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Abstract. In this paper, we address the problem of visually guiding and controlling a robot
in projective three-space using stereo vision. As the proposed method is entirely formulated
in projective space, metric models of the system have become obsolete and ”easy-to-find”
projective models of both, the stereo geometry and the robot’s “projective kinematics”, may
be used.

More precisely, a given task is decomposed into its elementary parts, a translation and two
rotations, based on projective constraints on its mobility- and visibility. These primitives
allow trajectories to be defined which are visually and globally feasible, i.e. problems like
self-occlusions, local minima, or divergent control vanish. Although robot guidance through
tracking the trajectories by image-based visual servoing is now feasible, we investigate a
directly computed control which combines feed-forward control with a feed-back error in
each component of the task.

The method is validated and evaluted on a classical benchmark test in visual robot control
– a 180o turn – for which most image-based and stereo-based control laws fail.

1 Introduction

Research in computer vision was very much driven by the robot vision problem, but although many
approaches have been proposed, visual servoing has not made the step yet from ”the labs to the
fabs”, and scientific progress is still being made. It was actually changes in the modeling of the
system that stimulated such progress.

Former position-based approaches are based on CAD-models and precise calibration of cameras
and robots, so open-loop control allows to operate globally on tasks in workspace. Recent image-
based approaches [6] are based on an approximate local linear model of the robot-image interaction,
so closed-loop control allows to operate locally on tasks in image space. These classical approaches
are essentially based on, once a geometric, once a differential, but in both cases on a metric model
of a robot vision system.

Research in computer vision has made significant progress lately in modeling multi-camera sys-
tems by using algebraic projective geometry. One of the most interesting results is three-dimensional
projective reconstruction [9] using stereo vision [7]: The stereo camera provides instantaneously a
representation of depth and 3D structure that is independent of its metric geometry. Consequently,
strong metric calibration and CAD-models are obsolete.



While vision research has focussed on additionally recovering the metric geometry of a system
[4], [16], only a few researcher proposed robot vision systems that no longer rely on metric models
[15], even though such models a very costly and “difficult-to-find”. Curiously, there has been very
little work trying to utilize the above mentioned projective stereo rig, despite its appeal as a
dynamic 3D sensor [8].

In this paper, we investigate how such a projectively modeled robot vision system, which
has already shown to allow for non-metric control in image-based servoing [13], can exploit the
3D capabilities of its sensor in order to overcome the most import problems of the image-based
approach [3], which are: self-occlusion, local minima and divergence in presence of large rotations
in the task.

Overview of the Paper and on the State-of-the-Art

Section 2 gives a minimun of preliminaries useful for reading the paper, where we refer for greater
technical detail to [12]. In section 3, we devise mobility contraints on projective space in order to
define several 1-dof motions – a virtual “visual mechanism” – which are used later to formulate
parameterized trajectory functions. Previous work, such as [2], considers only a single camera and
thus has to use Rouleaux-surfaces as constraints, i.e. a cylinder for a revolution or a prism for
a translation. In contrast, we can define visual mechanisms in three-space from a minimal set of
primitives, even in the projective case.

In section 4, we show for a given 6-dof reaching task how corresponding mobility and visi-
bility constraints can be derived, and how the respective motions decompose the task into three
independent visual mechanisms, i.e. three 1-dof motions. The construction relies on the robot’s
interaction matrix but not on position-based information. A parametric trajectory function is de-
tailed which will later guide the reaching motion. In previous work on visual servoing, explicit
trajectory generation [1] is often related to motions in camera-space but not in task-space, as
desirable. Furthermore, they all rely on metric knowledge. In subsection 4.2, we devise visibility
constraints for an object’s face, leading to constraints among two components of the trajectory but
independent of the third one. Most work on visibility uses reactive local methods to avoid image
borders or obstacles. In contrast, we consider the often neglected but important problem of object
self-occlusion and propose a global analytic solution leading to occlusion-free trajectories.

