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Abstract

This paper is about the problem of structure and motion
recovery from two views of a rigid scene. Especially, we
deal with the case of scenes containing planes, i.e. there are
sets of coplanar points. Coplanarity is a strong constraint
for both structure recovery and motion estimation. Most ex-
isting works do only exploit one of the two aspects, or, if
both, then in a sub-optimal manner. A typical example is to
estimate motion (epipolar geometry) using raw point corre-
spondences, to perform a 3D reconstruction and then to fit
planes and maybe correct 3D point positions to make them
coplanar. In this paper, we present an approach to estimate
camera motion and piecewise planar structure simultane-
ously and optimally: the result is the estimation of cam-
era motion and 3D structure, that minimizes reprojection
error, while satisfying the piecewise planarity. The estima-
tion problem is minimally parameterized using 2D entities –
epipoles, epipolar transformation, plane homographies and
image points – subsequently deriving the corresponding 3D
entities is trivial. Experimental results show that the recon-
struction is of clearly superior quality compared to tradi-
tional methods based only on points, even if the scene is not
perfectly piecewise planar.

1. Introduction

The recovery of structure and motion from images is one
of the key goals in photogrammetry and computer vision.
The special case of piecewise planar reconstruction is par-
ticularly important due to the large number of such scenes
in man-made environments (e.g. buildings, floors, ceilings,
roads, walls, furniture, etc.). Piecewise planar structures
constitute very strong geometric constraints from which we
can expect better reconstruction results than from the tradi-
tional methods based only on points.

We propose a projective framework including the MLE
(Maximum Likelihood Estimator) for structure and motion
recovery from two views of a piecewise planar scene, which

provides the flexibility of working with uncalibrated or par-
tially calibrated images.

Such an estimator needs an algebraic representation of
geometric structures, either in 3D or image-based. Both ap-
proaches have advantages and drawbacks. In the 3D case,
it is difficult to enforce geometric constraints (e.g. express
a point that belongs to a plane with only two parameters),
especially in a projective framework. In [11] for exam-
ple, the structure is corrected to be quasi-piecewise planar
during bundle adjustment via heavily weighted additional
equations. So, on the one hand, the problem is overpa-
rameterized, on the other hand large terms enter the equa-
tion system, which might affect numerical stability. As for
the image-based approach, 3D geometric entities are usu-
ally represented indirectly (e.g. an homography matrix for
a plane), consistent modeling can thus be non-trivial, espe-
cially if the number of images is not small.

As the most important goal in this paper is to devise the
MLE, we choose the image-based approach that allows to
represent points on planes. The major difficulty is then to
express consistently the image entities that represent the 3D
scene geometry and camera motion. Consistent means that
the number of dof (degrees of freedom) of the representa-
tion is the same as that of the essential dof.

The analysis of the algebraic entities on the image level
reveals that the number of algebraic dof is higher than that
of essential dof, which results in an overparameterization.
Indeed, the motion can be represented by the epipolar ge-
ometry, i.e. 7 essential dof but 9 algebraic ones when ex-
pressed via the fundamental matrix. Each plane has 3 es-
sential dof but induces a plane homography which has 9
algebraic ones. Finally, each point lying on a plane has 2
essential dof but its projections onto the images contain 4
algebraic ones.

The main result of this paper is a consistent parameter-
ization on the image level expressing the entire scene ge-
ometry. The parameterization and the corresponding MLE
are given in

���
2 and 3 respectively. A method to obtain

initial values for plane parameters is described in
�
4. The

proposed approach is validated using simulated data in
�
3

where we investigate in particular the behaviour of the esti-
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mator in the case of approximately piecewise planar scenes.
Experimental results using real images are shown in

�
5 fol-

lowed by our conclusions and perspectives.
In the following two paragraphs, we review existing

work and give some preliminaries.

