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Abstract. This article proposes a solution of the Lambertian Shape
From Shading (SFS) problem by designing a new mathematical frame-
work based on the notion of viscosity solutions. The power of our ap-
proach is twofolds: 1) it defines a notion of weak solutions (in the
viscosity sense) which does not necessarily require boundary data. Note
that, in the previous SFS work of Rouy et al. [23, 15], Falcone et al.
[8], Prados et al. [22, 20], the characterization of a viscosity solution and
its computation require the knowledge of its values on the boundary of
the image. This was quite unrealistic because in practice such values are
not known. 2) it unifies the work of Rouy et al. [23, 15], Falcone et al.
[8], Prados et al. [22, 20], based on the notion of viscosity solutions and
the work of Dupuis and Oliensis [6] dealing with classical (C1) solutions.
Also, we generalize their work to the “perspective SFS” problem recently
introduced by Prados and Faugeras [20].
Moreover this article introduces a “generic” formulation of the SFS prob-
lem. This “generic” formulation summarizes various (classical) formula-
tions of the Lambertian SFS problem. In particular it unifies the ortho-
graphic and the perspective SFS problems. This “generic” formulation sig-
nificantly simplifies the formalism of the problem. Thanks to this generic
formulation, a single algorithm can be used to compute numerical solu-
tions of all these previous SFS formulations.
Finally we propose two algorithms which provide numerical approxima-
tions of the new weak solutions of the “generic SFS” problem. These
provably convergent algorithms are quite robust and do not necessarily
require boundary data.

1 Introduction

The application of the theory of Partial Differential Equations (PDEs) to the
Shape from Shading (SFS) problem has been hampered by several types of diffi-
culties. The first type arises from the kind of modelling that is used: orthographic
cameras looking at Lambertian objects with a single point light source at infin-
ity is the set of usual assumptions [29, 10]. The second type is mathematical:
characterizing the solution(s) of the corresponding PDE has turned out to be
a very difficult problem; boundary conditions are assumed to be known, say at
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image boundary, in contradiction with real practice [23, 22, 8]. The third type is
algorithmic: assuming that existence has been proved, coming up with provably
convergent numerical schemes has turned out to be quite involved [7].

Our approach is therefore based upon the interaction of the following three
areas:

1. Mathematics: We use and “extend” the notion of viscosity solutions to solve
such basic problems as the existence and uniqueness of a solution or the
characterization of all solutions when uniqueness does not hold.

2. Algorithmic: In [2], Barles and Souganidis propose a large class of approx-
imation schemes (called monotonous) of these solutions. Inspired by their
work, we build such schemes for the SFS equations from which we obtain
algorithms whose properties we can analyze in detail (stability, convergence,
accuracy). This results in provably correct code within a set of well-defined
assumptions.

3. Modeling: The classical theory of viscosity solutions (used until now for
solving the SFS problem [23, 15, 22, 20, 8]) is not well-adapted to the natural
constraints of the SFS problem. In particular it requires that boundary con-
ditions be given, e.g. at the image boundary, and creates undesirable folds
(see section 3). In order to be able to get rid of this constraint, we have
adapted the notion of viscosity solutions.

Our contributions are first in the area of Mathematics: we adapt the notion of
singular viscosity solutions (recently developed by Camilli and Siconolfi [3, 4])
for obtaining a “new” class of viscosity solutions which is really more suitable to
the SFS problem than the previous ones. This mathematical framework is very
general and allows to improve and unify the work of [23, 15, 6, 22, 20, 8]. Directly
connected to the area of modeling, thanks to the introduction of this framework,
we are able to relax the very constraining assumption that boundary conditions
are known. Concerning the area of modeling, we extend the work of [20]: con-
sidering a pinhole camera, we allow the light source to be either at infinity or
approximately at the optical center, as in the case of a flash. We also show that
the orthographic and pinhole camera SFS equations are special cases of a general
equation, thereby simplifying the formalization of the problem. Our contribu-
tions are also algorithmic: we propose two provably convergent approximation
schemes for our “generic” SFS equation. Moreover, one of the algorithms we
propose seems to be the most efficient iterative algorithms of the SFS literature.
The article is written in a non mathematical style. The reader interested in the
proofs is referred to [19, 21].

