | h2 | h3) as

U URðhÞ with RðhÞ ¼ Rxðh1ÞRyðh2ÞRzðh3Þ; ð13Þ
where Rx (h1), Ry (h2), and Rz (h3) are SO (3) matrices representing 3D rotations
around the x-, y- and z-axes with angle h1, h2, and h3, respectively. The Jacobian ma-
trix is derived as follows. As in the SO (2) case, the update is with respect to a base
rotation. The orthonormal Jacobian matrix is therefore evaluated at h0 = 0(3·1)

oU

oh

����
h0

¼ oU

oh1

����
h0

joU
oh2

����
h0

joU
oh3

����
h0

 !
.

After minor algebraic manipulations, we obtain

oU

oh1

����
h0

¼ oðURxðh1ÞRyðh2ÞRzðh3ÞÞ
oh1

����
h0

¼ ð03ju3j � u2Þ; ð14Þ

where ui is the ith column of U. Similarly:

oU

oh2

����
h0

¼ð�u3j03ju1Þ ð15Þ

oU

oh3

����
h0

¼ðu2j � u1j03Þ. ð16Þ

These expressions are vectorized to form the orthonormal Jacobian matrix.
5.3. The case of 3D lines

The case of 3D lines is strongly linked with the cases of SO (2) and SO (3), as
shown by the following result:



430 A. Bartoli, P. Sturm / Computer Vision and Image Understanding 100 (2005) 416–441
Any (projective) 3D line L can be represented by

ðU;WÞ 2 SOð3Þ � SOð2Þ;
where SO (2) and SO (3) are the Lie groups of respectively (2 · 2) and (3 · 3) rotation
matrices. (U,W) is the orthonormal representation of the 3D line L.

The proof of this result is obtained by showing that any 3D line has an orthonormal
representation (U,W) 2 SO (3) · SO (2), while any (U,W) 2 SO (3) · SO (2) corre-
sponds to a unique 3D line. The next paragraph illustrates this by means of Plücker
coordinates.

Note that this result is consistent with the fact that a 3D line has four degrees of
freedom, since an element of SO (2) has one degree of freedom and an element of
SO (3) has three degrees of freedom.

Using this representation of 3D lines, we show that there exists a locally nonsin-
gular minimal parameterization. Therefore, 3D lines can be locally updated with the
minimum four parameters. The update scheme is inspired from those given above for
2D and 3D rotation matrices, and can be plugged into most of the existing nonlinear
optimization algorithms. These results are summarized in Table 4.

5.3.1. Relating Plücker coordinates and the orthonormal representation

The orthonormal representation of a 3D line can be computed from its Plücker
coordinates L> � (a> | b>), as follows. Let �Cð3�2Þ � ðajbÞ be factored as

�C � a
kak

b
kbk

a�b
ka�bk

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

SOð3Þ

kak
kbk

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ðkakkbkÞ>2P1

.

In practice, we use QR decomposition, �Cð3�2Þ ¼ Uð3�3ÞRð3�2Þ. The special form of ma-
trix R, i.e., the zero at the (1,2) entry is due to the Plücker constraint. While
U 2 SO (3), the two nonzero entries of R defined up to scale can be represented by
an SO (2) matrix W, as shown in Section 5.2.

Going back from the orthonormal representation to Plücker coordinates is trivial.
The Plücker coordinates of the line are obtained from its orthonormal representation
(U,W) as
Table 4
Elements for 3D line optimization using the minimal four parameters through the orthonormal
representation

Initialization. The initial guess is given by the Plücker coordinates L>0 � ða>0 jb>0 Þ
• Compute the orthonormal representation (U,W) 2 SO (3) · SO (2) of L0 by QR decomposition

ða0jb0Þ ¼ U

� r1
r2

�
and set W ¼ r1 �r2

r2 r1

� �
• The four optimization parameters are p> = (h> Œh) where the 3-vector h and the scalar h are used to
update U and W, respectively

