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Abstract

In this paper we present a new approach to visual servoing using
lines. It is based on a theoretical and geometrical study of the main
line representations which allows us to define a new representation,
the so-called binormalized Plücker coordinates. They are particularly
well suited for visual servoing. Indeed, they allow the definition of
an image line alignment concept. Moreover, the control law which
realizes such an alignment has several properties: partial decoupling
between rotation and translation, analytical inversion of the motion
equations and global asymptotic stability conditions. This control law
was validated both in simulation and experimentally in the specific
case of an orthogonal trihedron.
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Figure 1: Detail of a part to be welded.

1 Motivation

The present paper is mainly concerned with the use of lines in visual ser-
voing1. At the origin of the problem is the fact that when dealing with
industrial parts, the extraction and the tracking of lines is natural and,
now, feasible in real time thanks to new efficient algorithms from com-
puter vision [Low91, MBCM99, TN00, AZ95, DC00, MH02]. Nevertheless,
only a few works have really explored the use of lines in visual servoing:
[RE87, ECR92, KMM+96, KRD+98, Hag97] are examples we find in robotics.
Tracking of lines was also considered for the road following of autonomous
vehicles, like in [LD98], but without deriving generic approaches.

This work was performed in the framework of a European project, VIGOR
[VIG01]. The main industrial partner was the Odense Steel Shipyard in
Denmark and a major concern of the project was to improve the automatic
welding of ship parts. In particular, it was required to accurately move
a welding tool with respect to a ship part, whose relative position is not
exactly known in advance.

The state-of-the-practice combines off-line trajectory generation based on
CAD models and on-line following of the generated trajectory. This requires
that the CAD models are perfect and that there is no discrepancy between the
position of the part with respect to the robot base at trajectory generation
time and at trajectory following time. This is a strong constraint in the case
of ship welding since the size and the weight of the parts to be welded prevent
from achieving an accurate positioning of these parts. Consequently, it was
necessary to use sensor-based techniques, such as visual servoing.

1Visual servoing is now rich of some hundreds of references, one of the first reviews on
the subject is [Cor93] and a tutorial may be found in [HHC96].
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Since 75% of the parts to be welded are composed of three intersecting
orthogonal planes, where points can not be reliably extracted (see Figure 1),
we put the emphasis of the application of our studies to this junction of
three orthogonal lines. The question which rapidly occurred was then: what
representation for these lines?

Indeed, as soon as we use structures richest than simple points, features
in the image result from 3D entities which belong to particular manifolds.
The choice of the parameterization of these manifolds (and of the projected
structures) strongly influences the design of the control law. Among the
expected benefits are the better decoupling, the easier design and stability
analysis of the control.

Coming to geometrical aspects, it should be recalled that the 3D Eu-
clidean lines form a 4-dimensional manifold the properties of which are de-
scribed by the Grassman’s geometry. One of the most noticeable property
is the absence of a natural (Riemannian) distance. Since such a distance is
needed for defining a feedback control, the choice of the parameterization is
crucial. Among the classical ones, the Plücker coordinates look particularly
interesting since they come from the embedding of the line manifold in a
projective space in which things are linear. More, recalling that the camera
transformation is also projective, we understand intuitively that some nice
properties could be expected.

These issues motivated the work we report on in the present paper2. In
a first part, we set the general problem of designing a feedback control law
for 3D lines, in two steps:

• First, we propose a restriction on classical Plücker coordinates (the
so-called binormalized Plücker coordinates) which explicitly splits the
representation in such a way that depth becomes an independent vari-
able. This allows us to define the notion of image line alignment.

• Second, we define a control law on the related sub-manifold and prove
its stability. The use of binormalized Plücker coordinates yields a par-
tial decoupling between rotation and translation control. Thanks to
this property, the control law consists of an analytical inversion of mo-
tion equations and the stability proof exhibits global analytic conditions
for stationarity.

The second part of the paper presents the application of the method to
the case of the orthogonal trihedron (with geometrical interpretation of the
stationary points) and, finally, proposes a full practical implementation ded-
icated to visual servoing by adding a laser spot to the system.

2A shorter version of this version can be found in ([AE02])
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The remainder of this paper is organized as follows. Section 2 is devoted
to line parameterizaton and Section3 to control definition. In section 4,
we address practical issues specific to the orthogonal trihedron. Finally,
Sections 5 and 6 report respectively simulation and experimental results.

• Vectors are denoted with lower case upright bold letters (e.g.u). Unit vectors are
denoted as underlined vectors (e.g. u).

• Points in the 3d space are written with upper case bold letters (P) while points in
the image are written with lower-case bold characters (p).

• 3d Lines are noted with calligraphic upper case letters (e.g. L) and image lines
with calligraphic lower case letters (e.g. `).

• Angular velocity is written Ω and linear velocity V .

• The scalar product is noted with the transpose formalism (e.g. aTb) and the cross
product of a by b is written a× b.

• The notation ∗ (e.g. u∗) denotes a desired value and the notation (t = 0) (e.g.
u(t=0)) represents an initial value.

Table 1: Notation used in this paper
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2 Line parameterization

2.1 Binormalized Plücker coordinates

2.1.1 Recalls on Plücker coordinates

The (projective) Plücker coordinates[Plü65, BR79, Fau93, SK52] of a line in
space, or 3d line, (L) are the 6 coordinates of a point in the 5-dimensional
projective space P 5. This point is sometimes called the Plücker point [GO97].
Its coordinates are usually noted as a couple of two 3-vectors defined up to
a common scale factor:

L =

(
u
v

)
(1)

where u 6= 0 denotes the orientation of (L) and v contains the coefficients of
the interpretation plane equation, the latter being the plane passing by the
origin and (L). Since physical lines in space form a 4-dimensional manifold,
called the Klein quadric[PPR98] or the Plücker hypersurface[CEG+96], u and
v satisfy the following constraint:

uTv = 0 (2)

It expresses, via the so-called Grassmannian, that a line intersects itself.
The Euclidean Plücker coordinates are obtained by normalizing u:

L = (u,h) ; uTh = 0 ; uTu = 1 (3)

where u = u/‖u‖ and h = v/‖u‖. Hence, they can be seen as normalized
Plücker coordinates[PPR98]. Notice that, due to Euclidean structure, the
constraint uTh = 0 expresses that h is orthogonal to the interpretation plane
of (L). It can moreover be shown that, for any point P on (L):

h = P× u (4)

Remark 1 Considering that the 3d space is oriented, one can easily see
that (u,h) and (−u,−h) are two different oriented lines even though they
correspond to the same unoriented line. Moreover, (4) shows that (u,h) and
(−u,h) are symmetric with respect to the origin.