1.1. Previous Work

One of the first attempts to give a minimal parameteriza-
tion of camera motion in the case of two uncalibrated views
is [7] where the author addresses the particular case of finite
epipoles and devises a minimal parameter set, called a map,
for the epipolar geometry. This work has been extended to
the general case in [17] where the author devises all 36 pos-
sible maps (different ways of parameterizing rank-2-ness of
the fundamental matrix and of dealing with the scale un-
certainty). The optimization procedure is costly because of
a step by step choice of the appropriate map and the prac-
tical interest is limited due to the high number of possible
maps. The link with plane homographies has not been made
in these two works.

In [3, 12], two different methods for structure and motion
in a piecewise planar environment are proposed in the case
of calibrated images. They do not include an image level
representation and do not yield an MLE.

The constraint of coplanarity has been studied in [11,
16]. The 3D representation of structures does not permit to
model points on planes (see above). The results obtained in
[11] show that the accuracy of the reconstruction is not bet-
ter compared to not using coplanarity information but that
it appears visually smoother when using planar structures.

In our approach, where all geometric entities are ex-
pressed on the image level, points on planes are minimally
parameterized so that they really lie on planes. The MLE is
then obtained without using superfluous equations.

1.2. Preliminaries

We use perspective projection to model cameras. In this
case, two projections � and � � of the same 3D point

�
are

related via � ����� ���
	 where
�

is the 3 � 3 rank deficient
fundamental matrix representing the epipolar geometry [7].
The two epipoles � and � � are defined as

� �� � � � � ��� .
If the point

�
lies on a plane, � and � � are related via

� ����� � where
�

is a full rank (in general) 3 � 3 matrix
�

representing a plane homography and
�

denotes the equal-
ity up to a non-null scale factor. Any plane homography

�
is linked to the fundamental matrix via

���
� � ������� where��� ���
denotes the matrix associated with the cross product,

i.e.
� ��� �� � � �  . This implies that if we fix a reference

plane homography
�"!

,
�

can be written [9]:

�#�$� !&% � �(' �*) (1)

where
'

is an inhomogeneous 3-vector. The equation of the
plane + inducing

�
is , ' ��-/.$0213�

in the projective basis
defined by the projection matrices 4 � ,65�7 - �/7 1 and 4 �8�, ��! - � � 1 . In this basis, the reconstruction of a point lying on
the plane + , given e.g. its projection � in the first image,
writes:

� � � ,9� � - � � ' 1 � (2)

Throughout this paper, we use the Levenberg-Marquardt al-
gorithm [10] to conduct non-linear optimization processes.

2 A Consistent Structure and Motion Param-
eterization

In this section, we define a consistent image level repre-
sentation for the structure and motion of a piecewise planar
scene. This parameterization is consistent in the sense that
its number of dof strictly corresponds to the number of es-
sential dof of the geometry, namely 7 for the epipolar ge-
ometry, 3 for each modeled plane and 2 for each point on a
modeled plane.

Let us first consider the case of the epipolar geometry. Its
components are defined in [7, 17] as the set :;�=<2� ) � � )?> @BA
where � and � � are the two epipoles and

> @
the epipolar trans-

formation (a C"D homography relating the two epipolar pen-
cils, see below). In [17], it is shown that 36 maps are nec-
essary to cover all two view configurations.

A plane is parameterized by a 3-vector
'

. Equation (1)
gives then the corresponding plane homography

�
, neces-

sary to obtain image-based constraints. The difficulty is
then to choose the reference homography

� !
. A possibil-

ity is
��!E�F� � ��� � � [9], but this yields a singular

�"!
of a

complicated closed-form expression.
Our method relies on the introduction of a singular 2D

homography called the extended epipolar transformation
that we denote

> �
and that is formed uniquely from : . It

is the basis for a consistent expression of the epipolar ge-
ometry and a regular reference plane homography of a sim-
plified form. Each point lying on a modeled plane will be
represented by a single image point.

