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Abstract
In this paper we present an algorithm for face detection

that is based on generic local descriptors (e.g. eyes). A
generic descriptor captures the distribution of individual
descriptors over a set of samples (training images). This
distribution is assumed to be a Gaussian mixture model
and is learnt using the minimum description length prin-
ciple (MDL). A descriptor of an unknown image may then
be classified as one of the generic local descriptors. Ro-
bustness is achieved by using spatial constraints between
locations of descriptors. Experiments show very promising
results.

1 Introduction
Face detection is a well known problem in computer vi-

sion with many potential applications, such as structuring
image databases or surveillance. For recognition of a par-
ticular person the detection of a face in an image is the first
necessary step before comparing the face to a given face
gallery.

In this paper we derive a method for learning a face
representation which is based on generic local descriptors.
These descriptors characterize eyes, nose and corners of
the lips. Each generic descriptor is represented by a Gaus-
sian mixture model which is computed from individual de-
scriptors of sample images. The estimation of the Gaussian
mixture is realized by an Expectation-Maximization (EM)
algorithm combined with a Minimum-Description-Length
(MDL) algorithm. The MDL algorithm allows to select
the number of Gaussians. Moreover, spatial constraints are
used and their variability is described by a Gaussian model.

This face representation is used to detect faces in an un-
known image. We first search for instances of generic local
descriptors. We then verify the spatial constraints between
these descriptors (for example between eyes and mouth has
to be a nose).
1.1 Previous Work

Different approaches for detecting faces exist. These ap-
proaches differ in the face representation as well as in the
learning algorithm. Most approaches use a global repre-
sentation of the face, that is they learn the distribution of
the face patch [5, 6, 9]. The face patch is of high dimen-
sionality and the choice of the learning algorithm is there-

fore important. Moghaddam and Pentland [5] for example
deal with the problem of high dimensionality by first apply-
ing an eigenspace decomposition to the set of face patches.
They then use a Gaussian mixture model to learn the dis-
tribution of the most significant eigenvectors. However, the
number of Gaussians used is not determined automatically.
Sung and Poggio [9] learn the distribution of the high di-
mensional feature vectors by means of a few view-based
face and non-face model clusters. The necessary number of
cluster is determined manually. Osuna et al. [6] use a sup-
port vector machine to learn the distinction between face
and non-face patches. No a priori information such as the
number of cluster is necessary.

Global face representations present several disadvan-
tages. Firstly, they are not robust to occlusions. They are
also not robust to deformations as the face patch is rigid.
Furthermore, a global representation requires learning in the
presence of high dimensional data which is a difficult prob-
lem. It is also more difficult to make a global representation
invariant to image transformations. More recent approaches
therefore use a local face representation [2, 7, 10]. Burl et
al. [2] detect facial features by correlation and use spatial
constraints between these features for verification. Their
face representation is not learnt but selected manually. This
is the main different with our approach where facial fea-
tures as well as spatial constraints are learnt from a set of
samples. Wu et al. [10] build two fuzzy models to describe
skin color and hair color, respectively. These models are
used to extract regions in an “unknown” image. These re-
gions are then compared with a head-shaped model using
a fuzzy pattern-matching method. Rikert et al. [7] describe
a face image by a set of local feature vectors (Gabor fil-
ters). Feature vectors of the training images are clustered
and the most discriminant clusters are used to describe the
face class. They don’t use any spatial constraints for verifi-
cation.

1.2 Overview of the paper
Section 2 explains how to learn a face representation. In

section 3 we explain how to detect faces in an “unknown”
image. Experimental results for detecting faces are pre-
sented in section 4. In section 5 we discuss the potential
extensions of this work.



2 Learning a face representation
A face is represented by a set of generic local descriptors

and spatial relations between these descriptors. Figure 1
illustrates our face representation. The generic descriptors
characterize left and right eye, nose as well as left and right
corner of the lips.
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Figure 1. Our face representation is based
on generic local descriptors and spatial con-
straints.