Remark 2 h = 0 iff (L) passes through the origin.
Since the case where a line passes through the center of projection is degen-
erate in computer vision, we will assume in the remainder of this paper that
it never occurs.
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Remark 3 Notice that (u,h) is a bivector as McCarthy[Mac90] defined it
to represent kinematic screws. Consequently[MLS94, p. 427], there does not
exist a bi-invariant Riemannian metric on the manifold of 3D lines.

The Plücker coordinates (both projective and Euclidean) give trivially
the image projection (`) of (L), since (`) is simply the intersection of the
interpretation plane and the image plane. One can verify that (4) defines an
implicit orientation of the 2d space, and that (`) being thus oriented can be
defined uniquely by:

` = h (5)

where h = h/‖h‖. With this new notation and introducing h = ‖h‖, the
Euclidean Plücker coordinates of a line (L) can be rewritten as:

L = (u, hh) ; uTh = 0 ; uTu = 1

2.1.2 Binormalized Plücker coordinates

Line parameterization From the previous section, we are now ready to
define the binormalized Plücker coordinates, as a way to parameterize 3d
lines, and to give some properties of these coordinates.

Definition 1 The binormalized Plücker coordinates of the pencil of all the
3d lines oriented by the unit vector u and lying in the plane of unit normal
vector h are the couple (u,h) where

uTh = 0 (6)

uTu = hTh = 1 (7)

By extension, we will call binormalized Plücker coordinates of a 3d line
the binormalized Plücker coordinates of the pencil it defines. With this
definition, we can trivially state the following proposition:

Proposition 1 (3d line representation) A 3d line (L) is uniquely de-
fined by its binormalized Plücker coordinates (u,h) and its depth h:

L =




h
u
h


 (8)

Notice that, since we consider (L) lying in a pencil of parallel lines, h is
not only a distance but also becomes a depth.
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Figure 2: The binormalized Plücker coordinates have a sequential interpre-
tation: from image measurements to the estimation of 3d components.

Geometrical interpretation Our representation yields a sequential in-
terpretation suited to the case of vision (Figure 2): (L) is the line in the
interpretation plane of (`) (defined by its normal vector h) with orientation
u and lying at depth h. This interpretation corresponds to the usual sequence
followed in image analysis to determine a 3d line from one or several images:
extraction of (`) from the image, then computation of the orientation of (L),
and finally, computation of the 3d position of (L).

Before going further let us notice that from the definition of the binor-
malized Plücker coordinates, we can make the following two remarks:

Remark 4 The triple (u,h,u × h) forms an orthonormal basis of the 3d
space.

Remark 5 Let H be the closest point to the origin on a line L = (hT ,uT , h).
Then, H = hu× h.

Finally, representing lines with binormalized Plücker coordinates and
depth allows to generate some well-known geometrical objects from lines,
by fixing one or several components to a given value. For instance, the lines
with a given depth h generates a sphere of radius h. Figure 3 gathers the
other cases.
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Figure 3: Geometrical objects generated by lines with fixed components of
their binormalized Plücker coordinates
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2.1.3 Image alignment of a 3d line

Among the previous cases, we are interested in those where the image projec-
tion h is given. Indeed, visual servoing consists in defining the goal position
of a moving system by an image, in our case, by the projection of a set of
lines into the image. On the opposite to the case where visual servoing is
based on points, here we do not have a simple answer to the question: “What
are the configurations in 3d space that give the same image ?” As seen in
Figure 3, there are four cases:

1. only h is given;

2. h and h are given;

3. h, u and h are given;

4. h and u are given.

The first case corresponds to the requirement used by Chaumette et
al[Cha90, ECR92, KMM+96, KRD+98]. The second and third ones are not
very interesting since they require the estimation of the depth, always hard
to accurately achieve.

In contrast, the fourth case is highly interesting. The 3d line is con-
strained by its image projection and its alignment on a given direction.
Hence, we call this the image alignment of a 3d line. It corresponds to
fixing the binormalized Plücker coordinates of the 3d line to a given value.
As stated before, the only remaining degree of freedom is depth. Hence, this
brings us back to the case of points, where the image of a point defines a
1-dimensional manifold in the 3d space.

In addition to this elegant similarity with the case of points, the image
alignment matches the property of partial decoupling given below, which
allows the definition of a control law with global convergence proof (see sec-
tion 3).

Nevertheless, in opposition to the case of points, the image alignment of a
3d line is not given by the only image measurements but requires to estimate
somehow the orientation u of the line.

2.1.4 Motion of a line vs. motion of the camera

Here, we relate the instantaneous camera motion to the 3d line motion (ex-
pressed in our formalism) and recall the apparent motion in the image of this
line.

The instantaneous motion of a camera is defined by its velocity screw τ =
(V,Ω), where Ω is the instantaneous angular velocity and V the instantaneous
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linear velocity of a given point. They are usually expressed in the camera
frame.