Update. (i.e., one optimization step)
• Current line is L> � ðw11u

>
1 jw21u

>
2 Þ and oL/op is given by Eq. (18)

• Compute p by minimizing some criterion
• Update U and W: U‹ U R(h) and W‹W R(h)
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L> � ðw11u
>
1 jw21u

>
2 Þ; ð17Þ

where ui is the ith column of U.
5.3.2. A 4-parameter update

Consider (U,W) 2 SO (3) · SO (2), the orthonormal representation of a 3D line.
Since U 2 SO (3), as reviewed in Section 5.2, it can not be minimally parameterized
but can be locally updated using Eq. (13), as U ‹ UR (h) where h 2 R3. Matrix
W 2 SO (2) can be updated as W ‹ WR (h), where h 2 R. We define the update
parameters by the 4-vector p> � (h> | h).

We denote J the (6 · 4) Jacobian matrix of the Plücker coordinates, with respect
to the orthonormal representation. Matrix J must be evaluated at p0 = 0(4·1):

Jjp0 ¼
oL

oh1

����
p0

joL
oh2

����
p0

joL
oh3

����
p0

joL
oh

����
p0

!
.

 

By using the orthonormal representation to Plücker coordinates Eq. (17) and the
Jacobian matrices for SO (2) and SO (3), as defined by Eqs. (12), (14)–(16), we ob-
tain, after minor algebraic manipulations:

Jð6�4Þ ¼
0ð3�1Þ �r1u3 r1u2 �r2u1

r2u3 0ð3�1Þ �r2u1 r1u2

� �
. ð18Þ
5.3.3. Geometric interpretation

Each of the four above-defined update parameters p has a geometric interpreta-
tion. Matrix W encapsulates the ratio iai/ibi, hence the distance d from the origin
O to L. Thus, parameter h acts on d. Matrix U is related to a 3D coordinate frame
attached to L. Parameter h1 rotates L around a circle with radius d, centered on O,
and lying on the plane defined by O and L. Parameter h2 rotates L around a circle
with radius d, centered on O, and lying in a plane containing O, the closest point Q
of L to O, and perpendicular to L. Parameter h3 rotates L around the axis defined by
O and Q. For the last three cases, the angles of rotation are the parameters them-
selves. This interpretation allows to easily incorporate a priori knowledge while esti-
mating a line. For example, to leave the direction of the line invariant, one may use
the two update parameters h2 and h, while to leave the distance of the line to the ori-
gin invariant, one may use the three update parameters h. This allows to solve con-
strained line estimation cases, as summarized in the table below, indicating which
update parameters to optimize in which case
Scenario
 h1
 h2
 h3
 h
Fixed direction
 ·
 ·

Fixed normal to the plane formed with the origin
 ·
 ·

Fixed distance to the origin
 ·
 ·
 ·
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6. Experimental results
6.1. Simulated data

Our simulated experimental setup consists of a set of cameras looking inwards at
3D lines randomly chosen in a sphere with a 1 m radius. Cameras are spread widely
around the sphere, at a distance of roughly 10 m away from the centre of the sphere.
We fix the focal length of the cameras to 1000 (in number of pixels). Note that this
information is not used in the rest of the experiments. The end-points of all lines are
projected in all views, where their positions are corrupted by an additive Gaussian
noise. We vary the parameters of this setup to assess and compare the quality of
the different estimators on various scene configurations.

We compare the four methods given in this paper: LIN, QLIN1, QLIN2, and MLE (bun-
dle adjustment based on our orthonormal representation of 3D lines), as well as the
method given in [11, Section 15.4.1], denoted by �MLE_HARTLEY.� This method con-
sists in nonlinearly computing the trifocal tensor as well as reconstructed lines by
minimizing the reprojection error (2) and parameterizing the 3D lines by two of their
three images. We also compare QLIN2 to a direct Levenberg–Marquardt-based min-
imization of the reprojection error, dubbed NLIN: the two methods gave undistin-
guishable results in all our experiments. Note that most existing methods, e.g.
[14,21,23,27] can be applied only when camera calibration is available.

