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Abstract We believe that a successful monocular 3D body track-
We present a method for recovering 3D human body motion froilg System must pay attention to each of these three diffi-
monocular video sequences using robust image matching, joint limulties. We control correspondence errors with a carefully
its and non-self-intersection constraints, and a new sample-andesigned robust matching metric that combines robust opti-
refine search strategy guided by rescaled cost-function covarianceg| flow, edge energy, and motion boundari &) ( Our sys-
Monocular 3D body tracking is challenging: for reliable track-yam js the first to enforce both hard joint angle limits and
ing at least 30 joint parameters need to be estimated, subject g, o self-intersection constraints, and also includes full
highly nonlinear physical constraints; the problem is chronically |II-3D occlusion prediction. The various ambiguities and nonlin-

conditioned as about 1/3 of the d.o.f. (the depth-related ones) are it ke th t t functi i dal
almost unobservable in any given monocular image; and matchir?ﬁ?” IeS maxe the parameter-space cost ilunction muiti-modal,

an imperfect, highly flexible, self-occluding model to cluttered in{l-conditioned and highly nonlinear, so some form of non-
age features is intrinsically hard. To reduce correspondence amgdPcal search is required. Existing approaches that we are
guities we use a carefully designed robust matching-cost metric thawvare of §1.2) do not work well in this context, so we intro-
combines robust optical flow, edge energy, and motion boundarietlice a novel hybrid search scheme that combines covariance-
Even so, the ambiguity, nonlinearity and non-observability make tfszaled ‘oversized’ sampling with local optimization subject
parameter-space cost surface multi-modal, unpredictable and ifo joint and non-self-intersection constrainfgt), We fin-
conditioned, so minimizing itis difficult. We discuss the limitations g6 \with experimental results on some challenging monocu-
CONDENSATION-like samplers, and introduce a novel hybrid search ;- saquences, that illustrate the need for each of robust cost

algorithm that combines inflated-covariance-scaled sampling armodelling, joint and self-intersection constraints, and well-

ntin imization j hysical constraints. Experimen . Lo
continuous optimizatio subject to physical constraints. Experime é%ntrolled sampling plus local optimization.
on some challenging monocular sequences show that robust cost

modelling, joint and self-intersection constraints, and informed sam-

ling are all essential for reliable monocular 3D body tracking. . . . .
Ping Y % 11 High-Dimensional Search Strategies
Keywords: 3D human body tracking, particle filtering, high-

dimensional search, constrained optimization, robust matching. Locating good poses in a high-dimensional body configura-
tion space is intrinsically difficult. Three main classes of
search strategies exigtcal descentincrementally improves

1 Introduction an existing estimates.g using local Taylor models to predict
good search directions [6, 24, 19, 31, 283gular sampling

Extracting 3D human motion from natural monocular Videgvaluates the cost function at a predefined pattern of points in

sequences poses difficult modelling and computation pro(:?— slice of) parameter spaeeg a local rectangular grid [11];

lems: ) Even a minimal human model is very COmp|ex,andstochastic samplinggenerates random sampling points

with at least 30 joint parameters and many more body shagcording to some hypothesis distribution encoding "good
ones, subject to joint limits and non-self-intersection cotlaces to 10ok™ [9,26]. Densely sampling the entire param-
straints. i) Unlike the 2D and multi-camera 3D cases, in an§t€f SPace would guarantee a good solution but is infeasible
given monocular image about 1/3 of the degrees of freeddfh™ore than 2-3 dimensions. In 30 dimensions any feasi-

are nearly unobservable (mainly motions in (relative) deptR€ Sample must be extremely sparse and hence likely to miss

but also rotations of near-cylindrical limbs about their axes§'gnificant cost minima. Descent methods at least (at some

(iii) Matching a complex, imperfectly known, self-occluding?XPense) findocal minima, but can not guarantee global opti-
model to a cluttered scene is inherently hard. These difficjRa/ity- Our method tries to balance local and global effort us-

ties interact: minor body modelling or feature matching errof89 @ combination of carefully controlled sampling and local

often lead to large compensatory biases in estimated depffRlimization. Effective focusing of effort is the key to high-

which eventually cause mis-prediction and tracking failure. dimensional search. This is an active research area [9, 15, 7],
but no existing method can guarantee a global minimum.

