Robot Hand-Eye Calibration using

Structure-from-Motion *

Nicolas Andreff Radu Horaud
Bernard Espiau
INRIA Rhone-Alpes and GRAVIR-IMAG
655, av. de 'Europe, 38330 Montbonnot Saint Martin, France

email: firstname.lastname@inrialpes.fr

February 9, 2000

Abstract

The method we propose simplifies the practical procedure for hand-
eye calibration. Indeed, no more calibration jig is needed and small
calibration motions can be used.

Without calibration jig, camera motions are computed, up to an
unknown scale factor, through structure-from-motion algorithms rather

than pose estimation.
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The unknown scale factor is then included in a linear formula-
tion, parameterizing rotations with orthogonal matrices, which han-
dles both large and small motions.

The algebraic analysis of the linear formulation determines whether
calibration is partial or complete according to the motions nature.

Finally, in-depth experiments are conducted, with comparison to

other methods.

1 Introduction

The background of this work is the guidance of a robot by visual servoing [12,
1]. In this framework, a basic issue is to determine the spatial relationship
between a camera mounted onto a robot end-effector (Fig. 1) and the end-
effector itself. This spatial relationship is a rigid transformation, a rotation
and a translation, known as the hand-eye transformation. The determination
of this transformation is called hand-eye calibration.

The goal of this paper is to discuss a technique allowing the hand-eye
calibration to be performed in the working site. In practice, this requires

that:

e No calibration jig will be allowed.

A calibration jig is a very accurately manufactured 3D object hold-
ing targets as visual features. Mobile robots and space applications of
robotics are typical examples where a calibration jig cannot be used.
During their mission, such robots may nevertheless need to be cali-

brated again. However, as affordable on-board weight is limited, they



Figure 1: Some cameras mounted on our 5 DOF robot.

can not carry a calibration object and should use their surrounding en-
vironment instead. Thus, the availability of a hand-eye self-calibration

method is mandatory.

e Special and/or large motions are difficult to achieve and hence should

be avoided.

Indeed, since the hand-eye system must be calibrated on-site, the amount
of free robot workspace is limited and the motions have therefore to be
of small amplitude. Therefore, the self-calibration method must be able

to handle a large variety of motions, including small ones.

Hand-eye calibration was first studied a decade ago [30, 27]. It was shown
that any solution to the problem requires to consider both euclidean end-
effector motions and camera motions'. While the end-effector motions can
be obtained from the encoders, the camera motions are to be computed from
the images. It was also shown, both algebraically [30] and geometrically [4],
that a sufficient condition to the uniqueness of the solution is the existence

of two calibration motions with non-parallel rotation axes.

'Notice that this requirement may be implicit as in [24].



Several methods were proposed [30, 8, 15, 27, 5, 31] to solve for hand-eye
calibration under the assumption that both end-effector and camera motions
were known. They differ by the way they represent Euclidean motions, but
all have two points in common: (i) rotation is represented by a minimal pa-
rameterization and (ii) all proposed methods use pose algorithms to estimate
the camera motion relatively to the fixed calibration jig. Pose algorithms re-
quire the 3D Euclidean coordinates of the jig targets to be known together
with their associated 2D projections onto each image.

Moreover, as the proposed methods use reduced representations of the
rotation and since these are ill-defined when rotation angle is small, the
calibration motions must be as large as possible: a rule for such a choice of
large calibration motions is even given in [30].

Another approach is proposed by Wei et al. [32], who perform simulta-
neously hand-eye calibration and camera calibration without any calibration
jig. However, this requires a complex non-linear minimization and the use of
a restrictive class of calibration motions. Moreover, no algebraic analysis of
the problem is given.

With regard to the existing approaches, we propose a different hand-eye
self-calibration method which exploits two main ideas. The first idea is that
a specific algebraic treatment is necessary to handle small rotations, since
minimal parameterizations of rotations are not defined for small angles and
are therefore ill-conditioned. The second idea is that camera motion can
be computed from structure-from-motion algorithms rather than from pose
algorithms, in order to avoid the use of the calibration jig. Our contribu-

tions can be summerized in the following. Firstly, hand-eye calibration is



reformulated in order to take into account the estimation of camera motions
from structure-from-motion algorithms. Indeed, camera motions are thus
obtained up to an unknown scale factor, which is introduced in the formula-
tion. Secondly, a linear formulation, based on the representation of rotations
by orthogonal matrices, is proposed which enables small calibration motions.
Thirdly, an algebraic study of this linear solution is performed which shows
that partial calibration can nevertheless be performed when the sufficient
condition for the uniqueness of the solution is not fulfilled. Fourthly, in-
depth experiments are conducted with comparison to other methods.

The remainder of this paper is organized as follows. Section 2 recalls the
classical formulation of hand-eye calibration and the structure-from-motion
paradigm. Section 3 gives contains the formulation of the linear hand-eye
self-calibration method. Section 3.3 contains its algebraic analysis. Finally,

Section 4 gives some experimental results and Section 5 concludes this work.

2 Background

In this section, after defining the notation used in this article, we briefly
present the classical formulation of hand-eye calibration with a short de-
scription of three methods that will be used as references in the experimental
section (Section 4). We then describe the estimation of camera motions, con-

cluding in favor of Euclidean reconstruction rather than pose computation.