In the next section, we present the extended epipolar
transformation and a way to reduce the 36 original maps
to 3 basic ones. We then construct a parameterization of a
reference homography and of the fundamental matrix. Fi-
nally, we consider the problem of selecting the appropriate
map.

2.1. The Extended Epipolar Transformation

We clarify the role of the epipolar transformation
> @

and
show how the construction of the extended one

> �
, leads to

36 possible cases. We then give a detailed construction in



the case where both epipoles are finite. The notations cor-
respond to those shown in figure 1.

The epipolar transformation
> @

is the 1D homography
between the two pencils of epipolar lines, induced by the
epipolar geometry. In order to materialize this relation, one
needs to express the epipolar lines as elements of C&D . This
can be done by intersecting the epipolar pencils with a line�

in the left image and a line
� �

in the right one. The inter-
sections � and � � of two corresponding epipolar lines with�

and
� �

induce two C"D points �� and �� � related by
> @

. The
lines

�
and

� �
are chosen to not contain the epipoles.

The extended epipolar transformation
>�

is a C�� homog-
raphy relating the points � and � � in the same way

> @
relates�� and �� � . Consequently, it is not unique and may be singu-

lar. Note that
> �

does not necessarily correspond to a world
plane.

PSfrag replacements

� ���
� � �	 	 �

 
 �

�
 �
��

 ��� ��� � � � � � �
 �������

The epipolar transformation (1D)

The extended epipolar transformation (2D)

Figure 1. The role of the extended epipolar
transformation.

The construction of
� �

from
� �

is a crucial point as it de-
pends on the choice of � and ��� which itself depends on the
two view configuration at hand. Actually, the problem is to
express �� and �� � as functions of � and � � respectively. The
idea seems straigthforward: as � lies on the line � , we can
form �� with two significant elements of � . Which ones are
significant depends on the value of � . To make this rela-
tionship explicit, we express the constraint that �! � by
the equation ��" �$#&% . If we develop this bilinear expres-
sion, it immediately follows that expressing one element ')(
of � in terms of � and of the other elements of � requires
that the corresponding element of � satisfies *+(-,#.% . As/  1032425276 , there are 3 possibilities. This reasoning has also
to be done for �� � , which yields 3 8 3=9 maps.

In a similar way, expressing the 2 8 2 matrix
� �

with only
3 parameters requires to fix an element to a constant value.
The 4 possible choices for this element finally lead to the
9 8 4=36 maps of [17].

Let us derive in detail the case when both epipoles are
finite. The only lines that never contain 9 and 9:� are the

lines at infinity in each image, hence �<;=���3;?>@%:AB%:A 0DC " .
The intersection points take the form � ;E> �� AB% C " and � �);>4�� �FAB% C " and are related by the epipolar transformation via�� �G; � � �� . Consequently, the extension of

� �
takes the form� � ; H � � IJ " K L where

I
is any 3-vector, chosen here asI # J

.
There also exist particular two view configurations [15]

where the extended epipolar transformation might take a
simplified form. The principle of parameterization devel-
oped here can easily be applied to them.

2.2. Reducing the Number of Maps

The 36 maps are not all necessary to model all situations.
We state in table 1 a set of 3 basic maps to which we can
bring back every case. This is important for an easy im-
plementation of the parameterization: all the cases that we
remove for the construction of

� �
will not appear for that of��M

and N .
This reduced set of maps is obtained by fixing first the

scale ambiguity of
� �

using an additional constraint such asOPO � � OPO K # 0 . The number of maps reduces to 9. An appro-
priate image rotation (which leaves the residual invariant)
ensure that an infinite epipole, e.g. 9 does not lie on the
chosen line � (here �?;Q> 0 AR%:AB% C " ). Using then the fact
that the role of the images can be exchanged, the number of
maps reduces to 3.