2.1 Local generic descriptors
Given a training set of face images we select for each

image the same characteristic locations. One of our charac-
teristic locations is for example the middle of the right eye
(cf. figure 1). At each of these locations we compute a lo-
cal descriptor, that is a vector of local image descriptions.
We have used Gaussian derivatives to describe the image
locally. The set of descriptors for a characteristic location
is used to calculate the distribution of a statistical variable
which represents a generic local descriptor and captures its
different aspects. Figure 2 illustrates this idea for the right
eye.

This distribution is estimated using a Gaussian mixture
model. Such a model is appropriate, as there exist a lot of
distinctions between the eyes of different persons (for ex-
ample an Asiatic eye and a European one). A Gaussian mix-
ture model allows to combine very different descriptors by
building different sub-classes. Learning of the sub-classes
is not supervised and is described in the next section.
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Figure 2. Learning a generic local descriptor.

2.2 Estimation of the Gaussian mixture model
The Gaussian mixture model for a generic descriptor
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is defined by
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where � � is the num-

ber of Gaussians of the � th descriptor. Each
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# where � ��� is a weighting component,
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the mean value and
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the covariance matrix. The num-

ber of Gaussians � � and the Gaussian model & �
are it-

eratively determined using a Minimum-Description-Length

(MDL) algorithm. The idea is to try different numbers of
Gaussians and different Gaussian models. At each itera-
tion, that is for a Gaussian model & �

and a number � � of
Gaussians, the parameters � �����������'�! "��� are estimated using
the Expectation-Maximization (EM) algorithm. The selec-
tion of the optimal model is realized by punishing the more
complex models and by taking into account the goodness of
fit. The log-likelihood measures this goodness of fit. The
function to be minimized is

(*),+.- /10�243657),+8- /10:9<;=?>@BA�C ),+8- /D0FEHG?)JI?0
where KL� �M���
# is the log-likelihood measure, N�O�PFQ?� �R���B# the
number of free parameters and S is the number of descrip-
tors used to estimate
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. Details on the MDL algorithm

are given in [1]. In this paper the number of Gaussians �
varies from 1 to 10 and we have used 5 different Gaussian
models. These models differ in the covariance matrix :TVU7W�X - /6Y[Z�\- /�]
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without any restrictions, the so called full covariance matrix. It is the

most complex model.

EM algorithm The EM algorithm is used for finding max-
imum likelihood parameter estimates when there is miss-
ing or incomplete data. In our case, the missing data is the
Gaussian cluster to which the descriptor belongs and the in-
complete data is the labeling of each descriptor to its Gaus-
sian. We estimate values to fill in for the incomplete data
(the ”E Step”), compute the maximum likelihood parameter
estimates using this data (the ”M Step”), and repeat until the
log-likelihood increases by less than 1 % from one iteration
to the next (if this does not happen within 500 iterations, a
stop is forced). A detailed description of the EM algorithm
is given in [3].
2.3 Spatial configurations

Spatial configurations are used as constraints to increase
the detection performance. It is well known that such con-
straints are very powerful [8]. They are represented by an-
gles and length ratios between the locations of the generic
local descriptors. We represent angles and length ratios by
Gaussian variables with mean and standard deviation. This
allows to capture variability due to morphological differ-
ences.

3 Detecting faces
The face representation learnt in section 2 is used to de-

tect faces in unknown images. Figure 3 illustrates the dif-
ferent steps of our face detection algorithm (for correspon-
dence color - generic local descriptor see figure 4). The
first step is to compute a descriptor for each location of the
“unknown” image and to decide which is the most likely
generic descriptor. Such a classification will not reject any
descriptor. We have therefore added a “refusing point step”
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Figure 3. Illustration of our face detection algorithm.

(RPS) which rejects points which are too far from the dis-
tribution. For the remaining points we then compute con-
nected components and the centers of these components.
The final step is the verification of spatial constraints be-
tween the center points. Only configurations which verify
the spatial constraints are kept. Note that in figure 3 only
one configuration verifies the spatial constraints.

left eyeright eye nose left mouth right mouth

Figure 4. Correspondence between colors
and generic local descriptors.