2.1 Notation

Matrices are represented by upper-case bold-face letters (e.g. R) and vectors
by lower-case bold-face letters (e.g. t).
Rigid transformations (or, equivalently, Euclidean motions) are repre-

sented with homogeneous matrices of the form:

R ¢t
000 1
where R is a 3 X 3 rotation matrix and t is a 3 x 1 translation vector. This
rigid transformation will be often referred to as the couple (R, t).
In the linear formulation of the problem, we will use the linear operator
vec and the tensor product, also known as Kronecker product. The vec
operator was introduced in [21] and reorders (one line after the other) the

coefficients of a (m x n) matrix M into the mn vector
'U@C(M) = (Mlla C 7M1'n,7 MZI; ce ,an)T

The Kronecker product [2, 3] is noted ®. From two matrices M and N with
respective dimensions (m x n) and (o X p), it defines the resulting (mo x np)

matrix:

MyN ... M;,N
M®N = : : (1)

M, N ... M,,N

2.2 Hand-eye problem formulation

We present here the classical approach [30, 4, 8, 15, 27, 5, 31] which states

that, when the camera undergoes a motion A = (R,,t,) and that the cor-
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Figure 2: End-effector (represented here by a gripper) and camera motions

are conjugated by the hand-eye transformation X.

responding end-effector motion is B = (Ry, tp), then they are conjugated by
the hand-eye transformation X = (R, t,) (Fig. 2). This yields the following

homogeneous matrix equation:
AX =XB (2)

where A is estimated, B is assumed to be known and X is the unknown.

Equation (2), applied to each motion ¢, splits into:

RaiRa: = RxRbi (3)

Raitm + tai - RCL’tbl +t, (4)

In the method proposed in [30], the first equation is solved by least-
square minimization of a linear system obtained by using the axis/angle
representation of the rotations. Once R, is known, the second equation is
also solved with linear least squares techniques.

To avoid this two-stage solution which propagates the error on the rota-
tion estimation onto the translation, a non-linear minimization method based

on the representation of the rotations with unit quaternions was proposed
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Figure 3: Hand-eye calibration from pose estimation

in [15]. Similarly, a method based on the unit dual quaternion representa-
tion of Euclidean motions was developed in [8] to solve simultaneously for

hand-eye rotation and hand-eye translation.

2.3 Computing the camera motions

In the prior work [30, 4, 8, 15, 27, 5, 31], camera motions were computed
considering images one at a time, as follows. First, 2D-to-3D correspondences
were established between the 3D targets on the calibration jig and their 3D
projections onto each image i. Then, from the 3D coordinates of the targets,
their 2D projections and the intrinsic camera parameters, the pose (i.e. po-
sition and orientation) of the camera with respect to the calibration jig is
estimated P; = (R;, t;). Finally, the camera motion between image i — 1 and

image i A; = (Ry;, to;) is hence obtained by simple composition (Fig. 3):

A;=RR] t; - RR] t; 1)



Image 2

Figure 4: Scale factor ambiguity on the Euclidean reconstruction: which one
of the two camera positions on the right and which one of the two sets of 3D

points were used to generate the second image ?

Alternatively, one may simultaneously consider all the images that were
collected during camera motion. Thus, one may use the multi-frame structure-
from-motion paradigm (see [17] for a review). The advantage of structure-
from-motion over pose algorithms is that the former does not require any
knowledge about the observed 3D object. Indeed, structure-from-motion
only relies on 2D-to-2D correspondences. These are more easily obtained
since they depend on the image information only. There are two classes
of (semi-)automatic methods to find them: a discrete approach, known as
matching [13], and a continuous approach, known as tracking [14].

A relevant class of structure-from-motion methods is known as the Fu-
clidean reconstruction [7, 28, 22, 29, 18, 6]. It assumes that the camera
is calibrated (i.e. the camera intrinsic parameters are known). From this
knowledge, one can reconstruct the structure of the scene and the motion of

the camera up to an unknown scale factor (Fig. 4) using various methods (see



Figure 5: Once the scale factor is resolved between the first two images, the
second camera position is uniquely defined with respect to the first one and

consequently, the following camera positions are also uniquely defined.

below). This unknown scale factor is the global scale factor of the observed
scene and is the same for all the camera motions in the sequence (Fig. 5).

Therefore, the estimated camera motions are of the form:

Rai )\uai
Ai()‘) = (5)
000 1

where R,; is the rotation of the camera between image 7 — 1 and image ¢,
A is the unknown scale factor and u,; is a vector, parallel to the camera

translation t,; and such that
tai = Aug; (6)

Taking, without loss of generality, the first motion as a motion with non
zero translation allows to arbitrarily choose u,; as a unit vector. Hence,
A = ||tq1]|. Consequently, the u,;’s are related by: u,; = t,;/||ua|] and A

can be interpreted as the unknown norm of the first translation.
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In summary, camera rotations are completely recovered while camera
translations are recovered up to a single unknown scale factor.

In practice, which structure-from-motion algorithm should we choose 7
Affine camera models [22, 29, 18] yield simple linear solutions to the Eu-
clidean reconstruction problem, based on matrix factorization. However,
affine models are first-order approximations of the perspective model. Hence,
only approximations of the Euclidean camera motions can be obtained. Be-
sides, solutions exist [7, 28|, based on the perspective model, that offer some
Euclidean information on the camera motions, but are non linear. Our choice
lies in fact between these two classes of methods: we propose a method for Eu-
clidean reconstruction by successive affine approximations of the perspective
model [6], which combines the simplicity of affine methods and the accuracy
of non linear methods.