Wemeasure the quality of an estimate using the estimation error, as described in [11,
Section 4], which also provides the theoretical lower bound. The estimation error is
equivalent to the value of the negative log likelihood (2) (i.e., the reprojection error).

The results are shown on graphs on Figs. 1 and 2. We observe that the different
methods are always in the same order. Three distinct behaviours can be seen. Meth-
ods LIN and QLIN1 give similar results since they are subject to the same bias induced
by ignoring the Plücker constraint until the final correction. Methods QLIN2 and NLIN

are undistinguishable. They give better results than the biased methods. Finally,
methods MLE and MLE_HARTLEY are hardly ever distinguishable. Their results are
the best since they adjust the camera positions along with the 3D line parameters.

Inmore details, we vary the added noise level from 0 to 2 pixels, while considering 20
lines and three views on Fig. 1A. One observes that, beyond one pixel noise, methods
LIN and QLIN1 behave very badly. This is mainly due to the bias introduced by the Plüc-
ker correction procedure.Methods QLIN2, MLE, andMLE_HARTLEY degrade gracefully as
the noise level increases. Method QLIN2 gives reasonable results. Methods MLE and
MLE_HARTLEY give undistinguishable results, very close to the theoretical lower bound.

We vary the number of lines from 15 to 60, while considering a one pixel noise and
three views on Fig. 1B. Similar conclusions as for the previous experiment can be
drawn, except for the fact, that when more than 30 lines are considered, methods LIN

and QLIN1 give reasonable results. Also, methods MLE and MLE_HARTLEY give results
undistinguishable from the theoretical lower bound when more than 45 lines are
considered.

Fig. 2A shows the results when the number of images is varied from 3 to 12. The
algorithms that do not optimize the cameras, namely LIN, QLIN1, QLIN2, and NLIN,
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Fig. 1. Estimation error for different methods when varying the variance of added noise on image end-
points (A) and the number of lines considered (B).
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have an error which increases with the number of images, whereas the bundle adjust-
ment algorithms, namely MLE and MLE_HARTLEY, have an error which decreases. This
is due to the fact that when the number of images increases, the initial camera esti-
mation degrades, which is characteristic of the camera initialization algorithm.

When the distance between the lines and the cameras increases, Fig. 2B shows that
the error decreases for all methods. This is explained by the fact that the cloud of 3D
lines gets smaller and smaller in the images, which decrease the estimation error, but
does not mean that the estimate is better.
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Fig. 2. Estimation error for different methods when varying the number of images (A) and the scene to
camera distance (B).
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We observed that the quasi-linear methods always converge within five iterations.

6.2. Real data

We tested our algorithms on several image sequences. For two of them, we show
results. We compared methods LIN, QLIN1, QLIN2, and MLE, since MLE_HARTLEY is for
three views only.

We observed that QLIN1 generally needs more iterations to converge than QLIN2.
This is due to the Plücker correction step that significantly modifies the estimate
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in QLIN1, while in QLIN2, since the constraint is linearized and enforced in the estima-
tion, the correction applied to the estimate is less important.

6.2.1. The �books� sequence
Fig. 3 shows images from this 5-frame sequence. We provided 45 line correspon-

dences by hand. Note that some of them are visible in two views only. We used these
line correspondences to compute the trifocal tensor corresponding to each subse-
quence formed by triplets of consecutive images, using the linear method described
in e.g. [11, Section 15.2]. We used method QLIN2 to reconstruct the lines associated
with each triplet. We registered these subsequences by using the method given in
[2]. At this point, we had a suboptimal guess of metric structure and motion. We fur-
ther refined it using our triangulation algorithms, to reconstruct each line by taking
into account all of its images. The corresponding estimation errors are, respectively
Fig. 3. Sample images out of the 5-frame �books� sequence overlaid with manually provided lines. Note
that the optical distortion is not corrected.