In section 5, we describe a directly computed control, consisting of a feed-forward part which
guides the motion along a globally valid and visually feasible trajectory and a feed-back part which
drives a Cartesian configuration-error to zero. Recent research shows a tendency towards integrating
3D- or pose information into the original image-based approach [6], aiming for the control-error
to reflect no longer a linear image motion, but a 3D rigid motion [11]. In these approaches, the
calculation of the pose-error is independent of the interaction matrix, and it relies on a (coarse)
metric calibration. Although stability is rarely affected, calibration errors can degrade the system’s
performance, especially trajectories. In our approach, the 3D control-error and the direct control
are calculated at the same time, depending only on an accurate and analytically sound interaction
matrix. Moreover, the proposed non-metric solution is independent of metric parameters and works
in the most general case, i.e. with an interaction matrix from robot joint-space to projective image-
space.

In section 6, we present experiments based on simulation with real data. We validate the
efficiency of our method in a well-known benchmark test, and evaluate its performance. The results
are further discussed in section 7 to finally conclude with perspectives for future work.



Notation. Bold type H,T is used for matrices, bold italic A, a for vectors, and Roman a, b, θ
for scalars, angles, coefficients, etc. Column vectors are written as A, and row vectors as the
transpose hT , where uppercase stand for spatial points, and lowercase for planes or image points.

2 Preliminaries

Stereo Vision in Projective Space. Consider a rigid pair of pinhole cameras with known
epipolar geometry. A corresponding pair of projections P,P′ can be found [9], so that a pair of
image points m, m′ ∈ P

2 can be reconstructed as M ∈ P
3 in a projective space spanned by 5

points, which could be imagined “rigidly linked” with the stereo camera (1). Consider further the
intrinsic parameters K to be fixed. There exists a constant matrix HPE relating the projective and
Euclidean camera frame, and so respective points M and N , up to scale ρ.[

ζ m
ζ′m′

]
=

[
P
P′

]6×4

M , ρ

[
X
Y
Z
1

]
N

=
[
K−1 
aT 1

]4×4

HPE

M . (1)

The projective motion of an object consisting of 5 rigid points is defined through the 4 × 4 ho-
mography between them and can generally be written as a conjugate form to a rigid motion
TRT ∈ SE(3), i.e. a “projective displacement”:

HRT = γ H−1
PE TRT HPE , with γ such that detHRT = 1. (2)

This normalization preserves the hidden scale ρ in M . The latter thus has a hyperplane orbit in R4

under action of HRT , characterized by ρ = (aT 1)M . Thanks to this orbit, applying a projective
motion to a point HRT (t)M results in its projective point velocity Ṁ being well-defined up to
its scale ρ. More generally, for a Euclidean plane p> = (n>d) and point N , their distance is
“descaled” in the projective frame to φ n>H−1

PE HPEN ρ. However, if r> = p>H−1
PE and M have

fix scale, rT M is their projective distance being well-defined up to the fix scale ϕρ.
Finally, let’s briefly state the dual forms (⊥) of some projective representations, as they are

used lateron. For a point or a line through two points, their duals are determined by their nullspace
or kernel ker, being geometrically three or two planes, respectively, which intersects in the point
or the line (3). For a homography H, its dual is H−> acting on planes written as columns a. For a
projective displacement HRT — its conjugacy to the Lie group SE(3) defines by an isomorphism
argument a corresponding Lie algebra, the elements of which we denote ĤRT — its Lie algebra is
dualized like −Ĥ>

RT , a tangent operator also acting on plane vectors a.[
aT

1

aT
2

aT
3

] [
A1

]
= ,

[
aT

1

aT
2

] [
A1 A2

]
= , H ⊥ H−>, ĤRT ⊥ −Ĥ>

RT . (3)

Robot Kinematics in Projective Space [12]. Consider an uncalibrated stereo rig observing
a robot manipulator and continuously reconstructing some marked points on the end-effector, say
five of them (Fig. 3). The effective projective motion of the end-effector is a product of the joints’
projective motions: a projective rotation HR(θ) of a revolute joint (4), or a projective translation
HT (τ) of a prismatic joint (5). Mathematically, these are conjugate representations of the classical
one-parameter Lie groups SO(2) and R

1, where the elements of the corresponding Lie algebras
will be denoted as ĤR, or ĤT . Conjugacy preserves this underlying algebraic structure and thus



allows to manipulate the projective representations without resolving the conjugate form, which
is actually by HPE (2), containing all the metric parameters. Therefore, respective formulae for
going from “ algebra-to-group” (left), and from “group-to-algebra” (right) can be shown to have
the closed forms:

HR(θ) = I + sinθĤR + (1 − cosθ)Ĥ2
R, ĤR = 1

2 sin θ (HR − H−1
R ), (4)

HT (τ) = I + τĤT , ĤT = 1
2τ (HT − H−1

T ). (5)

Practically speacking, this means on the one hand that an observed trial motion (Hi(qi) ∈ group)
for each single joint i defines the corresponding tangent operator (Ĥi ∈ algebra), which geomet-
rically is a twist. On the other hand, joint values readings qi = θi or τi, in association with a
projective kinematic model, which actually consists of these (six) joint operators Ĥi, allow the
forward kinematics Hq(q) to be written as the product-of-expontial (6), where each exponential is
of one of the above analytic forms: HRi(θi) or HTi(τi).

Hq(q) = H̄6(q), H̄i(q) = exp(q1Ĥ1) · · · exp(qiĤi), ∂Hq/∂qi

∣∣
q=0

= Ĥi. (6)

This kinematic model is relative to the robots “zero” q = 0, for which the robot Jacobian JH ,
defined in terms is of its partial derivatives, evaluates trivially to the matrices Ĥi (6). Further
below in section 5, the general form for q 6=  can be found, based on the “truncated” products H̄i

given above(6). For the moment, let’s consider an end-effector point M and derive its projective
velocity Ṁ = d

dtHqM , and its image velocity ṡ, where G(m) = (m1
m3

, m2
m3

)> is the perspective
projection map with Jacobian JG(m = PM):

ṡ =

[
1

m3
0 −m1

m2
3

1
m3

0 −m2
m2

3

]2×3

JG

PṀ , Ṁ =

[
Ĥ1M , · · · , Ĥ6M

]4×6

JH

q̇. (7)

3 Projective Mechanisms

In this section we show how the interaction matrix JH of a projective kinematic model can be
“decoupled” by means of very basic constraints on the visual domain, i.e. on projective space in
the most general case. The visual formulation of these constraints will allow the decoupling to
reflect the geometry underlying the current task (section 4.1), to represent visibility conditions
(section 4.2) and feasible trajectories (section 4.3), and to directly control joint-velocities which
drive the visual mechanisms (section 5.2).

Translation along an Axis. Given two points1 A1, A2 defining the translation’s direction.
Their dual is a pencil of planes, spanned by two planes a>

1 , a>
2 , with both points on its axis. The

only rigid motion for which both planes have zero velocity is a translational motion along this
axis. For −Ĥ>

i being the plane-operators corresponding to the ith joint, the joint-space motion
q̂T generating this translation thus equals the kernel in (8), resulting in the corresponding one-
dimensional group of projective translations with operator ĤT :

q̂T ν = ker
[−Ĥ>

1 a1 . . . −Ĥ>
6 a1

−Ĥ>
1 a2 . . . −Ĥ>

6 a2

]
, ĤT = q̂T1Ĥ1 + · · · + q̂T6Ĥ6. (8)

1 We assume for the sake of simplicity only finite points and finite planes.



Revolutions around an Axis. Given two points A1, A2, the only rigid motion for which both
points have zero velocity is a revolution around the axis between the points. For Ĥi being the plane-
operators corresponding to the ith joint, the joint-space motion q̂R generating this pure rotation
writes as (9), yet not scaled to radians. The operator ĤR (9) of the corresponding one-dimensional
projective rotation group, i.e. its eigenvalues allow to do so.

q̂R ν =
[
Ĥ1A1 . . . Ĥ6A1

Ĥ1A2 . . . Ĥ6A2

]
, ĤR = (q̂R1Ĥ1 + · · · + q̂R6Ĥ6), (9)

where ν is chosen such that ĤR has eigenvalues i,−i.

Revolution around a Point in a Plane. Another visual constraint for a revolution is as
follows: Given a plane a>

1 and a point A1, not necessarily on this plane. The only rigid motion for
which both, the plane and the point, have zero velocity is a revolution around an axis perpendicular
to a>

1 and going through the point A1. For Ĥi and −Ĥ>
i being the point- and plane-operators, the

corresponding joint-space motion q̂P and its group-operator ĤP are calculated and normalized as
follows:

q̂P ν = ker
[−Ĥ>

1 a1 . . . −Ĥ>
6 a1

Ĥ1A1 . . . Ĥ6A1

]
, ĤP = (q̂P1Ĥ1 + · · · + q̂P6Ĥ6). (10)

where ν is chosen such that ĤP has eigenvalues i,−i.
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Fig. 1. Three partitions of task. Fig. 2. Visibility.