In summary, in order to estimate camera motions, structure-from-motion
methods are more flexible than pose computation methods, since no 3D model
is needed. The drawback of lowering this constraint is that camera motions
are estimated up to an unknown scale factor which we must take into account

in the hand-eye self-calibration method.

3 A new linear formulation

In this section, we first modify the formulation of hand-eye calibration in
order to take into account the use of Euclidean reconstruction to compute
camera motions. Then, we give a solution to this problem which handles

small rotations.
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Figure 6: From images of an unknown scene and the knowledge of the intrin-
sic parameters of the camera, structure-from-motion algorithms estimate, up

to an unknown scale factor A, the camera motions A;(\).

3.1 Using structure-from-motion

For using structure-from-motion to estimate camera motions, we have to take
into account the unknown scale factor A\. Indeed, the homogeneous equation

(2) becomes (compare Fig. 3 and Fig. 6):
A;(\)X = XB; (7)

where A;(A) is the ith estimated camera motion. From (5) and (6), we thus

obtain a set of two equations, similar to (3)—(4):

R,R, = R.,Ry; (8)

Raitx + )‘uai = thbi +t; (9)

where the unknowns are now R, t, and A.

12



3.2 Linear formulation

We propose a new formulation which handles rotations of any kind. Its un-
derlying idea is to embed the rotation part of the problem, intrinsically lying
in SO(3), in a larger space in order to deliberately free ourselves from the
non-linear orthogonality constraint. This allows us to easily find a subspace
of matrices verifying (2). Then, the application of the orthogonality con-
straint selects, in this subspace, the unique rotation which is solution to the
problem. This general idea is very powerful here since, as we will see, the
non-linear orthogonality constraint reduces to a linear norm constraint.
The new formulation is inspired by the similarity of (8) with the Sylvester
equation: UV + VW = T. This matrix equation, which often occurs in

system theory [3], is usually formulated as a linear system [25, 16, 9]:
(URI+I® W)vec(V) = vec(T) (10)
One fundamental property of the Kronecker product is [3]:
vec(CDE) = (C ® ET)vec(D) (11)

where C,D,E are any matrices with adequate dimensions. Applying this

relation to equation (8) yields:
(Ra; ® Ryy)vec(R,) = vec(Ry,) (12)
Introducing the notation vec(R,) in equation (9), we obtain:

(I; ® (ts; ))vec(Re) + (I3 — Ry;)ty — Aug; = 0 (13)

13



We can then state the whole problem as a single homogeneous linear system:

vec(Ry)
I, - Ry ® Ry, O9x3 0951 O9x1
t, = (14)
L (t,)) I -R, —ug 0351
A

The question is now: “What is the condition for this system to have
a unique solution ?” and a subsequent one is: “What occurs when this

condition is not fulfilled 77

3.3 Algebraic analysis

From earlier work on hand-eye calibration [30, 4], we know that two mo-
tions with non-parallel rotation axes are sufficient to determine the hand-eye
transformation. We will show in this section, that our new linear solution
owns the same sufficient condition but also allows us to identify what can be
obtained when such a sufficient condition is not fulfilled (the so-called partial
calibration).

Hence, let us determine what can be obtained using various combinations
of end-effector motions by successively considering: pure translations, pure
rotations, planar motions (i.e. containing the same rotational axis and inde-
pendent translations) and finally general motions. The results of this study
are gathered up in Table 1. Notice that by inverting the roles of the end-
effector and the camera, we obtain the same results for the recovery of the

eye-hand transformation (i.e. the inverse of the hand-eye transformation).

14



Motion 1 Translation Rotation General motion
Ry =1 Ry #1 Ry #1
Motion 2 tB%O tB—O tB%O
Translation
R, A R, A
Rp =1 R,, )\
t () to(c)
ty 0
Rotation R, t.()\) R, t., A
R, \
RB % I Decoupled General
t ()
tB - O solution solution
General motion R, t:, A R, t., A
R, )\
RB % I General General
ts ()
tB 7é 0 solution solution

Table 1: Summary of the results for two independent motions.
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3.3.1 Pure translations

Recall from equation (3), that when end-effector motions are pure transla-
tions (i.e. Ry; = I3), then camera motions are pure translations too (i.e.

R,; = I). Hence, equation (4) becomes
tai = Roty; (15)

Consequently, the amplitude of camera motion is the same as the amplitude
of end-effector motion, which is not the case when rotations are involved. One
can therefore keep control of the camera displacements and guarantee that
a small end-effector motion will not generate an unexpected large camera

motion. Concerning calibration, we have the following result:

Proposition 1 Three independent pure translations yield a linear estima-
tion of hand-eye rotation R, and of the unknown scale factor \. Hand-eye

translation can not be observed.

Proof: In the case of pure translations, the upper part of the system

in (14) vanishes and its lower part simplifies into:
(I ® (ts; ) vec(Ry) = Aug, (16)

This implies that hand-eye translation t, can not be estimated. However,
the nine coefficients of the hand-eye rotation R, can be obtained as we show
below. This was also demonstrated in [33] in the particular case where \ is

known.