Note that the number of essential dof is not the same for
each case because a finite epipole has 2 but an infinite one
has only 1.

case 9 9+� #dof S
1 ,T ,T 7

� �
, UWV , U K , UX� V , UY�K

2 ,T T 6
� �

, UWV , U K , UX�K
3 T T 5

� �
, U K , UX�K

Table 1. The 3 basic cases that have to be
parameterized.

2.3. Construction of the Reference Homography

This section aims at giving the expression of a reference
homography

�ZM
in terms of the parameters S of the epipolar

geometry. As any regular plane homography can be used,
we choose a practical form in the 3 parameters space.

Let us start by giving a general formula to express plane
homographies from

� �
. According to the interpretation of

� �
and

� �
given in [ 2.1, we use the following construction. For

a given point \ in the left image, we find the corresponding



epipolar line and intersect it with the line
�

to get the point� . Using
> �

, we retrieve the point � � of the right image.
Plane homographies are then obtained by adding the term� � ' � where the inhomogeneous 3-vector

'
parameterizes

the family [9]. This yields the formula:��� � > � � � � � � � � � % � � ' � � (3)

When fixing
'

, the above expression gives a reference
homography. Table 2 shows the derivation for the 3 basic
cases. These expressions are practical in the sense that

� !
is regular (

����� , � ! 1 � . ����� , > @ 1 in all cases) and that their
forms are affine-like (a row with two zeros and a one) and
so handled easily, e.g. for the computation of

�	� D! .
We derive in detail the case 1. In this case, we have� ��
� � ,6	 ) 	 ) 021 � . Using the formulation established

previously for
> �

, we deduced from equation (3):

� ! � > � � 
�� ���"� � ��� % � � ' � ��� . > @ > @ , � D ) � � 13�� � � 	 � % � � ' � �
Choosing

' � ,6	 ) 	 ) 021 � yields the affine expression given
in table 2.

case
' � !

1 ,6	 ) 	 ) 021 � � . > @ > @ , � D ) � � 13� % , � � D ) � �� 1 �� � � 0 �
2 ,6	 ) 	 ) 021 � � � � � 0

. > @ > @ , � D ) � � 1 � % , � �� ) 	 13� �
3 , 0 ) 	 ) 	 1 � � 0 � � �> @ , � � ) 	 13� % , � �� ) 	 1 � . > @ �

Table 2. Parameterization of a reference plane
homography

��!
for the 3 basic cases defined

in table 1.

2.4. Construction of the Fundamental Matrix

Let us give the general formulation of the fundamental
matrix using the same reasoning as above. Given a point� in the left image, we know how to associate to it a point� � lying on its associated epipolar line in the right image.
The last step to obtain this epipolar line is then to link � �
and � � . The fundamental matrix is then expressed by

�E�
� � ����� > � � � ���"� � ��� . The resulting form of

�
for the 3 basic

cases is given in table 3. The expression for case 1 (obtained
with

� ��
� � ,?	 ) 	 ) 0 13� ) coincides with that given in
[7, 17].

2.5. Choosing the Best Map

A method to choose the best map for the fundamental
matrix is given in [17]. Provided an initial guess, it consists

case
�

1 �� � � . � � D . ��� �.�� .�� � � D % � � �� � �� . � � � D � � �� . ��� � D �
��

with � ��, � � D % ��� � 1 � � D . , � � D % � � � 1 � ��
2 �� . � � �� . ��� �� , � � D % ��� � 1 � ��� � . � � D . ��� �.�� .�� � � D % � � �

��
3 �� � � � � �� . � � �� . ��� ��. � � � � �� � � .�� .�� ��

Table 3. Fundamental matrix parameterization
for the 3 basic cases defined in table 1. The
scalars

�
,
�
, � and

�
are the coefficients of the

epipolar transformation
> @
.

in selecting the map that locally is the least singular. The
major drawback of this criterion is that, as it is local, it has
to be included in the optimization loop. Consequently, all
36 maps are tried at each step of the optimization process,
which represents a non negligible cost. Moreover, this does
not take into account that the number of dof is not the same
for all maps.