2 A unification of the “perspective” and “orthographic
SFS”

We deal with Lambertian scenes and suppose that the albedo is constant and
equal to 1. The scene is represented by a surface S. Let Ω, the image, be the
rectangular domain ]0, X[×]0, Y [. S can be explicitly parameterized by using
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a function defined on the closure Ω. The particular type of parametrization is
irrelevant here but may vary according to the camera type (orthographic versus
pinhole) and the position of light source (finite or infinite distance). We note I
the image intensity, a function from Ω into the closed interval [0, 1]. The Lam-
bertian hypothesis implies:

I(x) =
n(x) · L
|n(x)| , (1)

where n(x) is a normal vector to the surface S at the point S(x) and L is the
unit vector representing the light direction at this same point (the light source
is assumed to be a point). Despite the notation, L can depend on S(x), if the
point source is at a finite distance from the scene.

2.1 “Orthographic SFS” with a point light source at infinity

This is the traditional setup for the SFS problem. We denote by L = (α, β, γ)
the unit vector representing the direction of the light source (γ > 0), l = (α, β),
and u the distance of the points in the scene to the camera. The SFS problem
is then, given I and L, to find a function u : Ω −→ R satisfying the brightness
equation:

∀x ∈ Ω, I(x) = (−∇u(x) · l + γ)/
√

1 + |∇u(x)|2,
In the SFS literature, this equation is rewritten in a variety of ways as H(x, p) =
0, where p = ∇u:
1) In [23], Rouy and Tourin introduce HR/T (x, p) = I(x)

√
1 + |p|2 + p · l− γ.

2) In [6], Dupuis and Oliensis consider
HD/O(x, p) = I(x)

√
1 + |p|2 − 2p · l + p · l− 1.

(use the change of variables: Ψ(x1, x2, z) = (x1, x2, x1α + x2β + zγ))
3) In the case where L = (0, 0, 1), Lions et al. [15] deal with:

HEiko(x, p) = |p| −
√

1
I(x)2 − 1. (called the Eikonal equation)

The function H is called the Hamiltonian.

2.2 “Perspective SFS” with a point light source at infinity

Few SFS approaches deal with the perspective projection problem. To our knowl-
edge, only eight authors [17, 13, 9, 27, 28, 20, 26, 5] consider a pinhole camera
model instead of an affine or orthographic model. Among these papers, only
the work of Prados and Faugeras [20] proposes a formalism completely based on
Partial Differential Equations (PDEs) and provides a rigourous mathematical
study. The camera is characterized and represented by the retinal plane R and
by the optical center as shown in figure 1. We note f the focal length. We as-
sume that S can be explicitly parameterized by the depth modulation function
u defined on Ω:

S =
{
u(x).(x,− f ); x ∈ Ω

}
,

and that the surface is visible (in front of the retinal plane) hence u ≥ 1.
We also note L = (α, β, γ) the unit vector representing the direction of the
light source (γ > 0). Combining the expression of n(x) (easily obtained through
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differential calculus) and the change of variables v = ln(u), Prados and Faugeras
[18, 20] obtain from the irradiance equation the following Hamiltonian:

HP/F (x, p) = I(x)
√

f 2|p|2 + (x · p + 1)2 − ( f l + γx) · p− γ;

By using the change of variables v(x) = γ

f [γ f − l · x]u(x), we obtain another
Hamiltonian HPers(x, p) which verifies more interesting properties (see [19]).

Retinal plane

0

−→z −→x2

(x1, x2, 0)
−→x1

|u(x1, x2)|
L

θ

Surface

n(x1, x2)

(x1, x2, u(x1, x2))

I(x1, x2) = cos(θ)
m = (x1, x2,− f )

M = u(x1, x2).m

Retinal plane
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−→x10

−→z
optical center

−→x2

f ≥ 0

a) orthogonal projection b) perspective projection

Fig. 1. Images arising from an orthogonal (versus perspective) projection.