16



Let us assume temporarily that A is known. If ty; # 0, then I3 ® (t;;)

has rank 3 since
ty;  Oixz Opxs
Lo (ty ) = | 043 tyl  Oix3 (17)
O1x3 Oix3  ty)

Consequently, three linearly independent pure translations yield a full rank

(9 x 9) system:

I3 & (tb{) Ug
I; ® (t,)) | vec(Re) = A | ugy (18)
I3 ® (tbg) Ug3

M

vec(Ry) = AM ™ Uy (19)

Since (A ®@ B)(C® D) = AC® BD [2], it is easy to verify that the analytic

form of the inverse of M is:

_ 1
M = A <I3 ® (tpo X tp3) I3 ® (tog X tyy) I3 ® (tp X tb2)> (20)
where X denotes the cross-product and A = det(ty;, tyy, tp3). This allows the

rewriting of (19) in closed form:

Uec(f{z) = — (I3 ® (tpo X tyz)ua; + I3 ® (tog X tp1) ey + I3 ® (tp1 X thy)Uas)

A
A
(21)
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Applying (11) yields

- A
'UGC(RQ;) = ——vecC (ual(tbQ X tb3)T + an(tb3 X tbl)T + ua3(tb1 X tbz)T)

A
(22)
and from the linearity of the vec operator, we finally obtain:
- A
R, = A (ual(th X ty3)" 4 ap(bz X to1)" + Ugs(tyy X tb2)T) (23)

Let us analyze this result and prove now that R, is equal to R,, when

measurements are exact. To do that, first recall that R,t,; = Au,;. Hence,

1
R, = KRQ; (to1 (tpo X to3)" + toa(tes X ty1)" + tos(tpy X the)”) (24)

-~

N

Recalling that R, is orthogonal and verifying that N = Al3, we obtain that

This analysis proves that even if A is unknown the column of ].:N{I, esti-
mated from (23), are orthogonal to each other. Thus, only the unity con-
straint (i.e. det(R,) = 1) remains to be verified by R,. From (23) again, the
unity constraint immediately gives A. Consequently, the hand-eye rotation

can be recovered from three linearly independent translations. a

Proposition 2 A minimum of 2 linearly independent pure translations are
intrinsically enough to estimate the hand-eye rotation R, and the unknown

scale factor \.

Proof: The solution is not linear any more and comes in two steps.

1. Scale factor estimation

18



As R, is orthogonal, it preserves the norm. Hence, for each pure trans-

lation 7, we have:
[Rato; | = [[te;]

Applying (15) and (6) on the left-hand side of this expression gives for
all 2

Alugg || = [lte;]l
where u,; and t;; are known.

. Hand-eye rotation estimation

Remark that if t,; and t,, are two linearly independent vectors, then
ty; X tpy is linearly independent from them. Moreover, one can prove

that
Rm(tbl X th) - (R:L’tbl) X (Rmth)

Therefore, we can form the following full-rank (9 x 9) system:

I3 ® (tb{) Ug
I; ® (tp)) vec(Ry) = A U0 (25)
I3 & ((tbl X th)T) )\(ual X ua2)

Since A is now known, R, can be obtained by inverting this system
and the orthogonality of the solution is guaranteed by the proof of

Proposition 1.
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3.3.2 Pure rotations

By “pure rotations”, we mean motions of the end-effector such that t;; = 0.
In practice, these motions can be realized by most of the robotic arms, since
the latter are usually built in such a manner that their end-effector reference
frame is centered on a wrist (i.e. the intersection of the last three revolute
joint axes). For similar reasons, pan-tilt systems may also benefit from the
subsequent analysis.

In such a case, we can state the following proposition

Proposition 3 If the robot end-effector undergoes at least two pure rotations
with non-parallel axes, then one can linearly estimate the hand-eye rotation
R, and the hand-eye translation up to the unknown scale factor ty/\. These

two estimations are decoupled.

Notice that, in the case where camera motion is obtained through pose
computation, A is known and the hand-eye translation can thus be fully
recovered, as does Li [19].

Proof: With pure rotations, the system in (14) is block-diagonal and

decouples into:
(Ig — Rai & sz) 'UeC(R:n) = Ogx1 (26)
(Ig — Rai) tw = )\uai (27)

With at least two rotations with non parallel axes, we form a system with
equations similar to (27) which has then full rank and yields a 1-dimensional

solution subspace:

t, = Abuo (28)

20



where t, is solution to the system:
(13 - Raz’) t, = uai;i =1.n

Notice that the parameter of the subspace is the unknown scale factor. This
is not surprising since pure rotations of the robot do not contain metric
information.

Let us now study the first subsystem (26). Omne of the properties of
the Kronecker product is that the eigenvalues of M ® N are the product
of the eigenvalues of M by those of N. In our case, R,; and R;; have the
same eigenvalues: {1,e e~} and thus the eigenvalues of R,; ® Ry, are:
{1,1,1, €0 ¢ifi o=ifi o—ifi o200 o=2ifi),

Consequently, when the angle of rotation #; is not a multiple of 7, then
the (9 x 9) matrix of (26) Iy — R,; ® Ry; has rank 6. Hence, the solution R,
lies in a 3-dimensional manifold. Using the two orthogonality constraints,
the solution manifold dimension can only be reduced to 1, which confirms
the need for two rotations.