Let L = (hT ,uT , h)T be a 3d line. Then its motion is the vector (ḣT , u̇T , ḣ)T .
Rives et al [RE87] recall the derivative (u̇, ḣ) of the normalized Plücker co-
ordinates (u,h) of a 3d line:

u̇ = Ω× u (9)

ḣ = Ω× h + V × u (10)

The null space of this mapping is given by

Ωns = λu (11)

Vns = µu + λh (12)

where µ and λ are real numbers.
From the definition of h, it is now easy to show that:

ḣ = V T (u× h) (13)

As for ḣ, which Navab [Nav93] calls the line motion field equation since it can
be interpreted as the relation between the camera motion and the apparent
motion of a 3d line in the image, it can be expressed either by:

ḣ =
1

h
(I3 − hhT )(Ω× h + V × u) (14)

or by the simpler form:

ḣ = Ω× h− V Th

h
(u× h) (15)

Notice that equations (9) and (15) exhibit a partial decoupling between
rotation and translation.

2.2 Discussion

The parameterization we propose, based on binormalized Plücker coordi-
nates, has some advantages, from the control point of view, over the param-
eterizations found in the literature:

• Our representation is continuous and covers the whole space, except
the case of lines going through the optical center.

• It is coherent in the 3d space and the image.

• It is unique provided that some constraints, easy to satisfy, hold.

• It exhibits a partial decoupling between rotation and translation.

Details of the following discussion can be found in [AEH01].
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2.2.1 In the 3D space

Apart from the Plücker coordinates, one usually finds three other represen-
tations of a 3d line.

A line is defined by a point and a direction – This representation is
not unique and has no relation with the image. Hence, Hager[Hag97] repre-
sents lines with a point and a direction, but comes to the Plücker coordinates
as soon as control is involved.

A line is the intersection of two planes – The main drawback of
this representation is that it is implicit. Used in [Cha90, ECR92, KMM+96,
KRD+98] together with the (ρ, θ) representation of an image line (see below),
it yields moreover complex motion equations where rotation and translation
are highly coupled.

The (a, b, p, q) representation [Fau93, Nav93, Plü65] – This represen-
tation represents the lines that are neither parallel to the optical axis, nor
parallel to the image plane. One thus obtains either an incomplete represen-
tation or a non-unique and/or discontinuous representation which may have
destabilizing effects on the control.

2.2.2 In the image

The usual representations of an image line, ours excepted, are the following.
The unnormalized triple (a, b, c) of its equation coefficients – This

representation is not unique and, hence, never used for control.
The normalized triple (cos θ, sin θ, ρ) – This parameterization, used

by Hager[Hag97], corresponds to the normalization of the line equation co-
efficients (a, b, c) on a 2-dimensional subspace. Hence, d = (cos θ, sin θ, ρ) is
not a unit vector in the 3d space. This results in an heterogeneity between
image and space parameterizations. Moreover, the consequent motion line
equation ḋ = (I3 − ddTN)(Ω× d + V × u) does not seem to have nice geo-
metric interpretation nor to allow for any decoupling between rotation and
translation.

The (ρ, θ) representation – Used in [Cha90, ECR92, KMM+96, KRD+98],
this representation has the advantage of being minimal. However, it is pe-
riodic and the choice of the definition interval of θ is not generic since it
depends on the initial (θ0) and desired (θ∗) values of θ. Moreover, this ad
hoc choice does not prevent from possible discontinuities in the control law.
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3 Control

In a preliminary way, let us emphasize that, provided that the required mea-
surements are available in real-time, the following developments are not spe-
cific of visual servoing. Nevertheless, they are particularly suitable to the
use of a camera, and we will focus on this particular case in the following at
every time it will be needed

3.1 Introduction

Let us consider a fixed reference frame Fr and a moving object with associated
frame F0. We define a goal frame F ∗ in Fr and the control problem we
consider is to drive F0 from its initial value F0(0) to F ∗ in a stable way.
With our representation, and assuming we have enough independent lines to
span all the displacement space, our goal will therefore be defined as the set
{u∗i ,h∗i , h∗i ; i = 1 . . . n}.

Note: In the case of vision, F0 will be the camera frame. The represen-
tation we use allows to extract directly 2 parameters from the image, i.e. h,
the normal to the interpretation plane. The remaining 2 parameters may be
considered as 3D ones: the depth h and the last component of u. We will see
later how to take them into account.

We will firstly demonstrate the principle of the control scheme we propose
by using a single line. We will then consider the more general case of the
n lines as just defined, and finally focus on the particular situation of the
orthogonal trihedron. Before, let us set the assumptions which will be used
in all the following.

• According to non-linear control theory[SLBE91], the errors to be reg-
ulated are supposed to be small enough to ensure the validity of the
approximation of the space by its tangent space and the inversion of
the latter for control purposes.

• The set of goal lines L∗i corresponds to a fixed achievable configuration
of the system (i.e. the displacement between the current position and
the goal one is a rigid motion).

• The velocity screw (Ω, V ) of the moving frame is the control variable
(i.e. dynamical effects are neglected).

• All 3D trajectories of the moving frame which are needed are feasi-
ble (no obstacles, no joint limits neither geometrical singularities are
reached by the moving device).
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• All the needed variables but the depth are exactly known or mea-
sured. In the case of vision, this means that, we assume that the ui’s
are estimated, either analytically in some simple cases3 or by using
generic pose estimation[Che91, CH99, DRLR89, LHF90] or Euclidean
reconstruction algorithms[Fau93, VLF95, Har94, QK97, LH86, SA90].
Notice that these generic methods give more than the minimal informa-
tion required by our method and that there may exist simplifications
to them that would give us exactly what we need.

More, when using a camera, two further assumptions are required:

• During all the motion, no line (Li) goes through the optical center of
the camera.

• The camera is fully calibrated and the hand-eye calibration was per-
formed [AHE01].

3.2 The Example of a Single Line

Let us consider a single target line specified by the set {u∗,h∗, h∗} and forget
for the moment the depth h. The state equations of this subsystem are
given by eqs (9) and (15) only. We may remark that the orientation part
is independent from the translation part, which allows to consider that this
system is in cascaded form. Since the manifold of lines does not exhibit
natural metric we have to define convenient errors. By exploiting the above
mentioned partial decoupling, we set

eu = u× u∗ (16)

and
eh = u× (h− h∗) (17)

We can therefore set the following cascaded control:
{

Ω = µueu

V = −µheh|Ω=0;u=u∗
(18)

where µu > 0, µh > 0.