2.3 “Perspective SFS” with a single point light source located at
the optical center

We present a new formulation of the “perspective SFS”. This approximately
models the situation encountered when we use a simple camera equiped with a
flash and the scene is relatively far from the camera. In this case, we represent

the scene by the surface S defined by S =





f u(x)√
|x|2 + f 2

(x, f ); x ∈ Ω



 .

Using the same trick as in the previous section (v = ln(u)), we readily obtain
the Hamiltonian:

HF (x, p) = I(x)
√

f 2|p|2 + (p · x)2 + Q(x)2 −Q(x),

where Q(x) =
√

f 2/(|x|2 + f 2). See [19] for more details.

2.4 A generic Hamiltonian

In [19], we prove that all the previous SFS Hamiltonians are special cases of the
following “generic” Hamiltonian:

Hg(x, p) = H̃g(x,Axp +−→vx) +−→wx · p + cx,
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with H̃g(x, q) = κx

√
|q|2 + K2

x,

κx,Kx ≥ 0, Ax = Dx Rx, Dx =
�

µx 0
0 νx

�
, Rx is the rotation matrix 1

|x|

�
x2 −x1
x1 x2

�

if x 6= 0, Rx = Id2 if x = 0, µx, νx 6= 0 (µx, νx ∈ R), −→vx,−→wx ∈ R2 and cx ∈ R.
By using the Legendre transform, we rewrite this Hamiltonian as a “generic”
Hamilton-Jacobi-Bellman (HJB) Hamiltonian:

Hg(x, p) = sup
a∈B2(0,1)

{−fg(x, a) · p− lg(x, a)}.

In [19], we detail the exact expressions of fg and lg. The HJB formulations of
the Hamiltonians HEiko, HD/O, HR/T and HP/F , respectively given in [23, 6, 22,
20], are special cases of the above generic formulation; thereby ours is a general-
ization and a unification of these works. This generic formulation considerably
simplifies the formalism of the problem. All theorems about the characterization
and the approximation of the solution are now proved by using this generic SFS
Hamiltonian. In particular, this formulation unifies the orthographic and per-
spective SFS problems. Also, from a practical point of view, a unique code can
be used to numerically solve these two problems.

3 Weaknesses of the previous theoretical approaches

The notion of viscosity solutions was first used to solve SFS problems by Li-
ons, Rouy and Tourin [23, 15] in the 90s. Their work was based upon the notion
of continuous viscosity solution. The viscosity solutions are PDE solutions in a
weak sense. In particular, they are not necessarily differentiable and can have
edges. This notion allows to define a solution of a PDE which does not have
classical solutions. For example, the equation

|∇u(x)| = 1 for all x in ]0, 1[ (2)

with u(0) = u(1) = 0, does not have classical solutions (Rolles theorem) but
has a continuous viscosity solution (see figure 2-a)). Let us emphasize that con-
tinuous viscosity solutions are continuous (on the closure of the set where it is
defined) and that a solution in the classical sense is a viscosity solution. The
weakness of this notion is due to the compatibility condition necessary to the
existence of the solution (constraint on the variation of the boundary conditions
[14]). Also, the same equation (2) with u(0) = 0, u(1) = 1.5 does not have
continuous viscosity solutions. Now let us suppose that we make a large error

a)
x

1
2

1
2

0

u(x)

1 b) 1

1.5

x
0

u(x)

Fig. 2.