In the case of two or more independent rotations, we can state the fol-

lowing lemma (see the proof in Appendix A):

Lemma 1 If the robot end-effector undergoes at least 2 pure rotations of non
parallel azes, then system (26) has rank 8, its null space K is 1-dimensional

and the hand-eye rotation R, 1s equal to:

R Sign(det(V)) o, (29)
T det(V)]3

where sign() returns the sign of its argument, V = vec™'(v) and v is any

vector of the null space K.
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Figure 7: One planar motion with non-identity rotation and one non-zero

pure translation which is not parallel to the rotation axis of the planar mo-

tion.

which completes the proof of Proposition 3. O
In practice, v can be determined using a Singular Value Decomposition

(SVD) which is known to accurately estimate the null space of a linear map-

ping.

3.3.3 Planar motions

Some robots are restricted to move on a plane, such as car-like robots. In
this case, all the robot and camera rotations have the same axis n;, (resp.
n, = Ryny), which is orthogonal to the plane of motion. Then, we can

demonstrate that

Lemma 2 One planar motion with non-identity rotation and one non-zero
pure translation (which is not parallel to the rotation axis of the planar mo-
tion, see Fig. 7) are intrinsically enough to recover the hand-eye rotation R,
and the unknown scale factor X. The hand-eye translation can only be esti-
mated up to an unknown height o along the normal to the camera plane of

motion (Fig. 8).
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Figure 8: In the case of planar motions, one can not determine the altitude
of a camera which is rigidly mounted onto the base.

Notice that this Lemma is not limited to the planar motion case, since

the pure translation is not restricted to lie in the plane of motion.
Proof: Assume without loss of generality that the first motion is a pure

translation (Rq; = Ry = I3, tp; € R%) and the second is a planar motion

with non-identity rotation such that its rotation axis n, is not parallel to t;;

(Fig. 7). Then, the general system (14) rewrites as:

I ® (t) O3x3  —ug vec(Ry)
Is —Ruy @Ry Oogx3 091 ty = 0151 (30)
I; ® (toy) Is —Rapy —ug A
which is equivalent to the following two equations
Iy —Ray @ Ryy 09x1 vec(Ry)
= 0121 (31)
I3 & (tb{) —Ug A
(13 - RaZ)tw = _)\uaZ (32)

— (I3 ® (tyy ) vec(Ry)

The solution comes in three steps:

1. Scale factor estimation

23



As in the proof of Proposition 2.

. Hand-eye rotation estimation
Recall that the camera axis of rotation n, and the robot axis of rotation
n, are related by:

Rmnb =1,

which is similar to (15). Since t,; and n, are assumed to be non-
parallel, they are linearly independent. Therefore, we obtain, as in the

proof of Proposition 2, a full-rank (9 x 9) system where R, is the only

unknown:
13 & (tb{) )\ual
I; ® (n]) vec(R,) = n, (33)
I3 ® ((tp; x ny)T) A(ug; X ng)

. Hand-eye translation estimation

We can insert the estimated R, and A into (32) and obtain a system,
where only t, is unknown. This system is always under-constrained.

Hence, it admits as solution any vector of the form
t.(a) =t + an, (34)

where « is any scalar value and t, is a solution in the plane of the
camera motion. The latter vector is unique since Is—R,,; has rank 2 and
the plane of motion is 2-dimensional. In practice, t, can be obtained

by an SVD of I3 — R, [23, §2.6].
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The previous Lemma serves as a basis to the case of planar motions as:

Proposition 4 Two planar motions allow the estimation of the hand-eye
rotation R, and the unknown scale factor X if one the following three sets of

conditions is fulfilled:
e the two motions are linearly independent pure translations
e one of the two motions is a non-zero pure translation

e the two motions contain a non-identity rotation and
(Is — Rpa)ts:s — (Is — Ry1)tpe # 0

In the last two cases, the hand-eye translation can only be estimated up to an

unknown height « along the normal to the camera plane of motion (Fig. 8).

Proof: The first set of conditions falls back into the pure translation
case and Proposition 2 apply. The second set of conditions is contained in
Lemma 2.

Let us now show that the last set of conditions can be brought back to
the second one. To do that, consider the system which is built upon the two

planar motions:

Li— [Iy— Ry @ Ry O9x3 091
vec(Ry)
Ly — L @ (tp]) I; - Ry —ug
t, = 0151 (35)
Ly — | Iy — Ry ® Ry 093 0951 \

Ly — L ® (tp)) I; - Ray —ug

25



The block line L; and the third one L3 of this system are equivalent since
both motions have the same rotation axis. Hence, we can discard the first
one and obtain:

L) — I ® (ty)) Is—R, —ug vec(Ry)

Ly — | Ip —Rey @ Rpy Ogys 091 ty =051 (36)

Lg — Ig ® (tbg) Ig — Ra2 —Ug2 )\

Consider now the linear combination (I —R,,) L} — (I —R,;) L} which gives:

[(Ts = Raz) (I3 ® (to1)) — (Is — Ray) (I3 @ (tsy)) ] vec(Ry) (37)
+[(I3 — Ryo)(I3 — Roy) — (Is — Ry ) (I3 — RaZ)]tgn (38)

_)\[(13 - Ra2)ua1 - (13 - Ral)uaZ] = 0 (39)

As R,; and R,, have the same rotation axis, they commute and, hence,
(Is —Rys)(Is — Ryy) — (Is — Rgy)(Is — Rgy) = 0. Therefore, the term on
line (38) is null. As for the term on line (39), let us denote it as u,}.