LIN & QLIN1

QLIN2

MLE

Fig. 4. Zoom on some original (white) and reprojected lines (black) for the �books� sequence for different
methods.
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for LIN, QLIN1, and QLIN2, 2.30, 2.27, and 1.43 pixels. Note the significant improve-
ment of QLIN2 compared to the biased methods LIN and QLIN1. Methods QLIN1 and
QLIN2, respectively, took four and three iterations to converge.
Fig. 5. Snapshots of the cameras and lines reconstructed by method MLE for the �books� sequence. The
images shown in Fig. 3 correspond to the top- and bottom-most cameras.
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We used the result of QLIN2 to initialize our maximum likelihood estimator for
structure and motion based on the proposed orthonormal representation together
with a metric parameterization of the camera motion, which ends up with a 0.9 pixel
estimation error.

For each estimation, we reconstructed the end-points corresponding to the first
view (shown on the left of Fig. 3). The maximum likelihood end-points are given
by orthogonally projecting their images onto the image of the corresponding line.

These results are visible on Fig. 4. Note the significant improvement of method
MLE over methods LIN, QLIN1 and QLIN2. The lines predicted by MLE and the original
lines are undistinguishable. Fig. 5 shows the cameras and lines reconstructed by MLE.
There is visually no difference with the reconstruction provided by algorithm QLIN2,
but that reconstructions provided by LIN and QLIN1 appear distorted.
Fig. 6. Sample images out of the 8-frame �laptop� sequence overlaid with manually provided lines. Note
that the optical distortion is not corrected.
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6.2.2. The �laptop� sequence
Fig. 6 shows sample images for the 8-frame �laptop� sequence, overlaid with the 40

manually entered line correspondences. We performed 3D reconstruction by apply-
Fig. 7. Snapshots of the cameras and lines reconstructed by method MLE for the �laptop� sequence.
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ing the same algorithms as for the �books� sequence. We obtained the following esti-
mation errors for the triangulation algorithms, namely LIN: 1.34 pixels, QLIN1: 1.29
pixels, and QLIN2: 1.04 pixels. Methods QLIN1 and QLIN2 took respectively seven and
five iterations to converge. For the bundle adjustment algorithms, we obtained an
estimation error of 0.82 pixels. Fig. 7 shows snapshots of the reconstructed 3D
models.

These results show that accurate reconstructed models can be obtained on real
images taken by amateur digital cameras. They also show the importance of running
a final bundle adjustment after initial triangulation.
7. Conclusion

We addressed the problem of structure and motion recovery from line correspon-
dences across multiple views.

First, we proposed an optimal triangulation algorithm. Given camera motion, the
Plücker coordinates of the 3D lines are estimated by minimizing the reprojection er-
ror. The algorithm relies on an iteratively reweighted least squares scheme. We lin-
earized the bilinear Plücker constraint to incorporate it up to first order in the
estimation process. A Plücker correction procedure is proposed to find the nearest
Plücker coordinates to a given 6-vector.

Second, we proposed the orthonormal representation of 3D lines, which allows
nonlinear optimization with the minimal four parameters within an unconstrained
optimization engine, contrarily to previously proposed overparameterizations. This
representation is well-conditioned and allows analytic differentiation.

Experimental results on simulated and real data show that the standard linear
method and its naive bias-corrected extension perform very badly in many cases
and should only be used to initialize a nonlinear estimator. Our bias-corrected algo-
rithm including the Plücker constraint performs as well as direct Levenberg–Marqu-
ardt-based triangulation. It is therefore a good solution to initialize subsequent
bundle adjustment. Based on our orthonormal representation, bundle adjustment
gives results close to the theoretical lower bound and undistinguishable from the
three-view maximum likelihood estimator of [11, Section 15.4.1], while being usable
with any number of views.
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