a) Continuous viscosity solution
of (2) with u(0) = u(1) = 0;

b) discontinuous viscosity solution of
(2) with u(0) = 0 and u(1) = 1.5.
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on the boundary condition, when we compute a numerical solution of the SFS
problems. If this error is too large then there do not exist continuous viscosity
solutions. In this case one may wonder what the numerical algorithm of [23, 15]
computes. In [22], Prados et al. answer this question by proposing to use the
more general idea of discontinuous viscosity solutions. For example, equation
(2) with u(0) = 0, u(1) = 1.5 has a discontinuous viscosity solution (see figure
2-b)). Let us emphasize that a “discontinuous viscosity solution” can have dis-
continuities and that a continuous viscosity solution is a discontinuous viscosity
solution.
The classical theory of viscosity solutions offers simple and general theorems of
existence and uniqueness of solutions for exactly the type of PDEs that arise in
the context of SFS. In particular the theory allows to characterize exactly all
possible continuous viscosity solutions: given a particular Dirichlet condition on
the image boundary (verifying the compatibility condition), if the set of critical
points (points of maximal intensity, i.e. I(x) = 1) is empty, then there exists a
unique continuous viscosity solution satisfying the boundary conditions; If the
set of critical points is not empty there exists an infinity of continuous solu-
tions which are characterized by their values at the critical points. Note that
this result is general and applies equally to all the SFS models described in sec-
tion 2 (see [19]). As a consequence, the SFS problem is ill-posed and to compute
an approximation of a solution, Rouy et al. and Prados et al. [23, 22, 20] must
assume that the values of the solutions are given at the image boundary and
the critical points. This is quite unsatisfactory, even more so since small errors
on these values create undesirable crests, see figure 3-b) or [22] for an example

a) x

u(x)

b) xx0

ε

uε

c) x1 x

umax

Fig. 3. a) original surface u; b) solution uε associated to corrupted boundary conditions
and to the image obtained from the original surface a) with the Eikonal equation; c)
maximal solution umax (in Falcone’s sense [8]) associated to the same image. uε and
umax present a kink at x0 and x1.

with a real image. Falcone [8] proposes not to specify anymore the values of
the solution at the critical points (he still requires to specify the values at the
image boundary though). In order to achieve this, he uses the notion of maximal
viscosity solutions developed by Camilli and Siconolfi [3]. Despite its advantages,
this approach is not really adapted to the SFS problem, see for example figure
3-c). In this figure, the maximal solution umax associated to the image obtained
from the original surface u shows a highly visible crest where the surface should
be smooth. Even with the correct boundary conditions, Falcone’s method does
not really provide a suitable solution.
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To summarize, the work of Rouy et al. [23], Prados et al. [22, 20] and Falcone
et al. [8] suggests theories and numerical methods based on the concept of viscos-
ity solutions and requiring data on the boundary of the image. At the opposite,
Dupuis and Oliensis [6] consider C1 solutions. They characterize a C1 solution
by specifying only its values at the critical points which are local minima. In
particular, they do not specify the values of the solution on the boundary of the
image. Also, they provide algorithms for approximating these smooth solutions.
Nevertheless, in practice, because of noise, of incorrect modelization, errors on
parameters or on the depth values enforced at the critical points, there do not
exist C1 solutions to the SFS equations [16]. Therefore, the theory of Dupuis
and Oliensis does not apply.
Considering the drawbacks and the advantages of all these methods, it seems
important to define a new class of weak solutions such that the characterization
of Dupuis and Oliensis holds, and which provides a (theoretical and numerical)
solution when there do not exist smooth solutions.

As we show in [21], the classical notion of viscosity solutions, like the notion
of singular viscosity solutions (pioneered by Ishii and Ramaswamy [11] and re-
cently upgraded by Camilli and Siconolfi [3]) does not provide a direct extension
of the Dupuis and Oliensis work. For such an extension, we must modify these
notions and we must consider a “new” type of boundary conditions (called “state
constraints” [24]). It turns out that the correct notion of viscosity solution for
the SFS problem is the “singular discontinuous viscosity solution with Dirichlet
boundary conditions and state constraints”. These solutions can be interpreted
as maximal solutions and have the great advantage of not necessarily requiring
boundary or critical points conditions. Moreover, this notion provides a math-
ematical framework unifying the work of Rouy et al. [15, 23], Prados et al. [22,
20], Falcone et al. [8] and Dupuis and Oliensis [6].