Let us now consider the first term (37) and show that it can be rewritten
under the form thb;T. To do that, recall that (Is ® t,7 )vec(R;) = Ryt

Hence, the first term equals:
(I3 = Ra2)Ruty; — (Iz — Ryp )Rty
Using R,;; R, = R, Ry;, we then obtain:

R$(£I3 — Ryo )ty — (I3 — Rbl)tb%)

-~

tp)

Consequently, L) is equivalent to:

thbll = )\ua'l
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where we recognize the pure translation case. Hence, system (35) rewrites
under the same form as in (30) of Lemma 2. Therefore, a solution exists if
the virtual robot pure translation t;] is not parallel to n,. As both t;; and
tyy are orthogonal to n,, this condition reduces to a non zero condition on

tp], which is expressed as:

(Is — Rpg)ty; — (Is — Rypy )ty # 0

O

In conclusion, we exhibited sufficient conditions to obtain, from two pla-
nar motions, the hand-eye rotation and the hand-eye translation, up to a
component perpendicular to the camera plane of motion. In the case of a

car, this unknown component can be interpreted as a height with respect to

the base of the car (Fig. 8).

3.3.4 The general case

In the case of two independent general motions with non-parallel axes, there
exists a unique solution to the hand-eye calibration problem. We obtain the

same result for our hand-eye self-calibration problem:

Proposition 5 If the robot end-effector undergoes two independent general
motions with non-parallel azes, then the hand-eye transformation (Rg,t;)
can be fully recovered, as well as the Fuclidean reconstruction unknown scale

factor \.

Using our formulation, one possibility to solve the whole system in (14)

is to find its null space, which is a subspace of #!3. The latter subspace must
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be 1-dimensional and only depend on A, according to the sufficient condition
for hand-eye calibration. Hence, the solution to hand-eye self-calibration is
a 13 x 1 vector to be found in a 1-dimensional subspace. It can therefore be
extracted from this null space by applying the unity constraint to the first 9
coefficients representing the hand-eye rotation, as seen in the pure translation
case.

However, Wei et al [32] remarked, in the case where camera motions are
obtained through pose computation, that the accuracy of the simultaneous
estimation of hand-eye rotation and translation is not independent of the
physical unit used for the translation. By analogy with this remark, solving
directly for the whole system may yield the same dependence. In addition,
such a solution does not guarantee that the estimated R, is an orthogonal
matrix. Then, one has to perform a correction of the result by applying the
orthogonality constraint. However, this correction is non-linear in essence
and it is hence improbable to find the corresponding correction on the hand-
eye translation estimation.

On the opposite, a two-step solution, as in [30], guarantees an orthogonal
estimate of the hand-eye rotation. Indeed, the first step consists of the linear
estimation of the hand-eye rotation as in the case of pure rotations (26),

which had this property:

I -R,;®R
’ ' ! vec(R;) =0 (40)

I3 —Ru ® Ry
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As for the second step, it exploits the remaining lines in (14):

13 - Ral —Uq1 ta: _ _thbl (41)
13 - Ra2 —Ugo A _thbZ

We thus have a unique linear solution to the hand-eye translation and the

scale factor.

4 Experiments

In this section, we will first choose a distance to measure the errors between
rigid transformations since their group SE(3) does not hold an intrinsic met-
ric [20]. Second, we will show some simulation results to test the robustness
to noise of our method, compared to the reference methods. Finally, we will
give experimental results in real conditions. Notice that more experimental
results can be found in [1].
In this section, we numbered the methods we compared as follows: axis/angle

method [30] (M1), dual quaternion method [8] (M2), non-linear minimiza-
tion [15] (M3), our linear formulation adapted to the case where camera

motions are obtained through pose computation (M4), and self-calibration

(M5).

4.1 Error measurement

To measure the errors in translation, we chose the usual relative error in $3:
|t — t]|/||t||, where the " notation represents the estimated value.

For the errors in orientation, no canonical measure is defined. We chose
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the quaternion norm used in [8]: ||g — q|| for its simplicity and its direct rela-
tion to «, the angle of the residual rotation between these two orientations.
Indeed, if g and q are unitary, then [|§ — q|| =2 — 2cos §. It is thus strictly
increasing from 0 to 4 as « goes from 0 to 27. Moreover, this metric avoids

the singularity in o = 7 appearing when using geodesics [26, p.35].

4.2 Simulations

We first performed simulations to gain some insight of the numerical behavior
of our linear method (M4) with comparison to the reference methods (M1—
M3). We thus tested the robustness of the methods to noise and their

accuracy with respect to the number of calibration motions in use.

4.2.1 Simulation procedure

For each simulation series and for each value of the parameter of interest
(noise, number of motions), we followed the same methodology. First, we
defined a hand-eye transformation by random choice of the Roll-Pitch-Yaw
angles of its rotation matrix as well as of the coefficients of its translation
vector, according to Gaussian laws. Second, we similarly chose a sequence
of robot motions and defined, from it and the hand-eye transformation, the
corresponding camera motion sequence. Third, we added noise to the cam-
era motions (see below). Finally, we performed hand-eye calibration with the
various methods and compared their results to the initial hand-eye transfor-

mation.
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4.2.2 Inserting noise

We added noise to the camera translations t 4, by defining t4, = t 4, +v||t 4. |n
where v is a scalar and n is a Gaussian 3-vector with zero mean and unit
variance (white noise). As for the camera rotations, we added noise to their
Roll-Pitch-Yaw angles as & = (1 + vr)a where « is any of these angles, v is
the same as for the translation and r is a 1-dimensional white-noise. Hence,

v defines a signal-to-noise ratio.