To appear IEEE CVPR 2001 During tracking, the search method is applied time-




recursively, the starting point(s) for the current search béie camera leave the image unchanged to first order. Sim-
ing obtained from the optimized results at the previous timikarly, finite towards- and away-from-camera rotations give
step, perhaps according to some noisy dynamical model. ery similar images, so even if the segment matching cost is
the (often limited!) extent that the dynamics and the imagmonomodal in the image, it is always multimodal in param-
matching cost are realistic statistical models, Bayes-law progter space. To handle these difficulties, time integration or
agation of a probability density for the true state is possibladditional domain constraints such as joint limits and body
For linearized monomodal dynamics and observation moden-self-intersection must be incorporated.
els under Gaussian noise, this leads to (Extended) KalmarDeutscher [9] uses a sophisticated ‘annealed sampling’
Filtering. For likelihood-weighted random sampling undestrategy to speed updMNDENSATION, but for his main se-
general multimodal observation modelsh)KDENSATIONTe-  quence uses 3 cameras and a black background. Sidenbladh
sults. In both cases the various hyperparameters must[R6] uses a similar importance sampling technique with a
carefully tuned for good performance. Visual tracking usustrong learned prior walking model to track a walking per-
ally works in the ‘shotgun in the dark’ regime: observatiorson in an outdoor sequence. Our method does not yet include
likelihoods are quite sharply peaked but multimodal, so ta motion model (we optimize static poses), but it is true that
avoid mistracking, the dynamical noise has to be turned wghen they hold, prior motion models are very effective track-
until it produces a scatter of samples just big enough to covie stabilizers. It is possible, but expensive, to track using a
typically-nearby peaks. In this regime there is negligible trazank of motion models [4]. Partitioned sampling [21] is an-
jectory smoothing so Kalman-style covariance updating is suther notable sampling technique for articulated models, un-
perfluous: the previous posterior determines the locations atielr certain labelling assumptions [21, 9].
weights of the search regions, the dynamical noise determinegdeap & Hogg [15] and Cham & Rehg [7] combine
their breadth, and the observation likelihood determines tilBbNDENSATION-Style sampling with local optimization, but
location and shape of the new posterior peak(s) within eaghey consider only the simpler case of 2D tracking. Cham
region. & Rehg combine their heuristic 2D Scaled Prismatic Model
Many existing methods use inflated dynamical noise as g8PM) body representation with a first order motion model
empirical search focusing parameter [7, 15, 9], but we finghd a piecewise Gaussian resampling method for th&-C
that it produces poorly shaped search regions. An efficienENSATION step. The Gaussian covariances are obtained
high-dimensional search must adapt to the local cost surfa@m the Hessians at the fitted optima, as in our method,
Rather than inflating the dynamical noise, we will argue thaut the search region widths are controlled by the traditional
one should use realistic dynamics, then modestly inflate theethod of adding a large dynamical noise. This appears to
resultingprior (previous posterior after dynamics) covariancevork reasonably well for 2D SPM tracking, which is essen-
to define the search region. This inflates the posterior unially free of observability singularities. But we fingg) that
certainty as well as the dynamical one, allowing far deep@rcan not handle the much less well-conditioned monocu-
sampling along the most uncertain directioagy(poorly ob- lar 3D case. One puzzling point in [7] is the presence of
servable depth d.o.f.), and thus preventing mistracking dgisely-spaced minima with overlapping peaks, which mo-
to inadequate exploration of these hard-to-estimate parametigited Cham & Rehg to introduce their piecewise Gaussian
combinations. This change makes a huge difference in prafistribution model. We do not observe such overlaps, and
tice. For example, for the 32 d.o.f. cost spectrum in fig. 3 witwe suspect that they were caused by incomplete convergence
inflation large enough to double the sampling radius along tiethe optimizer, presumably due to either over-loose conver-
most uncertain directione(g, for a modest search for local gence criteria, or a noisy cost function (we took considerable
minima along this cost valley), the uniform dynamical nois@ains to make ours smooth).
method would produce a search voluihié* times larger than
that of our prior-based one.