4 Singular discontinuous viscosity solutions for SFS

In this section we briefly describe the notion of “singular discontinuous viscos-
ity solutions with Dirichlet boundary conditions and state constraints” (SDVS).
We refer to [21] for more details. Also we do not recall the classical definition of
viscosity solutions: see [1] for a recent overview.
Considering the generic SFS problem, we concentrate on the following HJB equa-
tion:

sup
a∈A

{f(x, a) · ∇u(x)− l(x, a)} = 0, ∀x ∈ Ω (3)

To simplify, we assume in this paper1 that l ≥ 0 and we denote S := {x | l(x, a) =
0 for some a ∈ A}. Also assume that S verifies S ∩ ∂Ω = ∅. To equation
1 In [21], we do not assume that l ≥ 0. Also, the definition of S and the developed

tools are more sophisticated. Note that, except for HR/T and HP/F , all the SFS
Hamiltonians verify l ≥ 0. This justifies our interest for the Hamiltonian HD/O and
the original one HPers.
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(3), we add Dirichlet boundary conditions (DBC) on the boundary of the im-
age and on S:

u(x) = ϕ(x), ∀x ∈ ∂Ω ∪ S; (4)

ϕ being continuous on ∂Ω ∪ S into R ∪ {+∞} (but ϕ 6= +∞ everywhere). At
the points x s.t. ϕ(x) = +∞, we say that we impose a state constraint [24]. In
the SFS context, S is the set of critical points {x | I(x) = 1}.

Definition: u is a SDVS of (3)-(4), if u is a discontinuous viscosity solution
of (3)-(4) on Ω −S and if ∀x ∈ S, [u∗(x) ≤ ϕ(x)] and [u∗(x) ≥ ϕ(x) or u∗ is a
singular viscosity supersolution in Camilli’s sense at the point x].

Definitions of u∗ and u∗ (not detailed here because of space) can be found in [1].
The notion of singular viscosity supersolution in Camilli’s sense is completely
described in [3, 4].
In [21], we prove the existence and the uniquess of the SDVS of all SFS equations
as soon as I is Lipschitz continuous and the Hamiltonian is coercive (e.g. HD/O

and HR/T are coercive ⇔ I(x) > |l|) . We also prove the robustness of this solution
to pixel noise and to errors on the light or focal length parameters. Finally, note
that, when we impose state contraints on the boundary of the images and some
critical points, this solution can be interpreted as the maximal viscosity solution.
See [21] for more details.

5 A general framework for SFS:

The main interest of this “new” class of solutions lies in the possibility to impose
the heights of the solution at the critical points when we know them (this is

impossible with discontinuous viscosity solutions; it is possible with continuous viscosity

solutions but compatibility conditions are required) and in the possibility to “send
at infinity” the boundary conditions when we do not know then (this possibility
is not considered by Falcone et al. [8]). The relevance of this notion is amplified
by its consistency with the work of Dupuis and Oliensis [6]. This is illustrated
by the following proposition (see [21]):

Proposition 1 Let u be a C1 solution of equation (3). Let S̃ be the subset of
S corresponding to the local minima of u. If u verifies the assumption 2.1 of
[6] 2 then u is the SDVS of (3)-(4) for ϕ(x) = u(x) ∀x ∈ S̃ and ϕ(x) = +∞
elsewhere.

Therefore, when there do not exist C1 solutions, the SDVS consistently extend
the work of Dupuis and Oliensis. Moreover, the SDVS unify the various theories
used for solving the SFS problem. In effect, we can verify that [21]:

◦ In the case where the DBC are finite on ∂Ω∪S and the compatibility condition
(see [14]) holds, then the SDVS of (3)-(4) is the continuous viscosity solution
used by [23, 15, 22, 20].

2 Not stated here because of space.
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◦ When the DBC are finite on the boundary of the image and state con-
straints are imposed at the critical points, the SDVS of (3)-(4) corresponds
to Camilli’s singular viscosity solutions [3, 4] used by Falcone [8].