A way to enhance such a process is to devise a criterion
which takes into account the particular number of dof of
each map. Consequently, it might be very appropriate to
use a model selection criterion such as MDL or AIC [13, 6]
and not at every step of the optimization process.

2.6. Summary

In this section, we have developed minimal parameter-
izations of the fundamental matrix and a reference plane
homography, for all cases of finite/infinite epipoles. These
parameterizations (see tables 2 and 3) lead to very simple
closed-form expressions for plane homographies. This en-
ables a very efficient simultaneous optimization of structure
and motion, as described in

�
3.

3. Optimal Estimation

In this section, we derive a criterion to compute the op-
timal structure and motion of a piecewise planar scene in-
cluding non coplanar points. Optimal is taken in the sense
of the maximum likelihood under the assumption of i.i.d.
centered Gaussian noise in measured image point coordi-
nates.

Two functions give respectively the fundamental matrix� ��� ,3: 1 and any plane homography
� � �"! ,3: ) ' � 1 from



the parameters : of the epipolar geometry and a plane equa-
tion

' �
(according to the expressions in tables 2 and 3 and

equation (1)).

3.1. A Criterion for the MLE

We apply the parameterization defined in
�
2 to make

use of a completely piecewise planar scene structure. We
then complete the approach to address the case of a par-
tially piecewise planar and partially general scene structure,
i.e. containing both points belonging and not belonging to
coplanar group.

Each point lying on a modeled plane is parameterized
in the left image. Its corresponding point in the right im-
age is given by applying the adequate plane homography.
For a given map, the residual to minimize is then given by����� �����
	������������� �
��� � � ,9� )��� 1 % � � ,6� � ) � � �� 1�� , where+ � denotes the plane of equation

' �
corresponding to the

plane homography
� �

and
� , � ) � 1 the Euclidean distance.

The optimal parameters are obtained as [14]:

< � ) ' D )
� � � ) '�� ) < �� A A � � �"! #�$&%')( � �+*
,.-.-.- , �)/ � ( �10� � �2��3

D
� � � )

(4)

under the constraints
� � � ,?: 1 and

� � � ! ,3: ) ' � 1 . Note
that maximum likelihood estimates are achieved only in the
case when each point belongs to only one plane (e.g. if�54 + D and �54 + � , we can not guarantee that

�
D �� �� � �� ). The epipolar geometry is implicitly estimated via

plane homographies1.
It is also possible to make points <)68796 � A that do not

belong to any plane, contribute to the estimation:

< � ) ' D )
� � � ) ':� ) < �� A ) < �6;7 �6 � A A �� �"! #�$&%'"( � �+*�,.-.-.- , �"/ � ( � 0� � ( � 0<  0< � � �� �� �2��3

D
���=� �� % ��> �� )

using the same constraints as for the optimization of cri-
terion (4) plus

�6 � � � �6 � 	 so that points satisfy ex-
actly the epipolar geometry. The residual

�?>
is given by� � <  < � � � � �B,@6 )
�6 1 % � � ,A6 � )��6 � 1 � .

3.2. Experimental Results

In this section, we compare our MLE estimator to various
others that use or do not use coplanarity information, using
simulated data. Our experimental results concern the case 1
(both epipoles are finite) of

�
2.

1Note that this is very different from estimating individual plane homo-
graphies, and subsequently B from these [8], which is known to be rather
unstable. Here, the epipolar geometry and all plane homographies are es-
timated simultaneously.

The test bench consists of a one meter cube at various
distances from two cameras. A number of

% � 50 points
lying on each of three faces of the cube are projected onto
the images. Gaussian centered noise is added to the image
points. We evaluate the methods by assessing the quality of
3D reconstructions that are based on the image level estima-
tion results. 3D reconstruction is achieved using triangula-
tion [5] in the general case, and equation (2) for points on
planes. The quality measure is the RMS 3D Euclidean dis-

tance C 7 �ED DF ���HGIKJG � � � , � 7 � ) �� 1 , where < � A is the

estimated projective reconstruction and < �� A the true Eu-
clidean one. The 3D homography

� 7 is estimated via non-
linear minimization of C 7 .