2 Human Body Model

1.2 Previous Work Our human body model (fig.1a,b) consists of kinematic
We will compare our method to several existing ones, whickkeletons’ of articulated joints controlled by angular joint
we briefly summarize here without attempting a full literaparameters covered by ‘flesh’ built from superquadric ellip-
ture review. 3D body tracking from monocular sequencesids with additional tapering and bending parameters [1]. A
is significantly harder than 2D [7,18] or multi-camera 3D0ypical model has about 3f@int parameters x,; 8 inter-

[19, 11, 6, 23] tracking and surprisingly few works have adaal proportion parameters; encoding the positions of the
dressed it [9, 26, 31, 16,5]. The main additional difficulty idip, clavicle and skull tip joints; and @eformable shapepa-

the omnipresence of depth ambiguities. Every limb or bodwameters for each body part, gathered into a vegtpr A
segment lying near a frontoparallel plane has a first-order otemplete model can be encoded as a single large parameter
servability singularity: small rotations towards or away fronvectorx = (x,,xq4,x;). During tracking we usually esti-



our MAP approach minimizes the negative log-likelihood for
the total posterior probability:

f(x) = —logp(r|x) —logp(x) = fi(x) + fp(x)

3.1 Observation Likelihood

Whether continuous or discrete, the search process depends
critically on the observation likelihood component of the
parameter-space cost function. Besides smoothness proper-
Figure 1: Two views of our human body model, and examplet:ies’ .the IikeIihoo_d ;hogld be designed to limit the number of
of our ro.bust low-level feature extraction: origi,nal image (C)s%urlous Ioca] minima in parameter Space. Oyr method em-
motion boundaries (d), intensity-edge eﬁergy (e), and robﬁol?ys a comblngtlon of rpbust edge and intensity mformapon
horizontal flow field (f)’ ' _0?1 top of a multiple as3|gnmer_1t strategy base_d on a Welg_ht-
’ ing scheme that focuses attention towards motion boundaries.
mate only joint parameters, but our initialization method [2 eatyre.cor?tribut.ions are fused using robus.t (heavy-tailed) er-
or distributions, i.e.bothrobustly extracted image cues and

also estimates the most important internal proportions arr1 t parameter timation ar d. The former or
shape parameters, subject to a soft prior based on standard B~ “pa ameter space es ”a on are used. the former pro-
es “good features to track”, while the latter directly ad-

manoid dimensions from [14] updated using collected ima; . o

evidence. Although far from photorealistic, this model suf- resses the model-image association problem.

fices for high-level interpretation and realistic occlusion prd?0obust Error Distributions: MAP parameter estimation is

diction, and offers a good trade-off between computationﬁﬂtura”y robust so long as it is based on realistic ‘total like-

complexity and coverage. lihoods’ for the combined inlier and outlier distributions of
The model is used as follows. Superquadric surfaces 4he observations. We model these as robust penalty functions

discretized as meshes parametrized by angular coordinategiffi) Of the normalized squared erross = | Ar;||/o?.

a 2D topological domain. Mesh nodes are transformed Eachpi(s) is an increasing sublinear function with(0) = 0

into 3D pointsp; = p;(x) and then into predicted image@nd 5p:(0) = 1, corresponding to a radially symmetric er-

pointsr; = r;(x) using composite nonlinear transformationg0r distribution with a central peak of width. Here we

ri(x) = P(pi(x)) = P(A(Xa,%i, D(x4,1;))), Where D used the ‘Lorentzianp(s) = z/log(l + s/v) a.nd ‘Leclerc’

represents a sequence of parametric deformations that c8ft) = (1 — exp(—s/v)) potentials, where is a strength

struct the corresponding part in its own reference frarhe, Parameter related to the frequency of outliers.

represents a chain of rigid transformations that map it throughNormalizing by the number of model nodé§, the cost

the kinematic chain to its 3D position, aritirepresents per- adopted for the*" observation is:(¥;[x) = §ei(x), where

spective image projection. During model estimation, robud¥: is a positive definite weighting matrix and:

prediction-to-image matching cost metrics are evaluated for 1pi(Ar;(x) W; Ar; (X)T) if i is assigned
each predicted image featurg and the results are summed ¢;(x) = Upp = v if back-facing
over all features to produce the image contribution to the over- Voee = kv, k> 1 if occluded

all parameter space cost function. We use both image—basﬁg
cost metrics such as robustified normalized edge energy, and
extracted-feature-based ones. The latter associate the predidi(x) = —logp(r|x) = fo(x) + Nos b + Noce Voce
tionsr; with one or more nearby image featuregwith addi- (2
tional subscripts if there are several matches). The costis thgRere f, (x) represents the term associated with the image
arobustfunction of the prediction errafer;(x) = r;—ri(x).  assigned model nodes, whilé,.. and N, are the numbers

of occluded and back-facing (self-occluded) model nodes.