◦ As seen above, the SDVS corresponds to the C1 solution of (3), verifying the
assumption 2.1 of Dupuis and Oliensis [6].

Consequently, the theoretical results of Falcone et al. [8] Rouy et al. [23, 15],
Prados et al. [22, 20] and Dupuis et al. [6] are automatically extended to the “per-
spective SFS” (use HF and Hpers). Finally, one can conjecture that by using the
work of [12, 25], the notion of SDVS can be extended to solve SFS problem with
discontinuous images. This would be very difficult without the tool of viscosity
solutions.

6 Numerical approximation of the SDVS for generic SFS

This section explains how to compute a numerical approximation of the SDVS
of the generic SFS equation. This requires three steps. First we “regularize” the
equation. Second, we approximate the “regularized” SFS equation by approxi-
mation schemes. Finally, from the approximation schemes, we design numerical
algorithms.

Regularisation of the generic SFS equation:
For an intensity image I and ε > 0, let us consider the truncated image Iε

defined by Iε(x) = min(I(x), 1−ε). By using a stability result, we prove that for
the generic SFS Hamiltonian, the SDVS associated with the image Iε converges
uniformly toward the SDVS associated with the image I, when ε → 0. Also,
∀ε > 0, the generic SFS equation associated with Iε is no more degenerate. Thus
for approximating this equation, we can use the classical tools developed by
Barles and Souganidis [2].

Approximation schemes for the nondegenerate SFS equations:
Let us consider the “regularized” generic SFS equation. The theory of Barles and
Souganidis [2] suggests to consider monotonous schemes. Therefore, we construct
the following monotonous scheme (we call it “implicit”) S(ρ, x, u(x), u) = 0 with

S(ρ, x, t, u) = max
s1,s2=±1

Ss1,s2(ρ, x, t, u),

where ρ = (∆x1,∆x2) is the mesh size and where we choose:

Simpl
s1,s2

(ρ, x, t, u) = sup
a∈As1,s2

{
−fg(x, a) ·

(
t−u(x+s1∆x1

−→e1)
−s1∆x1

t−u(x+s2∆x2
−→e2)

−s2∆x2

)
− lg(x, a)

}
.

As1,s2 = {a ∈ A | fg1(x, a)s1 ≥ 0 and fg2(x, a)s2 ≥ 0}.
By introducing a fictitious time ∆τ , we can transform the implicit scheme in a
“semi-implicit” scheme (also monotonous):

Ssemi
s1,s2

(ρ, x, t, u) = t− ( u(x) + ∆τ Simpl
s1,s2

(ρ, x, u(x), u) ),
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a) b) c) d)

Fig. 4. a) original surface; b) image generated from a) by the Eikonal process [size
400× 400]; c) reconstructed surface from b) after 15 iterations of Dupuis and Oliensis’
algorithm (based on differential games) enforcing the exact Dirichlet condition on the
boundary of the image and at all critical points: ε1 = 0.015, ε2 = 5.7e− 05, ε∞ = 0.35;
d) reconstructed surface by the implicit algorithm with the same boundary data and
after the same number (15) of iterations as c): ε1 = 0.002, ε2 = 1.0e− 05, ε∞ = 0.014.

where ∆τ = (fg(x, a0) · (1/∆x1, 1/∆x2))
−1; a0 being the optimal control.

Let us emphasize that these two schemes have exactly the same solutions.
Using Barles and Souganidis definitions [2], we prove in [19] that these

schemes are always monotonous and stable. Also, they are consistent with the
genereric SFS equation as soon as the intensity image is Lipschitz continuous.
Finally, when the Hamiltonian is coercive, we prove that the solutions of these
schemes converge toward the unique SDVS of the “regularized” generic SFS
equation, when ρ → 0.
Remark: These two schemes have also a control interpretation. It is easy to verify
that the implicit scheme is an extension of the control-based schemes proposed
by [23, 15, 22] and the semi-implicit scheme corresponds to the control-based
scheme proposed by [6]. All these schemes have been designed for the “ortho-
graphic SFS” problem. Note that for a given Hamiltonian, they all have the same
solutions. Therefore we have unified and generalized these various approaches.