4 Trajectories

In this section we show how a task defined for three marked points on an object-face can be
partioned into well-defined components: a translation and two rotations, and how respective well-
defined trajectories can be generated such that they realize the overall task while at the same
time assuring the visibility of the face. Note that in the final trajectory functions (4.3), the three



components of the task will be driven simultaneously. Above that, the aspect of partitioned and
controlled trajectories assures global ”validity” of the visual control, which will be extended in
section 5 to have a feed-forward alike behaviour, as known from classical workspace control, while
at the same time keeping the advantages of a feed-back control.

4.1 Partitioning

The first component (translation of center) is to choose one marker or the marker’s midpoint
as a center point Ac in order to partition the task into a pure translational motion of the center
and its face, modulo a residiual rotation Hs of the face around the center. The respective operator
Ĥt is obtained by applying (8) to the center’s current and target position, Ac and Ac∗, whereas
the amplitude τ of translation is obtained by intersecting the straigh-line path of Ac with a
transversally oriented plane a>

c∗ through Ac∗ (Fig. 1, left)

a>
c∗

(
I + τ Ĥt

)
Ac = , τ = − a>

c∗Ac

a>
c∗ĤtAc

. (11)

In order to further reason about the residual rotation, the translation of the points has to be
eliminated ”as if it were already done”. In this sense, the effect of the first step is anticipated by
applying the projective translation Ht(τ) = I+ τĤt ”backwards” onto the target primitives, label
then with a subscripted t.

Ait = Ht(−τ)Ai∗, at = H−>
t (−τ)a∗ (12)

The second component (rotation onto plane) is to choose the line of intersection between
the initial face and the translated target face as an axis of revolution in order to partition the
remaining task Hs into a rotation Hr(θr) of the face around this axis modulo a residual rotation
Hp within the face plane (Fig. 1 center). The respective operator Ĥr is obtained by applying (9)
to two points dual to the planes a> and a>

t , whereas the angle θr requires to intersect the circular
path of a properly chosen point Ad with the anticipated target plane a>

t (13). The resulting first-
order trigonometric equation in θr and coefficients p0, ps, pc (14) has an analytic solution which is
found by half-angle substitution and solving a quadratic equation (15).2

a>
t

(
I + sin θrĤr + (1 − cosθr)Ĥ2

r

)
Ad = 0, (13)

p0 + ps sin θr + pc cos θr = 0, (14)

θ+
r = arctan2(α(p0, ps, pc), β(p0, ps, pc)), θ−r = π − θ+

r (15)

Again, the effects of the second step can be anticipated by applying the projective rotation Hr(−θr)
now to the beforehand translated target primitives t, which are then labeled with a subscripted r.

Air = Hr(−θr)Ait, ar = H−>
r (−θr)at (16)

The third component (rotation within plane) is to choose a planar revolution of the face in
order to finally move the markers onto the anticipated target positions Air by means of a rotation
2 If demanded, full technical detail can be provided as an appendix.



Hp(θp) in a> around Ac. The respective operator Ĥp is obtained applying (10) to a> and Ac,
whereas the angle θP again requires intersecting the circular path of a point Ae with a transversally
oriented plane a>

i through the corresponding target point Air (Fig. 1, right). Once this plane
determined, e.g. as the span of Air , and two points Ac1, Ac2 on Ĥp’s axis, the calculations are
analogous to (13)ff.

4.2 Visibility

General projective coordinates are “unoriented”, so the distinction between the front- and backside
of the face can only be defined incrementally by way of relating the current to an initially visible
or invisible position of the face. For a displacement of the face, it changes visibility if-and-only-if
for the respective “dual” motion of the optical center O, the latter changes sides with respect to
the face’s plane, i.e. if a> ·O changes sign.3 For the above introduced one-parameter motions such
an event is precisely characterized by an amplitude τ0, or a pair of angles θ+

0 , θ−0 , resulting from
(11), or respectively (13)ff, applied to the optical center (Fig. 2, right).