3  Problem Formulation Cue Integration and Assigned Image DescriptorsWe use
both edge and intensity features in our cost function. For
We aim towards a probabilistic interpretation and optimal e§dges, the images are smoothed with a Gaussian kernel, con-

timates of the model parameters by maximizing the total profast normalized, and a Sobel edge detector is applied. For
ability according to Bayes rule: intensities, a robust multi-scale optical flow method based on

B B B ) Black’s implementation [2] gives both a flow field and an as-
p(x|r) o p(Flx)p(x) = exp (= [e(r:lx)di) p(x) (1) gociated outlier map. The outlier map conveys useful infor-
wheree(T; |x) is the cost density associated with observatiomation about the motion boundaries and is used to weight
i, the integral is over all observations, ap(ck) is the prior on the significance of edges (see fig. 1d). The motion bound-
the model parameters. Discretizing the continuous problearjes are processed similarly to obtain a smooth image. For

total robust observation likelihood is thus:



visible nodes on model occluding contou€3)( we perform covariance matrixn, = (¢;, u;, ;). This can be viewed as
line search along the normal and retain all possible assigm-Gaussian mixture approximation. Cham & Rehg [7] use a
ments within the search window, weighting them by their imsimilar model but need a special piecewise representation as
portance qualified by the motion boundary map. For visiblheir modes seem to occur in clusters after optimization. We
nodes lying inside the object), we use intensity information believe that this is an artifact of their cost function design. Our
derived from the robust optical flow. The assigned data termodes result from running local continuous optimizations to

(2) thus becomes: convergence, so they are necessarily either well separated or
1 confounded. Our sampling method is also significantly differ-
T . .
fa®) =5 > pi (Am (x) W;, Ar;, (x) ) ent from [7], as explained if¢4.2.

1€0,e€€;

1 .

+5 2 Pis (Arjf (x) W, Ar;, (x)T) 3.4 Temporal Propagation

€L

Equation (1) gives the model likelihood in a static image,
where the subscripts o and j; denote respectively multi- ynder model priors but without initial state or temporal pri-
ple edgest; assigned to model predictionand flow terms s, Adding temporal models with observatiolRy =
assigned to model predictign {r1,...,r}, the posterior distribution becomes:

p(x¢|Ry) oc p(Te|xe) p(xe) p(xs|xe—1) p(x¢—1|Re—1)

3.2 Model Priors

Herep(x:|x;—1) is the dynamical model ang(x;_1|R:_1)
The complete prior penalty over model parameters is a sumigfthe prior distribution fromt — 1. Together they form the
negative log likelihoodg), = f. + fs + fpa cOrresponding to prior p(x,|R;_;) for the static image search (1).
the following prior densitie, , ps, Ppa:
Anthropometric data p,: The internal proportions for a stan- .. ] )
dard humanoid are collected from [14] and used effectively 4 Optimization Algorithm
a Gaussian priorp, = N(p,,X,), to estimate a concrete ] ] . .
model for the subject to be tracked. Left-right symmetry oPur search teghnlque combines ropust constraint-consistent
the body is assumed: only “one side” of the internal propofocal optimization and more global discrete sampling.
tions parameters are estimated while collecting image mea-

surements from the entire body. 4.1 Robust Constrained Mode Search

Parameter stabilizersp,: Certain details are far moreimpor-_l_he robustified aradient and Hessian corresponding to the
tant than intuition would suggest. For example, it is impossi- ¢ 9 . ) P 9
odel feature with possible assignmenise A can be de-

ble to track common turning and reaching motions unless the ) . : I
clavicle joints in the shoulder are modelled accurately. Hov&'—ved using the model-image Jacobifn= 5 :
ever, such parameters have fairly well defined equilibrium po-
sitions and leaving them unconstrained would often lead tg: = J,; <Z pi, Wi, Ar@)

acA

ambiguities. We model them with Gaussian stabilizers around
their equilibria,p, = N (p,, X5). .
Anatomical joint angle limits C;: 3D consistency requires H; J;
that the values of joint angles evolve within anatomically con-

sistent intervals. We model this with a set of inequalities ofhe gradient and Hessian contributions from all observations
the formC}; - x < 0, whereC); is a constraint matrix. are assembled, together with negative log prior contributions:

Q

Z p;aWZa —+ 2p;’a (Wla AI‘Z'H ) (Wla AI‘Z'H )T> Jz
acA

Body part inter-penetration avoidance p,,: Physical con- g =80+ Vit Vfs+ Vi
sistency requires that different body parts do not inter- . 2 2 2
penetrate during estimation. We avoid this by introducing H = Ho+ Vi o+ Vofo + Vfpa
repulsive potentials that decay rapidly outside the surface \bfe use a second order trust region method for local optimiza-
each body partf,, = exp(—sgn(f(x))|f(x)|P) wheref(x) tion. This chooses a descent direction by solving the regular-
defines the implicit surface of the body part ancbntrols the ized subproblem [10]:

decay rate. (H+XW)Ax = —g subjectto C;;x <0

whereW is a symmetric positive-definite matrix ardis a
dynamically chosen weighting factor. Joint limé; are han-
We represent posterior distributions as sets of separate modkesi as hard bound constraints in the optimizer, by projecting
m; € M, each having an associated probability, mean arnlde gradient onto the current active constraint set. Adding

3.3 Distribution Representation
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Figure 2: (a) Displaced minimum due to joint limits con+igure 3: Typical covariance eigenvalue spectaax/omin
straints, (b) Joint limits without body non-self-intersectioms 350 for the 8 d.o.f. arm model, 2000 for the 32 d.o.f. body
constraints do not suffice for physical consistency. one.

joint constraints changes the effective shape of the cost fufgw covariance eigen-directions. Although this gives an ex-
tion and hence the minimum reached. Fig. 2 plots a 1D sli&@edingly sparse sample, we find that it works well in prac-
through the constrained cost function together with a secofige.

order Taylor expansion of the unconstrained cost. The graliProposal Density for Modem; = (c;, p;, 3:)

ent is nonzero at the constrained minimum owing to the prgs1. Eigen-decomposE;, select itsk most uncertain eigen
ence of the bounds. The constrained cost gradient changefirectionsv;, and reconstitute the subspace covariahce
abruptly because active-set projection changes the motion|diyatrix 33/ — S A vV
rection during the slice to maintain consistency with the co ’ "y "
straints.

'"2. The proposal density j5 ~ N(w;, s X%). The stretch-
ing factors is 8—14 in our experiments.

4.2 Covariance Scaled Sampling Covariance Scaled Sampler

Until the desired number of samples are obtained:
& Choose a mode:; with probability.;
'9” Sample frommn,;’s proposal density;

Although representations based on propagating multig
modes, hypotheses or samples do tend to increase the
bustness of model estimation, the great difficulty with higH
dime!ﬂsional d_istribu'tion.s is finding a sampleable prOposaMultiple—Mode Tracker
density that hits theitypical sets— the areas where most
of their probability mass is concentrated. Here we develq
a proposal density based on local parameter estimation ung
tainties. Local optimization gives us not only local modes, b
also their (robust, constraint consistent) Hessians and he
estimates of their local parameter estimation uncertaintig
The main insight is that alternative cost minima are mo
likely to occur along local valleys in the cost surface,along
h?ghly_ uncertain directions pfthe covaria_nce. Itis alongthes;eriori) prior mode. Prune to keep the bésmodes, and
d_|rect|ons that cpst modelling |mpgrfect|ons, 3D nonlinear “renormalize the weights to compute