Numerical algorithms for the generic SFS problem: In the previous sec-
tion, we have proposed two schemes whose solutions uρ converge toward the
unique SDVS of the “regularized” generic SFS equation. For each scheme, we
now describe an algorithm that computes an approximation of uρ.
For a fixed mesh size ρ = (∆x1,∆x2), let us denote xij := (i∆x1, j∆x2) and
X := {xij ∈ Ω; i, j ∈ Z}. The algorithms consist of the following computation
of the sequence of values Un

ij , n ≥ 0 (Un
ij being an approximation of uρ(xij)).

Algorithm 1 1. Initialisation (n = 0): U0
ij = u0(xij).

2. Choice of a pixel xij ∈ X and modification of Un
ij: We choose Un+1 such

that ∀(k, l) 6= (i, j), Un+1
kl = Un

kl and S(ρ, xij , U
n+1
ij , Un) = 0.

3. Choose the next pixel xij ∈ X in such a way that all pixels of X are regularly
visited and go back to 2.

We prove in [19] that if u0 is a subsolution or a supersolution, then the computed
numerical approximations converge toward uρ. In their work, Rouy, Prados et al.
[23, 15, 22, 20] use (some particular cases of) the implicit algorithm starting from
a subsolution. When we start from a supersolution, we reduce the number of
iterations by 3 orders of magnitude! In [20], Prados and Faugeras need around
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a) b) c) d)

Fig. 5. a) original surface; b) image generated from a) [size ' 200 × 200]; c) recon-
structed surface from b) with the implicit algorithm (IA) after only 3 iterations, using
the exact boundary data at all critical points and with state constraints on the bound-
ary of the image: ε1 ' 0.58, ε2 ' 0.0019, ε∞ ' 0.42; d) reconstructed surface by the
IA (after 3 iterations) with state constraints on the boundary of the image and at all
the critical points except at that on the nose: ε1 ' 0.60, ε2 ' 0.0020, ε∞ ' 0.42.

4000 iterations for computing the surface of the classical Mozart’s face [29].
Starting from a supersolution (in practice, a large constant function u0 does the

trick!), only three iterations are sufficient for obtaining a good result; see figure 5.
As an example, we show in figure 4 a comparison of our results with those of
what we consider to be the most efficient algorithm of the SFS literature [6].
Figures 4-c) and 4-d) show the results returned by our implementation of this
algorithm and our algorithm, respectively, after 15 iterations. The results are
visually different. This visual difference is confirmed by the computation of the
errors with respect to the original surface (ε1, ε2 and ε∞ are the errors of the

computed surface measured according to the L1, L2 and L∞ norms, respectively).
Nevertheless let us note that the cost of one update is slightly larger for our
implicit algorithm than for the (semi-implicit) algorithm of Dupuis and Oliensis.
This may also be because we have not optimized our code for this special case.
Let us add that in this test, we have constrained the solution by the exact
Dirichlet condition on the boundary of the image and at all the critical points.
Let us recall that the SDVS method does not necessarily require boundary data.
Figure 5 shows some reconstructions of the Mozart face when using the exact
boundary data at all the critical points and state constraints on the boundary
of the image (Fig.5-c), and with no boundary data, except for the tip of the
nose (Fig.5-d). Moreover, let us emphasize that our implicit algorithm (as our

semi-implicit one) allows to compute some numerical approximations of the SDVS
of the degenerate (when the intensity reaches 1) and generic SFS problem. Thus,
we only need to implement a single algorithm for all SFS modelizations. Finally,
let us remark that, as the theory predicted, our algorithm shows an exceptional
robustness to noise and errors on the parameters; This robustness is even bigger
when we send the boundary to infinity (apply the state constraints). Figure 6
displays a reconstruction of Mozart’s face from an image perturbed by additive
uniformly distributed white noise (SNR ' 5) by using the implicit algorithm with
the wrong parameters lε = (0.2,−0.1) and f ε = 10.5 (focal length) and without
any boundary data. The original image Fig.6-a) has been synthetized with l =
(0.1,−0.3) and f = 3.5. The angle between the initial light vector L and the
corrupted light vector Lε is around 13◦. More details, experimental comparisons
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and stability tests can be found in [19, 21]. These reports also contain the proofs
of all our statements.