3For instance, when observing two parallel lines, the common direction u is immedi-
ately given by their vanishing point. Alternately, when a line lies in a plane with a known
orientation (line on the ground, vertical line), its direction is simply the direction orthog-
onal to both the known plane orientation and the interpretation plane associated to the
line. An application of the use of the binormalized Plücker coordinates to stabilize an
unmanned aerial vehicle with respect to a collection of parallel lines can thus be found in
[MH01].
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Remark 6 eu is the classical error on the sphere; it allows to move on a
geodesics.

Remark 7 eh is a better choice than simply (h− h∗) since it can be shown
that it ensures that h× h∗ is minimum even if Ω vanishes without the right
equilibrium reached (ueq 6= u∗) (see [And99]). Moreover, since h is a unit
vector, it is constrained to move on a sphere. Thus, eh allows to move on
this sphere using translational degrees of freedom only (figure 4).

Remark 8 The evolution equation of (15) under the control (18) is:

ḣ =
µh
h

eh
Th(u× h) (19)

This shows that the unknown depth4, h, acts only as a variable unknown
positive gain, which has no consequence on the stability in continuous time.

Remark 9 Since we don’t consider h, the null space of the system is 3-
dimensional. Instead of (11), (12), it is given by

Ωns = λu (20)

Vns = µu + λhh + ν(u× h) (21)

where µ, λ and ν are real numbers. Any motion within this subspace will not
affect the stabilization.

Considering the latter remark, we notice that the translation control
in (18) may have components in the two dimensions of the null space (µ,ν)
that are independent from the rotation control. These motions are useless
disturbances unless they are used for complementary tasks (see section 4.1).
It is therefore pertinent to project the linear velocity on the only relevant
component, i.e. h when Ω = 0. Hence, we obtain the final cascaded control
for one line: {

Ω = µueu

V = −µhεhh|Ω=0;u=u∗
(22)

where εh = (u× h)Th∗, µu > 0, µh > 0. We have the following result:

Proposition 2 The control (22) is such that:
1- if u(t = 0) 6= −u∗, then u(t) asymptotically converges to u∗;
2- if h(t = 0|Ω=0;u=u∗) 6= −h∗, then h(t) asymptotically converges to h∗.

The proof is easy (see [And99]) using 1
2
||u − u∗||2 and 1

2
||h − h∗||2 as

Lyapunov functions respectively.

4Recall that h can be considered as a depth § 2.1.2.

14



PSfrag replacements

h

h

h∗

h∗

ḣ
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In practice, the stabilization in orientation can be considered as “suffi-
ciently” achieved after a finite time TΩ. The translation control then writes as

V = −µhs(t− TΩ)εhh (23)

where s(t) is the Heaviside step function, and the convergence condition
becomes h(t = TΩ) 6= −h∗.

Remark 10 In practice, one may challenge this control law by asking for
regulating an initial rotation error out of the small error assumption. This
would then cause trouble to the cascaded control scheme since the line may
leave the field of view5. To cope with this, the two control vectors may not
be fully cascaded: the control in orientation should be activated all the time,
because of unmodelled coupling effects between translational and rotational
motions; the control in translation can be progressively activated using a tran-
sition function smoother than the step one, in order to avoid unexpected large
motions. This is the reason why we wrote u instead of u∗ in the proposition..

Remark 11 The forbidden initial conditions in the proposition are unsta-
ble equilibriums. However, since they correspond to the case where the line
is in the correct position but reverse orientation, (u,h) = (−u∗,−h∗) (see
Remark 1), they are easy to detect and avoid.

5Notice that panoramic cameras do not suffer from this and can be used in conjunction
with the sequential control.
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3.3 General Case

We now consider the case of a set of n > 1 distinct lines, rigidly linked, and
for the moment we do not assume further properties on their configuration.
Let us recall that the equations of their motion are, for i = 1 . . . n:

u̇i = Ω× ui (24)

ḣi = Ω× hi −
V Thi
hi

(ui × hi) (25)

Again, we left the hi’s, the dynamics of which are given by eq (15), free
to evolve. Like previously, we define an ideal cascaded control, allowing
us therefore to split it in two parts: the rotational, then the translational,
provided that the former is stabilized.

3.3.1 Control in Rotation

It is a straightforward generalization of the single line case which results in

Theorem 1 (proof in appendix A.1)
If ui(t = 0) 6= −u∗i , ∀i = 1 . . . n,

Then, the control

Ω = µu

n∑

i=1

ui × u∗i , µu > 0 (26)

asymptotically stabilizes the equilibrium of the system (24), i = 1 . . . n:

ui = u∗i , i = 1 . . . n (27)

3.3.2 Control in Translation

The translational control presented for a single line can be generalized in a
similar way. The following result holds:

Theorem 2 (proof in appendix A.2)
If for all i = 1..n, the vectors ui are constant (but not necessarily equal to
the vectors u∗i ),

Then:

16



1. the control

V = −µh
n∑

i=1

Biεihi |Ω=0;ui=u∗i ∀i, µh > 0 (28)

Bi being (3× 3) weighting matrices stabilizes equilibrium points under
the condition: (

n∑

i=1

Biεihi

)T ( n∑

i=1

εihi
hi

)
> 0 (29)

2. the choice Bi = 1
hi

I3,∀i = 1..n, which corresponds to the control:

V = −µh
n∑

i=1

1

hi
εihi |Ω=0;ui=u∗i ∀i, µh > 0, (30)

stabilizes the stationnary points:

n∑

i=1

εihi
hi

= 0 (31)

whatever the line configuration.

However, the analytical expression of the stationnary points cannot have
an easy geometrical interpretation in any line configuration. Additionnal
knowledge on the system geometry is therefore required. We will see in the
following that the choice of a particular object, the orthogonal trihedron, will
allow us to obtain results stronger than in the general case.

