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Abstract

The appearance of non-rigid objects detected and
tracked in video streams is highly variable and therefore
makes the identification of similar objects very complex.
Furthermore, indexing and searching of them represent a
very challenging problem in computer vision. This paper
presents a framework for object-based matching that in-
creases the robustness of existing feature detectors used
for object recognition. The Gaussian mixture densities are
used to model intra-shot variations of observed features of
tracked objects. This process is achieved by the EM al-
gorithm which separates feature distributions given by a
tracked object into homogeneous clusters. We use seven
different variants of Gaussian mixtures and the Bayes in-
formation criterion to identify the best structure of the data
(model and parameters). Experiments are conducted on a
video sequence of fifteen different tracked objects and com-
parison in the performance of the mixture approach and the
two key-frame methods is analyzed and reported.

1. Introduction and Motivation

Video has a rich implicit temporal and spatial structure
based on shots, camera and object motions, etc. To enable
high level searching, browsing and navigation, this implicit
structure needs to be made explicit [6]. For this purpose,
cut detection [1] and object acquisition [4] are performed
first. A classification strategy of these objects into homoge-
neous classes will create links in the video stream, allowing
for instance to jump to the next shot where the same person
appears. So, the navigation and search will become more
powerful and less time consuming for the users in numer-
ous domains that motivate the research in this area: video
surveillance, human-computer interaction, etc.

Content based indexing of non-rigid video objects us-
ing low-level visual image features is still a challenging re-
search problem in computer vision for the two following
reasons. (1) The nature of video is dynamic: rotations, oc-
casional occlusions, variable illuminations, etc. Therefore
recognition with classical methods [3] gives poor results.

(2) The number of occurrences of all detected objects in
shots is enormous; for example,

�����������
objects can be lo-

calized in an MPEG video of
�
	����

(assuming one object
per image).

One popular way in video indexing consists of represent-
ing shots by “representative” key-frames [8]. This is reason-
able in the case of still shots. However, most video shots are
moving and the representative key-frame technique can not
easily handle the resulting intra-shot variability of features.
Figure 1 illustrates the variability of a tracked object in a
shot of

���
frames; the left side shows four different occur-

rences of a child running from sunlight into shade. At the
beginning, the child progressively appears and at the end of
the shot he disappears. The right side illustrates the very
significant evolution of the first principal components of
their RGB histograms over time. This makes clear that a
flexible video object recognition process should not be lim-
ited to representative key-frames, but should take into con-
sideration the temporal intra-shot variations of features. For
example, as above, changes from sunlight into shade pro-
duce a significantly bimodal distribution with two different
mean colors, one for each lighting condition.
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Figure 1. Intra-shot appearance of the run-
ning child (frames 1,10,16 and 25 of 26) (left);
significant variability of their RGB histograms
over time (right)

In order to overcome these difficulties, we propose in
this paper the use of mixture densities to capture the intra-
shot variability of features of “tracked object models” and



then to identify the class of a novel occurrence image in
the video. We use the EM algorithm [2] to find homo-
geneous clusters in the feature space of a “tracked object
model” and seven different variants of Gaussian models to
describe the feature distributions. In order to identify the
best fitting model for recognition (among these seven) and
to choose the optimal number of components (clusters) for
each feature distribution we use the Bayes Information Cri-
terion (BIC) [10].

Our approach deals with the general problem of non-
rigid object recognition and consists of improving robust-
ness of existing recognition methods. Also, it allows a more
compact model which speeds up the retrieval process. The
organization of this paper is as follows: Sec. 2 introduces
previous work done in the area and relevant approaches to
the present work, Sec. 3 gives a brief description of the
framework, Sec. 4 details our approach, and sec. 5 ex-
hibit its experimental behavior. Finally, sec. 6 discusses the
performance of the proposed approach and section 7 gives
some conclusions and perspectives.

2. Related work
Mixture of Gaussian distribution is becoming more pop-

ular in the vision community. For the problem of motion
recognition, Rosales [9] evaluates the performance of dif-
ferent classification approaches, K-nearest neighbor, Gaus-
sian, and Gaussian mixture, using a view-based approach
for motion representation. According to the results of his
experiments on eight human actions, a mixture of Gaussians
could be a good model for the data distribution. McKenna
[7] use the Gaussian color mixture to track and model face
classes in natural scenes (video). This work is the closest to
the contribution presented in this paper; it differs mainly by
the input data which are tracked objects in our case, and in
technical details like Gaussian models and the related crite-
rion.