a) b) c)

Fig. 6. a) Image generated from Mozart’s face represented in Fig.5-a) with l =
(0.1,−0.3) and f = 3.5 [size ' 200 × 200]; b) noisy image (SNR ' 5); c) recon-
structed surface from b) after 4 iterations of the implicit algorithm, using the incorrect
parameters lε = (0.2,−0.1) and f ε = 10.5, and with state constraints on the boundary
of the image and at all the critical points except at the critical point on the nose.

7 Conclusion

We have unified various formulations of the Lambertian SFS problem; in par-
ticular the orthographic and perspective problems. We have developed a new
mathematical framework which unifies some SFS theories and generalizes them
to all SFS Hamiltonians. Let us emphasize that we do not consider Mathematics
as a goal in itself. Mathematics is simply a powerful tool allowing us to

• suggest some numerical methods and algorithms;
• certify algorithms, to guarantee their robustness and to describe their limita-

tions;
• better understand what we compute. In particular, when the problem has

several solutions, it allows to characterize all the solutions, a necessary pre-
liminary step for deciding which solution we want to compute.

In effect, our theory ensures the stability and the convergence of our SFS method.
Also it suggests a robust SFS algorithm which seems to be the most efficient iter-
ative algorithm of the SFS literature. Moreover, our new class of weak solutions
is really more adapted to the SFS specifications; in particular, it does not neces-
sarily require boundary data. We are extending our approach to non Lambertian
SFS and to SFS with discontinous images.
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de viscosité. Master’s thesis, Université de Nice Sophia-Antipolis, France, 2001.
19. E. Prados and O. Faugeras. A mathematical and algorithmic study of the lam-

bertian SFS problem for orthographic and pinhole cameras. Technical Report
RR-5005, INRIA, Nov. 2003.

20. E. Prados and O. Faugeras. “Perspective Shape from Shading” and viscosity so-
lutions. In Proceedings of ICCV’03, volume 2, pages 826–831, 2003.

21. E. Prados and O. Faugeras. A viscosity method for Shape from Shading without
boudary data and some of its applications. Technical report, INRIA, To appear.

22. E. Prados, O. Faugeras, and E. Rouy. Shape from Shading and viscosity solutions.
In Proceedings of ECCV’02, volume 2351, pages 790–804, May 2002.

23. E. Rouy and A. Tourin. A Viscosity Solutions Approach to Shape-from-Shading.
SIAM Journal of Numerical Analysis, 29(3):867–884, June 1992.

24. H. M. Soner. Optimal control with state space constraints. SIAM J. Contr. Optim,
24:Part I: 552–562, Part II: 1110–1122, 1986.

25. P. Soravia. Optimal control with discontinuous running cost: eikonal equation and
shape from shading. In 39th IEEE CDC, pages 79–84, 2000.

26. A. Tankus, N. Sochen, and Y. Yeshurun. A new perspective [on] Shape-from-
Shading. In Proceedings of ICCV’03, volume 2, pages 862–869, 2003.

27. I. Weiss. A perspective 3D formalism for shape from shading. In Proceedings of
DARPA Image Understanding Workshop, volume 2, pages 1393–1402, May 1997.

28. S. Yuen, Y. Tsui, Y. Leung, and R. Chen. Fast marching method for sfs under
perspective projection. In Proceeding of VIIP’02, pages 584–589, 2002.

29. R. Zhang, P.-S. Tsai, J.-E. Cryer, and M. Shah. Shape from Shading: A survey.
IEEE Trans. PAMI, 21(8):690–706, Aug. 1999.