3.4 Case of the Orthogonal Trihedron

The trihedral configuration of lines is of particular interest since it is very
often present in structured environments like in buildings or in manufac-
tured systems. However, from the image point of view, it has been shown
(see [DRLR89]) that any pencil of lines (i.e. with a common intersection) is
degenerated for pose computation. Indeed, for example, it is intuitive that
observing an ideal infinite trihedron with a single camera doesn’t allow to
recover its depth: imagine that the projected trihedron is centered in the
image; then any translation along the optical axis leaves the projection un-
changed. In the next section, we will propose a practical solution to this
problem. For the moment, let us study the control without taking the depth
into account. The final equilibrium will therefore have a single degree of
freedom left.
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With respect to the general case, the following constraints have to be
considered for the orthogonal trihedron:

• n = 3

• uTi uj = 0 ∀ i 6= j (orthogonality)

• hTi uj + hTj ui = 0 ∀ i, j (intersection)

Taking these constraints into account allows to set the following results

• Rotation: theorem 1 is still true.

• Translation: It can be shown (cf [And99]) that the stationnary points
of the control (30) are the configurations where a plane of the trihe-
dron intersects the origin of the moving frame (here the optical center
of the camera). As a consequence, the control is asymptotically sta-
ble provided that the trajectory of the moving frame stays in a single
octant.

However, it can be shown that the control (30) is inversely proportionnal
to the depth of the trihedron center. Since this depth can not be observed,
we can set it to an arbitrary value (for instance, the desired depth after con-
vergence). But, in the particular case of the orthogonal trihedron a simpler
control law can be used:

Theorem 3 In the case of the orthogonal trihedron and if hi(t = 0) 6= −h∗i ,
then the following control

V = −µh
n∑

i=1

εihi |Ω=0;ui=u∗i ∀i, µh > 0 (32)

is independent from the depth and asymptotically stabilizes the equilibrium of
the system (25)
The proof of this theorem is given in Appendix A.3.

Let us mention that, like in the case of a single line, the practical imple-
mentation of these control schemes can be achieved using some overlapping
of the rotational and translational parts. Simulations of section 4 will provide
some results concerning this matter.
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4 Practical Achievements

Let us now consider the practical application presented in the introduction:
positioning a robot with respect to an orthogonal trihedron. With respect to
the theoretical control schemes previously presented, the following problems
had to be solved in order to achieve the implementation:

1. how to cope with the missing depth?

2. how to extract and track the lines in the image in a fast and robust
way?

3. how to compute the orientations ui?

We briefly present in the following the solutions we choose for all these
issues, before giving some simulation and experimental results.

4.1 Adding Depth Control

Dhome et al.[DRLR89] showed that a line junction is a degenerated case of
pose estimation in the sense that it is impossible to estimate the distance
from the camera center point to the junction center (i.e. the intersection of
the 3d lines) from a single image. Thus, one can only estimate a partial pose
of the camera: the 3d orientation of the lines and the line of sight passing
through the junction center.

From the control point of view, this degeneracy means that the distance
from the robot to the ship part cannot be measured neither controlled. Con-
sequently, we need to add some other sensor to the camera in order to observe
the depth of the junction center.

The original solution we chose was to use a commercial laser pointer
(cheap and simple) that we rigidly linked to the camera (figure 5). In this
configuration the image of the laser spot moves on a given straight line what-
ever the observed scene and the motion of the set {camera-laser}. This can
be easily understood if we consider the laser beam as the optical axis of a
virtual camera. The line in the image is therefore an epipolar line of this
particular stereo rig.

Remark 12 We will not consider that the laser-camera system is calibrated.
We will only need to know the laser epipolar line, which is straightforward
to obtain by recording the image spot position while moving, whatever the
target.

Let us now address the problem of depth control. In fact, we have, up to
now, one dimension free. We therefore need to add to the control scheme one
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Figure 5: A laser pointer rigidly linked to the camera generates an epipolar
line in the image.

variable only, which should be an image of the depth. Since the image laser
spot moves on a line, it looks natural to choose the signed distance of the
spot from a given origin of the line, denoted as s, as the variable to control.
When the target is a plane, s is a monotonic function of the true depth. In
order to design the control, we now need to know the variation of s, i.e its
interaction screw. We have the following results:

Proposition 3 If the laser spot moves in a single 3D plane, then the vari-
ation of s is:

ṡ = −hL cos θz
z2
L

(
tanαx tanαy 1 − zL

cos θz
tanαy

zL
cos θz

tanαx 0

)
ΘL τ

(33)
where τ is the velocity screw (V,Ω), ΘL is the adjoint operator involving the
rigid transformation RL, tL between the camera frame and the laser frame,
zL is the depth of the laser spot along its view line, αx and αy are two angles
defining the normal to the 3D plane in the laser frame, hL is the distance
between the camera center of projection to the intersection between the laser
beam and the image plane, and θz is the angle between the laser beam and
the optical axis.

Notice that this equation can be derived from eq. (7.1.48) in [SLBE91,
pp 273–274], obtained while defining the interaction screw of general thin-
field range-sensors. An alternative proof of those results is given in [And99],
with explicit references to the present case.

Proposition 4 In addition, if the rotational velocity is zero, and if the trans-
lational velocity is such that Vl = vul where ul is a constant unit vector, then

ṡ =
v

z2
(−hLkz(tanαx tanαy 1 )Rlul) (34)
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where the term in brackets is a constant, noted k.
From this result, it is now straightforward to design the depth control.

In order to take benefit of the last proposition, the depth control will be also
cascaded with the rotational one. Let us therefore assume that the desired
orientation has been reached. Then, Ω = 0, even though it is highly advisable
to keep this control activated in order to ensure that the orientation remains
constant all the time despite disturbances. Let us choose as ul the direction
of the view line going through the trihedron center. An image of the depth
error is es = s − s∗ where s∗ is the desired image spot position on the laser
epipolar line, and with, from (34), ės = kv/z2. An ideal exponential behavior
would be reached by choosing v as

v = −λz
2

k
(s− s∗), λ > 0 (35)

Since z is unknown, but is always nonzero, it is possible to fix its value
to an arbitrary one. Stability will not be affected, but the convergence will
no more be exponential. The depth control part is finally:

Vl = −µl
k

(s− s∗)ul, µl > 0 (36)

It remains only now to integrate this control in the translational one.
Recall that we had the following control:

Vh = −µh
3∑

i=1

((ui × hi)
Th∗i )hi, µh > 0 (37)

The final translational velocity control is simply V = Vh+Vl. It can indeed be
seen that the control Vh is a combination of the hi’s, which are all orthogonal
to ul owing to the trihedron geometry (intersection). Therefore Vl is in the
null space of Vh and can run simultaneously with it.