The estimators compared are divided into two sets.
Epipolar geometry-based estimators, Methods F [5]:L FLin+BA: normalized 8 point algorithm for the epipo-

lar geometry followed by a bundle adjustment of
points;L FML: MLE for the epipolar geometry and the image
points;L trueF+BA: bundle adjustment of points using the true
epipolar geometry.

Plane-based estimators, Methods H:L HiML+FML: maximum likelihood estimation of plane
homographies [5] and then the method FML;L consHiML: the consistent approach developed in this
paper (equation (4));L trueHi+BA: bundle adjustment of points [5] using the
true plane homographies.

We have carried out two sets of experiments, where 3D
points lie in either perfectly or nearly coplanar groups.

The first set of experiments (see figure 2) show that when
3D points are perfectly coplanar, Methods H perform bet-
ter (the residual is two times lower) than Methods F. In
more detail, we can say for Methods F that trueF+BA per-
forms better than FML which itself performs better than
FLin+BA, and the same for Methods H, trueHi+BA per-
forms better than consHiML which itself performs bet-
ter than HiML+FML. When the distance scene/cameras or
noise level increase, Methods F diverge, whereas Methods
H do not.

Now, let us investigate the second set of experiments.
In this case, the 3D points are offset vertically from their
planes by a random distance (Gaussian noise with standard
deviation between 0 and 0.1 meters).

Once again, the behaviour of the tested methods can be
divided into the same two sets as above. Let us denote the
breakdown ratio M as the ratio between the planes unflatness
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Figure 2. Comparison of the different meth-
ods using the 3D residual C 7 , for different
noise levels and a distance scene/cameras of
10 meters.

and the size of the simulated planar surface where Methods
H begin to perform worse than Methods F, e.g. for figure 3,M =6%. Table 4 shows the value of M established experimen-
tally for different cases. The less stable the configuration
is (large noise and/or a high distance scene/cameras), the
higher is M , i.e. the more important is the consistent incor-
poration of coplanarity constraints, even if the scene is not
perfectly piecewise planar.
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Figure 3. Comparison of the different meth-
ods using the 3D residual C 7 , for different
planes unflatness, a distance scene/cameras
of 10 meters and a 3 pixels standard deviation
noise.

The values of one or several percent in table 4 represent
relatively large variations which are superior to those of a
great majority of approximately planar real surfaces. Con-
sequently, we can say that there are a lot of cases when a
plane-based method will perform better than any method
based only on points.

Now, let us see how to initialize the values of the plane

3 m. 10 m. 20 m.

1 pixel 0.5% 2% 4%
3 pixels 2% 6% 9%

Table 4. Breakdown ratio M for different combi-
nations of distance scene/cameras and noise
level.

parameters for the MLE described in this section.

4. Initialization of Plane Equations

In this section, we aim at finding an initialization of the
modeled scene planes required by the MLE of

�
3. At this

point, we assume that the image points are clustered into
coplanar groups (see

�
5).

Given the epipolar geometry, one can extract a reference
plane homography

� !
and the right epipole � � as proposed

in
�
2. The plane equations are then given from plane homo-

graphies using equation 1. However, an estimated homog-
raphy does not correspond to a world plane in general. We
show how to constrain the estimation so that the estimated
homography really corresponds to a world plane.

Each point correspondence � 7 � � arising from a point
lying on a plane + is subject to � � � � � . Introducing equa-
tion (1) yields � � � , � !&% � � ' � 1 � , where

'
corresponds to

the plane equation. By nullifiying the cross product of these
vectors, and after some minor algebraic manipulations, we
obtain

� � ��� � � � � � ' � � � ��� � � � ��� � � � . The equations corre-
sponding to each point correspondence can then be rewrit-
ten to form a linear system for

'
. This method can be used

with a minimum of three point correspondences, which cor-
responds to the fact that a plane is defined by three points.