Thus, if the task requires to translate towards and beyond τ0, pure translational feed-forward
is limited to δτ0, 0 < δ < 1 properly chosen, and a respective reorientation of the face is required
before τ0. However, if the task requires to rotate one plane onto another, there exists always two
trivially ambiguous solutions (15), where the one outside θ0 /∈ [

θ−0 , θ+
0

]
changes visibilty and the

other one does not. This argument is used for section 4.3 particularly to determine the “right”
sense of θr (15), such that the frontside but not the backface is turned towards to camera (Fig.
2). Additionally, heavy use is made of this argument in the implementation of section 4.1 in order
to avoid turning the face backside onto its fronside, or vice versa (Fig. 1). Besides that, there are
only three simple classes of motions which don’t affect visibility: a translation along the optical
axis, revolution around the optical axis, and thirs a planar motion of the feature points within
their plane, which is the component Ĥp of our trajectories that doesn’t affect visibility. Please that
that in presence of the second stereo camera, the above arguments apply independently to both of
them, such that the most conservative solution has to be taken.

4.3 Generation

We now show how to create continuous trajectories that simultaneously drive the three independent
parts of the task. Basically, what we will obtain is a “Cartesian motion” of the face with respect to
the chosen center (Fig. 5). As for the product-of-exponentials (6), the product has to be in reverse
order for the trajectory function to have the desired characteristics:

Hd (τ(σ), θr(σ), θp(σ)) = exp(τ(σ)Ĥt) exp(θr(σ)Ĥr) exp(θp(σ)Ĥp), (17)
τ(σ) = µd(σ)τ, θr(σ) = µr(σ)θr, θp(σ) = µp(σ)θp, (18)

where the µ are monotonically growing functions [0, t∗] → [0, 1] subject to visibility constraints.
More precisely, µp(σ) is always unconstrained, whereas the visibility constraints on µr and µt

are coupled: if H−>
r (θP (σ))a is visible then µt(σ) < τ0, and µt(σ) > τ0 otherwise. Vice versa, if

H−>
t (τ(σ − 1))a∗ is visible then µr(σ) < θ0, and µr(σ) > θ0 otherwise. Remember that θ0,τ0 are

the values where visibility changes.
3 Remember that projective displacments do preserve the scale of orbit ρ and especially their sign.



Either of these cases can be used to drive a feed-forward in either τ or θr while constraining
the other correspondingly. Clearly, a linear decay of time-to-goal arises for µ(σ) = σ, whereas
exponential decay arises for µ(σ) = 1 − exp(− σ

t∗ ) like in a classical feed-back loop. Additionally,
an initial very flat plateaux in the respective µ allows to implement trajectories like rotation-
first, transation-first, planar-first, etc. Although robot guidance through tracking the trajectories
by image-based visual servoing is now feasible, we investigate a directly computed control which
combines feed-forward control with a feed-back error in each component of the task.

5 Control

In this section we devise a feed-forward strategy to steer a control loop towards trajectories defined
under the restrictions imposed by visibility or by additional trajectory constraints µ(σ), where
image feed-back implicitely results in a 3-dof or 2-dof Cartesian control-error. So, the control-error
will reflect a 3D rigid motion and no longer a linear image motion. For directly applying the results
of the previous section, however, we have to manipulate the projective kinematic model to come
up for varying joint configurationa as arising during robot motion.

5.1 Projective Kinematics of a Moving Robot

The kinematic model as it has been presented so far is valid only around the zero of the robot. For
the robot in a general configuration qg, it has to be expanded around qg, which actually means to
shift the joint-space like q(t) = q0(t) − qg, where values coming from the former zero q0 =  will
be label with a superscripted 0. So, all equations remain valid as long as the model can always be
shifted such that q(t) = 0. This is done in (19), which is intuitively explained as follows: for each
joint i, first its own displacement expressed by the truncated forward kinematics H̄i = H̄i(qg) (6)
must be undone, whereupon the velocity q̇i can be applied to operator Ĥ0

i as beforehand, after
that, it must return to qg, again.