ties and constraints have the most influence, as the cost func-

tion is shallowest and the 3D movements are largest theWe have empirically studied the shape of the cost surface by
This is particularly true for monocular 3D estimation, whereampling along uncertain directions for various model config-
the covariance is unusually ill-conditioned owing to the manyrations. With our carefully selected image descriptors, the
unobservable motion-in-depth d.o.f. Some examples of sucbst surface is smooth and our local optimizer reliably finds a
multimodal behaviour along high covariance eigen-directiohgcal minimum. Multiple modes occur for certain configura-
are given in fig. 4. Also, it is seldom enough to sample dions, as in fig. 4, which shows the two most uncertain modes
the scale of the estimated covariance — significantly deepefrthe fig. 6 human tracking sequence at times 0.8s and 0.9s.
sampling is needed to capture nearby but non-overlappiWége have also studied the cost surface at much larger scales
modes lying further up the valley. Hence, we sample accorit parameter space — see fig. 5a. Note that we recover the
ing to rescaled covariances, typically scaling up by a factor ekpected robust shape of the distribution, with some but not
around 10. One can sample either randomly or accordingtimo many spurious local minima. Hence, the combination of
a regular pattern. Our current implementation samples reqaur robust cost function and informed search is likely to be
larly, in fact only along the lines corresponding to the lowestomparatively efficient computationally.

For each time-frame:

P1. Generate samples from p(x;|R:_1), using the abovd
eéémpling method.

12 Refine each sample; using continuous optimizatio
'984.1) to obtain(c;, i1;, ;). Prune redundant samples cqn-
FSverging to the same minimum.
bl3, Weight the samples by their prior likelihoods, assumjng
that they came from the closest (most probablgoste-

=
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B aaess Ruadraie Model /0 deformations of the arm muscles are significant and other im-
-a1s10 [ . miaeeo /7 perfections in our arm model are also apparent.
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g -11s20 1 2.0 s The Gaussian single mode trackemanages to track 2D

el T Bawers | i frontoparallel motions in moderate clutter, although it grad-
B j -a1080 I . ually slips out of registration when the arm passes the strong
e R mzees [T 1  edges of the white pillar (0.5s and 2.2 s for the arm sequence
B T N R R S d 0.3 s for the human body sequence). Any significant mo-

Standard Deviation Standard Deviation an : y q - y g

tion in depth is untrackable.

The robust single mode trackdracks frontoparallel mo-
ons reasonably well even in clutter, but quickly loses track
during in-depth motions, which it tends to misinterpret as
frontoparallel ones. In the arm tracking sequence, shoulder
motion towards the camera is ‘explained’ as frontoparallel el-
bow motion, and the error persists until the upper bound of
the elbow joint is hit at 2.6 s and tracking fails. In the full

Figure 4: Multimodal behaviour along highest uncertaintﬁ
eigen-directions (0.8 and 0.9s in cluttered body tracking s
guence).
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_ -6000 - Ne1E F § body sequence, the pivoting of the torso is underestimated, be-
g0 ";D:E f ] ing partly interpreted as quasi-frontoparallel motion of the left
& o000 |- o . shoulder and elbow joints. Despite the presence of anatomical

joint constraints, the fist eventually collapses into the body if
non-self-intersection constraints are not present.

The robust joint-limit-consistent multi-mode trackeor-
rectly estimates the motion of the entire arm and body se-

Figure 5: (a) Cost function slices at large scales, (b) Corfueénce. We retain just the 3 best modes found by sam-
parison of sampling methods: (1)JOBDENSATION (dashed Pling along the 3 most uncertain directions for the arm se-
circle coverage) randomizes each sample by dynamic noi§é'€nce, and the 7 best modes from the 6 most uncertain di-
(2) MHT ([7], solid circle) samples within covariance supportections for the full human body sequence. As discussed
(dashed ellipse) and applies the same noise policy as (1),I-34-2, multimodal behaviour occurs mainly during signifi-
nally, our (3)Covariance Scaled Samplir(gattern ellipse) cantly non-frontoparallel motions, between 2.2-4.0s for the
targets good cost minima (flat filled ellipses) by inflating th&rm sequence, and over nearly the whole full body sequence
highly uncertain subspace of the current sample robust covdf-2-1.2s). For the latter, the modes mainly reflect the am-
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ance estimation (dashed ellipse)) biguity between true pivoting motion and its incorrect “fron-
toparallel explanation”.
5 Experiments We also compared our sampling method with a 3D version

of Cham & Rehg’s MHT [7] for the body turn sequence. (But

To illustrate our method we show results for an 8 second arFrrr11e original method used non-robust optimization and did not

tracking sequence and two full body ones (1.2s and 45s). Arﬂcorporate physical con;tra!nts_or model priors). We used 10
. : . odes to represent the distribution in our 30 d.o.f. 3D model,
of these sequences contain both self-occlusion and S|gnm-

cant relative motion in depth. The first two (fig. 6) were sho‘?S [7] used 10 for their 38 d.o.f. 2D SPM model. Our first set