4.2.3 Robustness to noise

We tested for the value of v, making it vary from 0 to 20% in two simulation
series. In the first one, we made 100 different choices of hand-eye transforma-
tions and motion sequences for each noise level. These sequences contained
only two motions, with maximal amplitude of 1 m in translation and 180
deg in rotation. Fig. 9 gathers the calibration errors. It shows that Tsai and
Lenz’s method (M1) and ours (M4) obtain the highest accuracy in rotation.
For translations, they are very powerful as long as the noise level is low but
are less accurate than the dual quaternion method (M2) or the non linear
minimization method (M3) when the noise level increases.

In a second simulation series, we almost repeated the first one, just re-
ducing the amplitude of the calibration motions to 2 cm in translation and
10 deg in rotation. The results (Fig. 10) show that our linear formulation is

less sensitive to this reduction than the other methods.
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Figure 9: Rotation (left) and translation (right) relative calibration errors

with respect to noise level: M1 (—), M2 (---), M3 (- -), M4 (— ).
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Figure 10: Calibration errors with respect to noise level using small motions

(Same conventions as in Fig. 9)
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Figure 11: Calibration errors with respect to the number of calibration mo-

tions using small motions (Same conventions as in Fig. 9)

4.2.4 Influence of motion number

In this experiment, we kept the noise level constant (¥ = 0.01) and generated
sequences of varying length, i.e. from 2 to 15 calibration motions. Their
amplitude was chosen to be small (1 cm in translation and 10 deg in rotation).
For each sequence length, we proceeded to 100 random choices of hand-eye
transformations and calibration motions. The results (Fig. 11) show here

again a higher accuracy for our linear formulation.

4.3 Experiments on real data

When dealing with real data, no ground-truth value is available for compar-
ison. Therefore, we compared, for each motion ¢, A;X and XB,;. We then
gathered all these errors into RMS errors.

4.3.1 Experiment 1

To evaluate the correctness of the solution obtained by hand-eye self-calibration,

we had to compare it with those obtained by classical calibration methods
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Figure 12: In Experiment 1, the camera observes a calibration grid.

with the same data.

Hence, we took images of our calibration grid (Fig. 12) and performed
hand-eye calibration with the axis/angle method [30] (M1), the dual quater-
nion method [8] (M2), the non-linear minimization [15] (M3) and the linear
formulation (M4). Finally, using the same points, extracted from the im-
ages of the calibration grid, but not their 3D model, we applied the hand-eye
self-calibration method (M5). The Euclidean 3D reconstruction method we
used is the one proposed in [6].

The results obtained for a trajectory of 33 positions are given in Fig. 13.
These positions were chosen as far as possible from each other according to
the advice given in [30]. It can be seen that (M4) gives the smallest error in
rotation due to the numerical efficiency of the SVD and thus obtains also a
reduced error in translation. As for (M5), it gives larger errors, as expected
since the 3D model is not used. However, the degradation is rather small and
can be explained by an approximative estimation of the intrinsic parameters.

From this long sequence, we used a RANSAC-like method to compute a
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Figure 13: RMS errors in rotation (left) and translation (right) with 33

images of a calibration grid for each method (see text).

Method | Rotation error | Translation error
M1 1.10.1075 0.018
M2 1.61.107° 0.096
M3 9.77.107° 0.149
M4 0.06.107° 0.023
M5 1.99.107° 0.322

Table 2: Comparison with a robust estimation of the hand-eye transformation

robust estimation of the hand-eye transformation (see [1]). Then, we com-
pared the results obtained above to this robust estimation. We gather the
errors in Table 2. It confirms that the linear method is numerically very effi-
cient, especially as far as rotation is concerned. Moreover, the self-calibration
method yields a lower accuracy, which nevertheless remains acceptable in the

context of visual servoing [11].
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Figure 14: A sequence of 4 images used for hand-eye self-calibration in Ex-

periment 2.

4.3.2 Experiment 2

In a second experiment, we tested (M5) with more realistic images. Four
positions were defined where the images shown in Fig. 14 were taken. In
the first image, points were extracted and then tracked during the motion
between each position of the camera. Then, hand-eye self-calibration was
performed upon the tracked points.

In a goal of comparison, the blocks were replaced by the calibration grid
and the robot was moved anew to the four predefined positions. Then, hand-
eye calibration was performed with the images taken there.

The results of this experiment are given in Fig. 15. They show an awful

behavior of the non linear minimization method, probably due to the small
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Figure 15: RMS errors in rotation (left) and translation (right) with 4 images

(see text).

number of data. They also show a slightly higher degradation of the per-
formance of (M5) compared to the others. Nevertheless, it remains in an
acceptable ratio since the relative error in translation is close to 3%.

To balance the lack of ground-truth, we also compared the results ob-
tained in this experiment to the robust estimation described in Experiment 1
(Table 3). This comparison confirms the accuracy of both the linear method

and the self-calibration scheme.