A quasi-linear estimator for the plane homography is
proposed in [1] and could also be used to estimate the plane
equation. However, it is not of a signifiant interest since this
does not affect the result provided by the final MLE.

5. Results Using Real Images

In this section, we present the reconstruction results that
we obtained using the real images of figure 4. Similar re-
sults have been obtained with other images. We describe
the different steps necessary to perform a complete recon-
struction, from the images to the 3D textured model. We
then compare our plane-based approach to the point-based
method given in [5].

Estimation of the epipolar geometry: More than 450 in-
terest points have been detected and slightly less than 100



Figure 4. The Game System stereo image pair.

matches have been automatically established while estimat-
ing the epipolar geometry between the two images [17].
Around 20% of these matches are outliers.

This initial estimate allows to compute a reference ho-
mography and the epipoles, as indicated in

�
2.

Segmentation into planes: This step provides the ini-
tilization to the optimal reconstruction process.

Planar structures are segmented semi-automatically us-
ing a RANSAC-like [4] algorithm. Provided the plane esti-
mator (see

�
4) for the random sampling, the algorithm esti-

mates recursively the successive dominant planes and their
associated point correspondences. The user may interact
with the system to add, remove or split planar structures.

Once all planes are modeled, we attempt to match previ-
ously unmatched interest points using plane homographies.
This step is iterated until the convergence of point corre-
spondences.

Texture maps: This requires the user to provide the
polygonal contour of planar facets in one image.

Projective reconstruction: A projective reconstruction is
estimated using the plane-based algorithm of

�
3. Textured

rendering are visible on figure 5.

Figure 5. Textured rendering of the recovered
projective model for the Game System stereo
image pair.

Metric reconstruction: The metric structure is obtained
via an autocalibration process using the fundamental ma-
trix [2]. It is also possible to enhance this result using the
technique based on multi-planes described in [16]. Textured
rendering are visible on figure 6.

Figure 6. Textured rendering of the recovered
metric model for the Game System stereo image
pair.

Quality assessment: We have performed several mea-
sures on the metric reconstruction obtained using the
method based on planes described above and on the one
obtained using a method based only on points [5].

Two kinds of quantity are significant: length ratios and
angles. Table 5 shows measures of such quantities. In this
table, � D and � � are the variances of the length of respec-
tively the 6 vertical edges and the 6 horizontal edges of
equal length, whereas � is the mean of

0 .������	��

where���

are the measures of right angles.
The values given in table 5 show that the metric recon-

struction obtained with the consistent plane-based method
described in this paper is clearly of superior quality than the
one obtained with the method based only on points.



� D � � �
point-based 0.0146 0.0543 0.0633
plane-based 0.0082 0.0267 0.0413

Table 5. Metric measures on the Euclidean
reconstruction using a point-based or our
plane-based method. The lower � D , � � and
� (see text) are, the better the reconstruction
is.

6. Conclusions and Perspectives

We have presented an MLE for the complete structure
and motion from two uncalibrated views of a piecewise pla-
nar scene. The geometric structures are consistently repre-
sented on the image level by a fundamental matrix, a set of
plane equations and points on planes.

The initialization of the MLE is provided by the 8 point
algorithm for the epipolar geometry. The plane equations
are then estimated image-based.

Experimental results on both simulated data and real im-
ages show that the reconstruction quality obtained with our
consistent plane-based approach is clearly superior to those
of methods that only reconstruct the individual points, even
if the scene is not perfectly piecewise planar.

We are currently investigating the use of model selec-
tion criteria for the choice of the most appropriate map for
a given fundamental matrix. We also plan to extend the ap-
proach to more than two images.
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