Ĥi

∣∣∣
qg

= H0
i · Ĥ0

i · Ĥ0−1

i , JH

∣∣∣
qg

(M(t)) =
[
Ĥ1M(t) · · · Ĥ6M(t)

]4×6

(19)

The current value of the Jacobian and of Hq can now be calculated as in (6), however using the
current values of the operators and of the projective points M(t). Summarizingly, we have an
analytical expression for the instantaneous model of the robot’s kinematics and Jacobian, both
projective, the latter being a local linear model of the interaction between joint-velocities and
projective- or image-velocities. So, the joint-space motions q̂ arising in sections 3 and 4 can be
used to directly control the robot!

5.2 Direct Control

At each iteration, consider the current operators Ĥi and the current 3D-reconstruction4 of the
markers as input Ai = Mi(t) to the task partitioning in section 4.1, and determine for the 3D-
reconstruction of the targets Ai∗ the three joint-space motions q̂t, q̂r, q̂p which correspond locally
around qg to the desired robot motions. The distance-to-target along the trajectory is thus taken

4 Again, we allow for the general case of a projective reconstruction.



as 3-dof feed-back error (τ, θR, θP ) which allows to compute directly the joint-command as a gain-
weighted sum (20). However, a systematic integration-error is arising in this control law (21),
since the rotational motions Ĥr,p do not commutate, and thus fail to integrate to the desired
trajectory Hd (17). For the gains being small, however, or for the control being recalculated at high
frequencies, this version directTHREE of the direct control should allow executing a complicated
reaching task without the deviations from the desired behaviour becoming too strong.

e = (τ, θr, θp)>, − ė = (λt, λr, λp) e, q̇ =
[
q̂t q̂r q̂p

]
ė, (20)

Hd(ė) ≈ exp(λtτĤt + λrθrĤr + λrθrĤp), for θr, θp small. (21)

By construction, the feed-forward is such that the center is undergoing a pure translation, and the
face is undergoing the pure rotation Hs = exp(θsĤs) around the center. These two motions are in
fact decoupled, as the summed operators can be shown to integrate as expected (22). Hence, this
part of directTHREE is valid and so λt can be set as high as visibility permits.

In consequence, the second version directTWO is based on a single effective rotation (e.g. for
constant λr

λp
), controlling the 2-dof feed-back error (τ, θs)> now however by a sound direct sum

q̂t + q̂s, where q̂s is the rotation’s joint-velocity (23).

exp(λtτĤt) exp(λsθsĤs) = exp(λtτĤt+λsθsĤs) (22)

e = (τ, θs)>, − ė = (λt, λs) e, q̇ =
[
q̂t q̂s

]
ė, Ĥs = Σk

i=1q̂siĤi, (23)

In order to find this rotation, we make us of the Campbell-Baker-Hausdorff formula (CHB) known
in Lie-group theory. For two given operators, it relates their product-of-exponentials to the expo-
nential of an (infinite) sum of higher order Lie brackets [Ĥr, Ĥp]5 of the operators. In contrast to
truncating this sum as done in [5], we have for our case a direct solution (24), [14] since Ĥr and Ĥp

are both conjugate forms of so(3), the Lie algebra of 3D rotations, here those around the center
point. Note additionally that only a and b in (25) have a cos term, so the first-order approximation
in (21) is valid.

e(θrĤr)e(θpĤp) = e(θsĤs), Ĥs = (sin θs

2 )−1
(
aĤr + bĤp + c

[
Ĥr, Ĥp

])
, (24)

a = sin θr

2 cos θp

2 , b = cos θr

2 sin θp

2 , c = 2 sin θp

2 sin θr

2 . (25)

6 Experiments

In this section, we validate and evaluate the above theoretical results on benchmar test configura-
tion which is known to be a degenerate one in the monocular case[3]: a rotation of 180o around the
optical axis, i.e. the stereo rig’s roll axis in our case (Fig. 3). Additionally, a potential self-occlusion
is enforced by the face having a transversal orientation relative to the image planes. Besides that,
the chosen dimensions correspond to them of our experimental system and the projective kinematic
data was taken from a former self-calibration experiment [13]. First, three classical stereo servoing
laws are tried (Fig. 4): pseudo-inverse of the stacked Jacobians [8], their block-wise pseudo-inverse

5 [Ĥr, Ĥp] = ĤrĤp − ĤpĤr = H−1
PE T̂rT̂p − T̂pT̂rHPE = H−1

PE [T̂r, T̂p]HPE , with T̂r,p having the classical
anti-symmetric form of so(3) as upper 3 × 3 block.