Method | Rotation error | Translation error
M1 2.7.107° 0.18
M2 2.8.107° 0.22
M3 1.82 1.01
M4 2.3.107° 0.17
M5 2.8.107% 0.20

Table 3: Comparison with a robust estimation of the hand-eye transformation
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5 Conclusion

We proposed a hand-eye self-calibration method which reduces the human
supervision compared with classical calibration methods. The cost of releas-
ing the human constraint is a small degradation of the numerical accuracy.
However, the obtained precision is good enough in the context of visual ser-
voing.

This method is based on the structure-from-motion paradigm, rather than
pose estimation, to compute the camera motions and its derivation includes
a new linear formulation of hand-eye calibration. The linearity of the formu-
lation allows a simple algebraic analysis. Thus, we determined the parts of
the hand-eye transformation that can be obtained from a reduced number of
motions which does not allow a complete calibration. Moreover, the linear
formulation provides improved numerical accuracy even in the case where
the camera/robot rotations have small amplitude.

However, one difficulty with the Euclidean 3D reconstruction with a mov-
ing camera is to be able to find reliable point correspondences between im-
ages. The method proposed in [6] solves this problem by tracking points
along the motion. However, it requires that the points are tracked from the
beginning until the end of the robot trajectory. This is a hard constraint
since, in practice, one hardly obtains enough points after a long trajectory.

Stereo-vision may offer the answer to this problem since it was shown that
Euclidean reconstruction can be performed, without any prior knowledge,
from two Euclidean motions of a stereo pair [10]. This is fully in coherence

with our constraints. Moreover, this kind of method releases the constraint
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on the presence of points along the whole sequence of images.
Finally, there is a pending question which was never answered: “What
are the motions for hand-eye (self-)calibration that yield the higher numerical

accuracy ?”

A Proof of Lemma 1

A.1 Preliminary results

Preliminary result 1 Given two similar rotation matrices R and R’ (i.e.
there exists a rotation matriz R, such that R’ = RxRRxT) then

1) if v is an eigenvector of R® R/, then (I ® R,)v is an eigenvector of
R ® R for the same eigenvalue;

2) if x is an eigenvector of R ®@ R, then (I ® R;)x is an eigenvector of

R ® R’ for the same eigenvalue.

Proof: 1) Let v be an eigenvector of R ® R’ with eigenvalue A. Then,
(R ® R')v = Av. Replacing R’ by R,RR,” in this relation gives:

(R®R.RR,)v = \v
From (A ® B)(C® D) = (AC) ® (BD)|2], we obtain:
I9R,)(R®R)(I® R, )v=2Av
As (A®@B) ! =A"1®B![2], we derive the following relation:
IoR,)T'RR)I®R, v =2Av
Hence, R®R)I®R,")v=\I®R,")v.
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2) Let x be an eigenvector of R ® R with eigenvalue «. Then,
(R®R)x =ax
As I®R,")I®R,) =1, we can insert it on both sides:
RR) (IR, HI®R,)x =a(I®R,T)I® R,)x
which rewrites as:
I®R,)(RR)I®R,)(I®R,)x = ao(I®Ry)x
Hence,

ROR)IQR,)x =a(I®R,)x.

Preliminary result 2 Let Ry and Ry be 2 rotation matrices with non par-

allel azxes. Let R be another rotation matriz. Then,

R, ® Ry vec(R) = vec(R)
= R = 13

R, ® Ry vec(R) = vec(R)

Proof: The previous system is equivalent to
RIR - RR1

RQR - RR2

If R satisfies the first equation, then either R is the identity or it has the
same rotation axis as R;. Similarly, it is either the identity or has the same
rotation axis as Ry. As Ry and Ry have different rotation axes, it must be

the identity. O
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Preliminary result 3 Let R and Ry be two rotation matrices with non

parallel rotation axes. Let M # 0 be a matriz such that

R, ® Ry vec(M) = vec(M)
R, @ Ry vec(M) = vec(M)

Then,
dA£0,M =\
Proof: To write
R; ® Ry vec(M) = vec(M)

is equivalent to say that R; and M commute. Therefore, M is of the form
AR where A # 0 and R is a rotation matrix which commutes with R,. This
can be easily seen by replacing M by its SVD.

Thus, M = AR where R is such that:

RlR - RR1
RQR - RR2
From Preliminary result 2, we obtain R = I3 and M = Als. O

A.2 Proof of Lemma 1

System (26) is equivalent to

Riy, ®@Rpv = v

Ri, ®Rp,v = v
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Under the assumption that the camera motions and the robot motions are
rigidly linked by a constant hand-eye transformation (R, t,) and from Pre-

liminary result 1, this system becomes:
Rz, @ Rp, v = Vv
Rp, @ Rp,v' = Vv
where v/ = (I ® R,”)v. Applying the result of Preliminary result 3, we

obtain that vec ' (v') = MI3. Using the definition of v/ and the properties of

the Kronecker product, we end up in:
vec '(v)R," = M3
where V = vec™!(v). Hence,
V =)R,

Consequently, the matrix V extracted from the null space of (26) is pro-
portional to the hand-eye rotation. The coefficient A is obtained from the
orthogonality constraint: det(R,) = 1. The latter becomes det(V) = \*

which finally gives:

X = sgn(det(V)) |det(V)[*/3
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