. ) of experiments used a nonrobust SSD image matching met-
at 25 frames (S0 fields) per second against a cluttered, YE and a Levenberg-Marquardt routine for local sample opti-
evenly illuminated background. The third (fig. 7) is at 50 non- . g q pe op

. . ization, as in [7] (except that we use analytical Jacobians).
interlaced frames per second against a dark background, f : ' ) )
ith this cost function, we find that outliers cause large fluc-

involves a more complex model and motions. In our unoptj- _.. . . T
mized implementation, a 270 MHz SGI O2 required about 5[gatlons, bias and frequent convergence to physically invalid

per field to process the arm experiment and 180 per field O?nflguratlons. Registration is lost early in the turn (0.5), as

: . . soon as the motion becomes significantly non-frontoparallel.
the full body ones, most of the time being spent evaluating t . .

. . >~ Our second experiments used our robust cost function and op-
cost function. The figures overlay the current best cand|da[ e. o . .

model on the original images Imizer, but still with MHT-style sampling. The track survived
9 ges. further into the turn, but was lost at 0.7 s when the depth vari-
Cluttered background sequencesThese sequences exploreation became larger. As expected, we find that a dynamical
3D estimation behaviour with respect to image assignmembise large enough to provide usefully deep sampling along
and depth ambiguities, for a bending rotating arm undencertain directions produces much too deep sampling along
an 8d.o.f. model and a pivoting full-body motion under avell-controlled ones, so that most of the samples are wasted

30d.o.f. one. They have cluttered backgrounds, specutar uninformative high-cost configurations. Similar arguments



Figure 6: Arm tracking and full body tracking against a cluttered background.

apply to standard GNDENSATION, as can be seen in the6 Conclusions and Future Work

monocular 3D experiments of Deutscher [9].
We have presented a new method for monocular 3D human

body tracking, based on optimizing a robust model-image
matching cost metric combining robustly extracted edges,
) ) flow and motion boundaries, subject to 3D joint limits, non-
Black background sequence:in this experiment we focus ge it jntersection constraints, and model priors. Optimiza-
on 3D errors, in particular depth ambiguities and the inflyz,, j5 performed using Covariance Scaled Sampling, a novel
ence of phy3|ca_l constraints and parameter stabilization PRigh-dimensional search strategy based on sampling a hypoth-
ors. We use an improved body model with 34 d.0.f. The fojs gistribution followed by robust constraint-consistent local
extra parameters control the left and right clavicle joints in the.finement to find a nearby cost minima. The hypothesis dis-
shoulder comp_lex, which we find to be essential for followingp ition is determined by combining the posterior at the pre-
many arm motions. Snapshots from the full 4 s sequence g5 time step (represented as a Gaussian mixture defined by
shown in fig. 7, and various failures modes in fig. 8. the observed cost minima and their Hessians / covariances)
and the assumed dynamics to find the current-time-step prior,
TheGaussian single mode trackeranages to follow near- then inflati_ng the prior covariances to sample more _bro_adly_.
frontoparallel motions fairly reliably owing to the absence of?Ur experiments on real sequences show that this is signifi-
clutter, but it eventually loses track after 0.5 (fig. 8 a-d). THently more effective than using inflated dynamical noise es-

robust single mode trackeracks the non-frontoparallel mo- fimates as in previous approaches. _
tion somewhat longer (about 1s, fig. 8 e-f), although it sig- Future work will compare stochastic and regular sampling

nificantly mis-estimates the depth — the right leg, should&SS and variant covariance scaled hypothesis distributions

and head are too far forward compared to the “correct” p0§gch as longer-tailed or coreless distributions. It should also
in fig. 7 — and eventually loses track during the turn. Th&€ POssible to extend the benefits of CSS WNDENSATION

robust multi-mode tracker with joint-limimanages to track PY using inflated (diluted weight) posteriors and dynamics for
quite well, but as body non-self-intersection constraints ap@Mple generation, then reweighting the resulfs, [9]. Our

not enforced the modes eventually converge to physically iluman tracking work will focus on incorporating better pose
feasible configurations (fig. 8 g) with terminal consequenc&§d motion priors.

for tracking. Finally, theobust fully constrained multi-mode Acknowledgements
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Figure 8: Various components failure modes
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