4.2 Line Extraction and Tracking

To extract the lines and track them in the image along the motion, we used an
adapted version of the 2d-3d model-based approach proposed in [MBCM99]
and which is summarized by their authors as: “in a first step, the object
image motion is represented by a 2D affine motion model, and is estimated,
using a robust statistical method, from the computation of the normal dis-
placements evaluated along the projected model contours. [...] The 2D affine
motion model does not always match the real displacement of the object. A
second step that consists in fitting the projection of the object model on the
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intensity gradients in the image is necessary. This is achieved using an it-
erative minimization of a non-linear energy function with respect to 3D pose
parameters.”

Notice that our control law does not require to compute a full pose and
was developed independently from this tracker. Hence, we intentionally did
not take advantage of the pose given by the tracker. Any line tracker (even
only image-based) can thus be used in our practical application. For instance,
we also used successfully, in a preliminar extension of our control scheme to
a more complex line configuration, the tracker developped by Martin and
Horaud[MH02].

A question which arises concerns the combinatorics of the initialization
process. Even though the initialization is made by hand, by clicking on the
three lines in the right order, it is easy to see how it can be automated. In
our application, only physical half-lines are visible in the image, thus giving
a natural orientation to the ui’s from the vertex outwards. This yields 6
combinations. Then, knowing whether the trihedron is convex or concave,
only three of these cases are such that the three lines form a direct trihedron.
The correspondence is thus established by choosing the correct first line.
Some a priori knowledge (recall the small error assumption) or low-level
image processing such as correlation should do the latter.

4.3 Computation of the Line Orientations

To compute the line orientations, we based ourselves on the analytic solu-
tion to the perspective 4 point problem proposed in [HCLL89]. Indeed, the
orthogonal trihedron is a particular case of the 4 point problem where 3 of
the points lie at the infinite.

Thus, using ul the unit vector of the view line going through the trihedron
center, we define vi = ul × hi. Recall that the hi’s can be expressed as:

hi =
ul × ui
‖ul × ui‖

, i = 1..3 (38)

Consequently, if we give the same orientation to the 3d lines and to their
projections, we obtain the following system:

ui = cos θiul + sin θivi, i = 1..3, sin θi > 0

where the unknowns are the angles θi, i = 1..3. This system is similar to the
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Figure 6: Sequential activation of the control in rotation and then in trans-
lation: Rotation (left) and translation (right) control.

one obtained in [HCLL89] and its solution is of the form:

cos θi = εi

√
vTi−1vi+1

vTi−1viv
T
i vi+1 + vTi−1vi+1

sin θi =

√
vTi−1viv

T
i vi+1

vTi−1viv
T
i vi+1 + vTi−1vi+1

where εi = ±1 depending on whether the visible half of the 3d line points
inwards or outwards. In the case we deal with, where the trihedron faces
are opaque, this sign is identical for all the 3 lines (positive for a concave
trihedron, negative for a convex one). Notice finally that to simplify the
notation, the operations i+1 and i−1 represent the addition and subtraction
modulo 3.

5 Simulation Results

We present here some simulation results to show the behavior of the con-
trol law we proposed with both the use of lines and the depth control.
We compare the sequential activation of the control in rotation and then
in translation (Figures 6, 7 and 8) to their simultaneous activation (Fig-
ure 9, 10 and 11). In both cases, depth control is always activated after the
desired partial pose is obtained.

Let us first consider the case of the sequential activation. In a first time,
only rotation control is activated (Figure 6). It results in an exponential
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Figure 7: Sequential activation of the control in rotation and then in transla-
tion: Errors in orientation (solid line), on the image line projections (dotted
line) and on the laser spot position (dashed line).
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Figure 8: Sequential activation of the control in rotation and then in trans-
lation: Trajectory of the trihedron in the image (left) and in the 3d space
(right).
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Figure 9: Simultaneous activation of the control in rotation and then in
translation: Rotation (left) and translation (right) control.
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Figure 10: Simultaneous activation of the control in rotation and then in
translation: Errors in orientation (solid line), on the image line projections
(dotted line) and on the laser spot position (dashed line).
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Figure 11: Simultaneous activation of the control in rotation and then in
translation: Trajectory of the trihedron in the image (left) and in the 3d
space (right).

decay of the error in orientation together with an increase of the errors on
the image line projections and on the laser spot positions (Figure 7). Then,
control in translation is activated, yielding the convergence of the image line
projection errors towards 0, without any influence on the orientation. This
can be seen in the image (Figure 8): the trihedron drifts to the left while ori-
entation control is activated and then is brought back to its desired position
(large trihedron) by the control in translation. Finally, depth control is acti-
vated, bringing the laser spot to its desired position in the image (Figure 7),
without the partial pose to be modified. One can verify (Figure 8) that this
depth control yields a straight line in the 3d space.

Simultaneous activation of the control in rotation and translation can be
easily seen in Figure 9. The partial decoupling of the control law makes that
the convergence in orientation is unchanged. On the opposite, the simulta-
neous activation suppresses the drifting of the trihedron (Figure 10). This
results in a smaller amplitude of the image motion but in a larger one in
the 3d space (Figure 11). Finally, one can see that the desired partial pose
is obtained sooner than in the sequential case and that the depth control is
thus activated sooner (Figure 10).