[10], and a Jacobian for 3D Euclidean(!) points (like (6) but in Euclidean space). The second one,
which basically sums two independent monocular controls, diverges while moving towards infinity.
The other two run into the self-occlusion while moreless translating towards the target straight
into a local minimum. Both slowly manage to escape due to some perturbations, and turn the face
almost in-place, again through a self-occlusion, before finally converging.

o
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+ +
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Fig. 3. Experimental setup. Fig. 4. Failure of classical stereo visual servoing

Second, trajectory generation from section 4 is tested. Figure 5 illustrates the solutions found
using (17), where all the µ(σ) are linear and µt is rather steep in Fig. 6. The figures are rendered
from a central view close to the stereo center, thus evidently the self-occlusion has been successfully.
Besides this illustrative example, each iteration of the direct control consists of a newly generated
feed-forward trajectory. So, the control experiments also validate the reliability and precision of
the trajectories (Figs. (10), (9)).
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Fig. 5. Trajectories: visibility is preserved. Fig. 6. Trajectories: early translation.

Third, the two control law are compared with respect to the intrinsic bias of directTHREE (21).
Figure 7 shows this as a very small deviation of their image trajectories. More remarkably is the
center point’s deviation from the desired straight-line trajectory. Also figure 8 shows this deviation,



but decreasing with smaller gains. A first conjecture is that this behaviour reflects the integration-
error between the desired “Carthesian”-velocities Ĥ and the actually driven joint-velocities q̂. This
is confirmed by the innermost trajectory for which the joint-velocities were limited to 5o.

directTWO

directTHREE

gain 0.1
0.5

0.1 + 5
0.1
0.75

o

gain

Fig. 7. directTHREE versus directTWO. Fig. 8. Various gains + joint-speed limit.

Forth, both control-errors (20), (23) are confirmed to have exponential convergence rate (Figs.
9, 10). In the case of directTHREE, the translation error τ , which is ambiguous by the center’s
scale ρ, is normalized to 100, and its decay is compared to Euclidean ground-truth. The evident
difference is only an apparent one, since it is actually absorbed by a reciprocal scaling of q̂t.
In addition to that, the influence of using a projective model is compared to using a respective
Euclidean one, where for both the direct control was run, resulting in an almost perfect overlap of
the curves for θr and θp (Fig. 10). The results of the directTWO law, once with and once without
limited joint-speed, is depicted in figure 9. The curve of θs clearly reflects the task’s overall rotation
of 180o, which was beforehand split between two rotational motions.
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Fig. 9. directTWO: control-error. Fig. 10. directTHREE: control-error.

Fifth, the error of the marker’s image projections as plotted in figure 11 clearly shows that
it no longer has an exponential decay, not even a monotonic one. The zero-line actually reflects
the center’s straight horizontal trajectory. Finally, the corresponding trajectories in joint-space are
given in figures 12, once without and once with the 5o limit. Apparently it is the initially high



velocities of q1 and q3 which are the cause for the above mentioned integration-errors resulting in
a drift away from the straight line.
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7 Discussion and Perspectives

In summary, we have presented an efficient method for visual guidance and control of a robot in
projective space. It is based on stereo vision and a projective model of the robot vision system,
thus independent of its metric geometry. The described mobility- and visibility constraints exploit
spatial information from the stereo, aiming to guide the robot along visually feasible trajectories
and so assure global validity of the visual servoing. The proposed control combines the advantages
of t3D configuration is obtained. The experiments show the efficiency of the visual control scheme,
where the identified “drift” away from the nominal behaviour is due to the systematic difference
between integrating joint-velocities and Cartesian velicities and is typical for low control rates. The
compensation of this drift in the feed-back part is straight-forward, but an important trade-off has
to be made: tracking a once calculated trajectory or recalculation on-line new trajectories.

In conclusion, the presented formulation of trajectory functions from visually defined motion
primitives significantly improves the performance of visual servoing systems and extends its range
of applicability together with the high flexibility of now available non-metric systems. Future
work should further exploit the underlying geometry of the problem in order to come up with
task description beyond simple reaching and control laws allowing to execute such complex task,
especially their dynamics.
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