3.1 Classification of a descriptor
A descriptor � of an “unknown” image is classified as

one of the generic local descriptors by the maximum a pos-
teriori principle (MAP).
The probability of a Q -dimensional descriptor � for a
generic descriptor
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3.2 Refusing point step (RPS)

The refusing point step (RPS) rejects points which are
too far from the distribution. This is measured by the Ma-
halanobis distance between the descriptor � and the most
likely generic descriptor C� . As one generic descriptor

� �
may consist of several components
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, the distance is de-

fined as the sum of the distances between the descriptor �
and components
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For each generic local descriptor we determine a distance
threshold. This threshold is learnt from the training set by
calculating the average of the distances and adding a scaled
factor of the variance.
3.3 Computation of connected components

As illustrated in figure 3 to each generic descriptor cor-
responds an region of the “unknown” image. Each region is
extracted by a connected component algorithm and is then
represent by its center. Moreover, very small regions are
rejected.
3.4 Verification of spatial constraints

The spatial configuration of the centers of the connected
components is compared to the learnt spatial constraints to
reject or accept an “unknown” image as containing a face.
If a face is detected, constraints allow to localize the face
position. The verification of the constraints is based on sta-
tistical analysis. To allow for missing detection or occlusion
we do not require all spatial constraints to be verified.

4 Experiment results
4.1 Implementation details

For our experiments we have used five generic local de-
scriptors. They are computed at the following locations :
right and left eye, nose and right and left corner of the lips.
The spatial relations between these descriptors are used for
verification. Image locations in the set of training images
are selected manually.

The individual local descriptors used here are a set of
Gaussian derivatives named ”local jet” by Koenderink and
van Doors [4]. Derivatives are computed up to third order
and for 3 different scales : RTS �VU �
W �NX 	

.
4.2 Experimental setup

The Achermann face database (University of Bern,
Switzerland) used for our experiments contains 300 images
of 30 different persons (cf. figure 5). We have used 150 im-
ages of 15 different persons to estimate our face representa-
tion. The remaining 150 images are used as test images.
4.3 Results of the learning step

The distribution of our generic local descriptors is de-
scribed by Gaussian mixture models. We have used on av-
erage 4 Gaussians and the preferred Gaussian model was&ZY .



Figure 5. Images of the Achermann face
database.

4.4 Results for face detection
Our algorithm correctly detects faces in all of the 150 test

images of the Achermann face database. Figure 3 and fig-
ure 6 show two examples of our detection algorithm. Note
that the refusing point step is crucial to reduce the complex-
ity of the geometric verification.
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Figure 6. Result of our face detection algo-
rithm. The image on the left is the test im-
age. The middle image displays the detected
generic descriptors after the RPS step. On
the right are shown the points which verify
the spatial constraints.

We have also tested our algorithm on face images not
present in the database as well as on non-face images. The
result for a face image is shown in figure 7. Note that the
eyes have been detected correctly, but left and right eye have
been inverted. This is due to the visual similarity of left and
right eye. We have included such an inversion in our spa-
tial constraints. Tests for non-faces images have been con-
ducted on the Columbia database. This database contains
1440 images of 20 3D objects. No face has been detected
for these images. An example is presented in figure 8.

5 Conclusion
We have derived and implemented a face model based

on generic local descriptors and spatial constraints between
these descriptors. Each of the generic descriptors is repre-
sented by a Gaussian mixture model. This allows to capture
the variability of individual descriptors over a set of samples
(training images). Results are significantly improved using
a Refusing Point Step which allows to reject points far from
the probabilistic variable. Spatial constraints allow further
verification and make our method robust.

A straightforward extension is to include others generic
descriptors, that is other characteristic face locations. This
will increase the robustness of our method. The use of color
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Figure 7. Result of our face detection algo-
rithm. The image on the left is the test im-
age. The middle image displays the detected
generic descriptors after the RPS step. On
the right are shown the points which verify
the spatial constraints.

Figure 8. Result for a non-face image. The
image on the left is the test image. The mid-
dle image displays the detected generic de-
scriptors after the RPS step. On the right are
shown the points which verify the spatial con-
straints. No face is detected.

is also a promising extension. Furthermore, we could ex-
tend the algorithm to other types of objects (profile faces,
animals etc.).
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