6 Experimental Results

In this section, we focus on the experimental validation of the control law
bases on lines. Thus, we disabled the depth control using the laser beam and
we simplified the visual tracking by using a trihedron with sharp contrast
rather than the ship part.
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In all the experiments we led, the task was to bring back the camera to
a prerecorded position.

Figure 12: Pure translation: Desired (left) and initial (right) positions of the
robot.

6.1 Pure translation

In the first experiment, we took the camera some ten centimeters away from
its goal position (Figure 12). Notice first that during the realization of the
task, a slight tracking error occurred (Figure 13, left), which yields pertur-
bations on the following curves. Notice also that the computation of the 3d
line orientations is stable since the tracking error does not affect it much
(Figure 13, right). Moreover, these orientations are constant, yielding a zero
control in orientation (Figure 14, right). Hence, the controlled motion is
a pure translation as expected. This exhibits the partial decoupling of our
control law between translation and rotation. The convergence in trans-
lation is here exponential (Figure 14, left). As expected the error in the
image (

∑3
i=1 ‖hi−h∗i ‖) decreases and the orientation error is zero up to noise

(Figure 15, left). Finally, notice the almost straight image trajectory of the
trihedron center (Figure 15, right).

6.2 Pure rotation

In the same experimental conditions, we rotated the camera 100deg along its
optical axis away from its desired position. One can notice that the orienta-
tion control operates, as expected, solely along the optical axis (Figure 16,
left) and yields an asymptotically stable translation control (Figure 16, right),
which keeps the trihedron visible (Figure 17, right).
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Figure 13: Pure translation: coefficients of the vectors hi (left) and ui (right)
along the control.
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Figure 14: Pure translation: Rotation (left) and translation (right) control.
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28



Omega 

0 52 104 155 207 259 311 363 414 466 518

-0.0210

-0.0186

-0.0162

-0.0138

-0.0114

-0.0090

-0.0066

-0.0042

-0.0018

0.0006

0.0030

rot/x
rot/y
rot/z

P
S

frag
rep

lacem
en

ts

V 

0 52 104 155 207 259 311 363 414 466 518

-2.0e-03

-1.7e-03

-1.4e-03

-1.1e-03

-8.0e-04

-5.0e-04

-2.0e-04

1.0e-04

4.0e-04

7.0e-04

1.0e-03

Vx
Vy
Vz

P
S

frag
rep

lacem
en

ts

Figure 16: Pure rotation: Rotation (left) and translation (right) control.
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Figure 17: Pure rotation: Errors (left) and image trajectory of the trihedron
center (right).
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Figure 18: Complex motion. Top left: robot desired position. Top right:
robot initial position. Bottom: initial image (superimposed: desired image
of the trihedron).
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Figure 19: Complex motion: Rotation (left) and translation (right) control.
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Figure 20: Complex motion: Errors (left) and image trajectory of the trihe-
dron center (right).

It is noticeable that the rotation control does not immediately converge
exponentially but starts with a slight acceleration (Figure 16, left). Never-
theless, both orientation error and error in the image decrease (Figure 17,
left). Indeed, the residual angle between the initial and desired orientations
is larger than π/2. Hence, the orientation control, which is of the form u×u∗

and thus proportional to the sine of the residual angle, will increase in norm
until the residual angle reaches π/2 and then will decrease exponentially.

6.3 Complex motion

We end up this experimental section with a complex motion, in the sense that
it is composed of a translation of some 50cm and a rotation of about 80deg
(Figure 18). Since the initial camera position is close to one the trihedron
edges, it is challenging both for the tracking and the control algorithms.
Indeed, the tracking algorithm must avoid confusing the two image lines
that are close to each other. As for the control point of view, the difficulty
comes from the fact that this initial position is close to a singularity (§ 3.4).

The orientation control is now again strictly decreasing (Figure 19, left)
since the residual angle is lower than π/2. On the opposite, the translation
control is disturbed by the orientation control (Figure 19, right) but still con-
verges. Both orientation errors and errors in the image are strictly decreasing
(Figure 20, left). As for the image trajectory of the trihedron center, it is
not as nice as in the previous cases (Figure 20, right) and depends on the
relative choice of the control gains, µu and µh. Indeed, this trajectory was
obtained with µu = 0.008 and µh = 0.01 while the choice µu = µh = 0.01 did
not keep the trihedron visible.
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7 Conclusion and Perspectives

In this paper, we achieved a theoretical and geometrical study of several line
representations in order to determine the one which is best suited for visual
servoing. This led us to define a new representation, the so-called binormal-
ized Plücker coordinates, which has two advantages from the control point
of view. The first one is that it allows us to define the concept of image line
alignment, which gathers both 2D and 3D information. The second one is
that we are able to define a control law which realizes such an image line
alignment with some very interesting properties. First, the proposed law is
an analytic inversion of the motion equations and does not need any numer-
ical inversion of a Jacobian. Second, it shows a partial decoupling between
translation and rotation. Third, global asymptotic stability conditions could
be found, with a geometrical interpretation in the particular case of the or-
thogonal trihedron. This control law was validated both with simulations
and experimentally.

However, there still remain several issues to be developed. In a first time,
stability conditions should be extended to the case where orientation and
translation controls are activated simultaneously. This may be eased by re-
cent results in the field of cascaded systems[PL98]. In parallel, one could
think of studying the robustness of the proposed control law to measurement
and/or calibration errors. Another point to be addressed consists of the geo-
metrical determination of the stationary points in the general case, but this
will certainly be tightly coupled to the 3d line configuration. One could also
investigate the pose estimation algorithms or the Euclidean reconstruction
algorithms based on lines to derive from them a simplified method which
could only estimate the line directions without performing an unneeded full
pose computation. Another research direction is visual servoing from projec-
tive lines, following the recent work by Ruf and Horaud[RH99] on projective
visual servoing. As for the practical side, we still need to reduce drastically
the cycle time of the control loop.
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A Proofs

A.1 Theorem 1

Firstly, let us state the following lemma:

Lemma 1 For all configurations of rigidly linked lines:

n∑

i=1

ui × u∗i = 0⇒ ui = ±u∗i , i = 1..n (39)

Proof : Recall the Rodrigues formula, which gives the image v′ of a vector
v by a rotation of axis n and angle θ:

v′ = v + sin θ(n× v) + (1− cos θ)n× (n× v) (40)

Since we consider a set of rigidly linked lines, the ui’s differ from the u∗i ’s
by a unique rotation. Hence, we can apply (40) for all i = 1..n:

ui = u∗i + sin θ(n× u∗i ) + (1− cos θ)n× (n× u∗i ), i = 1..n (41)

Building for all i = 1..n, the crossproduct ui × u∗i and expressing u∗i on
the orthogonal basis (n,n× u∗i ,n× (n× u∗i )) yields:

ui × u∗i = sin θ
[
(nTu∗i )

2 − 1
]
n

+
[
(1− cos θ)nTu∗i + αin

Tu∗i

]
(n× u∗i )︸ ︷︷ ︸
⊥n

+
[
βin

Tu∗i

]
n× (n× u∗i )︸ ︷︷ ︸

⊥n

Consequently, if the sum of these crossproducts is zero, then

n∑

i=1

sin θ
[
(nTu∗i )

2 − 1
]

= 0 (42)

From this equation, we deduce immediately that either sin θ = 0 or u∗i =
±n,∀i = 1..n. Discarding the second case which can be shown to be a
degenerate case of the first one, we obtain the final result as an interpretation
of the first case. 2

Now, let us prove Theorem 1.
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Consider the Lyapunov function L = 1
2

∑n
i=1 ‖ui−u∗i ‖2. Its derivative is:

L̇u = −
n∑

j=1

u̇Tj u∗j (43)

From the dynamical equation (24) and the control definition (26), we can
write (43) as:

L̇u = −µu
n∑

j=1

((
n∑

i=1

ui × u∗i

)
× uj

)T

u∗j (44)

Using the following property of the mixt product:

(u× v)Tw = (v ×w)Tu (45)

we obtain:

L̇u = −µu
(

n∑

j=1

uj × u∗j

)T ( n∑

i=1

ui × u∗i

)
(46)

Consequently, L̇ is strictly negative unless
∑n

i=1 ui × u∗i = 0. From
Lemma 1, this means that L̇ is strictly negative unless ui 6= ±u∗i . We
find here again the same unstable initial stationnary point as in the sin-
gle line case. Thus, the control (26) is asymptotically stable provided that
ui(t = 0) 6= −u∗i , ∀i = 1..n. 2

A.2 Theorem 2

Consider the Lyapunov function defined by:

Lh =
1

2

n∑

j=1

‖hj − h∗j‖2 (47)

the derivative of which is:

L̇h = −
n∑

j=1

ḣ
T

j h∗j (48)

From (25), where Ω = 0, we have:

L̇h = −
n∑

j=1

(
−V

Thj
hj

(uj × hj)

)T
h∗j (49)
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which rewrites:

L̇h =

n∑

j=1

V Thj
hj

εj (50)

Inserting the control (28) yields:

L̇h = −µh
n∑

j=1

(
∑n

i=1 Biεihi)
T

hj
hj

εj (51)

This expression also rewrites under the following form which gives the ana-
lytic condition for stationnary points to exist (i.e. when L̇h = 0):

L̇h = −µh
(

n∑

i=1

Biεihi

)T ( n∑

i=1

εihi
hi

)
(52)

2

A.3 Theorem 3

Consider the same Lyapunov function L as in the previous proof. Then
its derivative is given by (50) independently from the translation control
(provided that rotation control has converged). Inserting the control (32)
in (50) gives

L̇h = −µh
3∑

j=1

(∑3
i=1 εihi

)T
hj

hj
εj (53)

Noting Pj = I3 − hjh
T
j , the projection operator orthogonal to hj , and ej =

hj − h∗j , we remark that:

εjhj = uj × (Pjej), ∀j (54)

Then, using this equation, we can rewrite the expression of L̇ as

L̇h = −µh
3∑

j=1

1

hj

(
3∑

i=1

ui × (Piei)

)T (
uj × (Pjej)

)
(55)

= −µh
3∑

j=1

1

hj

3∑

i=1

(ui × (Piei))
T (uj × (Pjej)

)
(56)

= −µh
3∑

j=1

1

hj

3∑

i=1

[
(ui × (Piei))× uj

]T
(Pjej) (57)

= −µh
3∑

j=1

1

hj

3∑

i=1

[
(uTi uj)(Piei)− uTj (Piei)ui

]T
(Pjej) (58)
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which finally gives:

L̇h = −µh
3∑

j=1

1

hj

3∑

i=1

[
(uTi uj − uiu

T
j )(Piei)

]T
(Pjej) (59)

Define now

E =




P1e1

P2e2

P3e3


 , U =




u1

u2

u3




and the operator:

PU =
1

2
(I9 − U ⊗ UT ) =




I3 − u1u
T
1 −u2u

T
1 −u3u

T
1

−u1u
T
2 I3 − u2u

T
2 −u3u

T
2

−u1u
T
3 −u2u

T
3 I3 − u3u

T
3




One can easily prove that PU is an orthogonal projection onto the kernel of
UT , hence on the hyperplane Π orthogonal to U .

After convergence of the rotational control, we have

uj = u∗j , j = 1..3

from which we deduce that

uTj (Pjej) = 0, j = 1..3 (60)

Using this result and the trihedron orthogonality, we obtain

L̇ = −2µhẼ
TPUE (61)

where Ẽ is the vector obtained by concatenating the ẽj = 1
hj

Pjej for all
j = 1..3.

From (60), we find that E and U are orthogonal, hence E ∈ Π and
PUE = E. This simplifies the expression of L̇ into:

L̇ = −2µhẼ
TE = −2µh

3∑

j=1

1

hj
e′Tj e′j

where e′j = Pjej.
Consequently, this sum is negative and only vanishes when all e′j are

zero. After the convergence of the rotation control, this is only possible
when hj = ±h∗j .

2
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