3. Description of the framework
Basic segmentation. In order to build up a frame-to-

frame links between video objects, two visual tasks are re-
quired before running the classification process: video-shot
segmentation and object acquisition. The Video-shot seg-
mentation segments the sequence into temporal slices. In
our system we have implemented the method of [1] which
is based on the detection of the dominant motion in the suc-
cessive images. The Object acquisition task is done by
detecting and tracking moving objects through the frames
of a single shot. For this purpose, dominant motion and
cross-correlation are widely used. Our system implements
the method of [4] which uses the dominant motion to detect
and track independently moving objects; otherwise, static
objects are manually selected and tracked.

Registration system for the classification. A set of
different tracked objects are labeled by the user using the

registration system designed for this work. For each dif-
ferent object in the video, one tracked object is selected.
It is called “tracked object model” in the rest of this pa-
per. Data (features) from different tracked object models
are collected and labeled. For each tracked object model,
we use a Gaussian mixture density to model the intra-shot
variability of its collected features. The high dimensional
feature space is reduced in a statistically optimal way us-
ing the Principal Component Analysis (PCA). However, as
we will see in sec. 5 and 6, this reduced feature space is
still of high dimension with respect of the number of oc-
currences of tracked objects in short video shots (duration� ���

). Therefore the fitting of arbitrary Gaussian mixtures
is often highly under-constrained due to limited data and the
“curse of dimensionality”. To make the fit stabler, we intro-
duce in the next section a selection of constrained Gaussian
models with constraints on the form (linear, spherical, ...),
the number of estimated parameters and especially the co-
variance matrix.

4. Gaussian mixture for classifying objects

Let � be the set of different tracked object models la-
beled by the user. Each tracked object has different image
occurrences, and each occurrence belongs to one and only
one of � tracked objects. This means that each occurrence
has a class label. Let ��� be the feature vector of dimension �
that characterizes the occurrence � . During the tracking pro-
cess, ��� is variable due to all conditions listed in the intro-
duction. Let 	 to be the set of feature vectors data collected
during this tracking. The distribution of 	 is modeled as a
joint probability density function, 
������	������ where � is the
set of parameters for the model 
 . We assume that 
 can
be approximated as a � -component mixture of Gaussians:

����� ����������! #"%$ �'& �(�)� *+� where the $ � ’s are the mixing
proportions and & is a density function parameterized by
the center and the covariance matrix, *,�-�(.+�0/1� . In the
following, we denote � � �2� $ � �3. � �4/ � � , for 56� � �879787)�8�
the parameters to be estimated.

As the moving object is tracked, � � varies in a continuous
way. However, this continuous track in the feature space is
unpredictable due to various conditions, for instance par-
tial occlusion. Figure 2 illustrated the distribution of the :
tracked object models of figure 3, in the three principal com-
ponents of the RGB histogram space. Each of them has to
be modeled by a mixture of several Gaussian distributions.
The covariance ellipses of these components are shown.

Parameters Estimation. Mixture density estima-
tion is a missing data estimation problem to which the
EM algorithm [2] can be applied. The type of Gaus-
sian mixture model to be used (see next paragraph) has to
be fixed and also the number of components in the mix-
ture. If the number of components is one the estima-
tion procedure is a standard computation (step M), oth-
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Figure 2. Modeling the variability in the RGB
space of the 4 object models of figure 3

erwise the expectation (E) and maximization (M) steps
are executed alternately until the log-likelihood of � sta-
bilizes or the maximum number of iterations is reached.
Let � �

�
� ��� � � � ������� � � �
	�� ���� be the observed

sample from the mixture distribution 
����� ��� . We as-
sume that the component from which each � � arises is un-
known, so that the missing data are the labels �9� �� �
� �879787)� � � . We have �8� � 5 if and only if 5 is the
mixture component from which ��� arises. Let � �
��� " �878797)����� � denote the missing data, � 	�� � , where � �� � �978797 �8��� . The complete sample is � � ��� " �878797�� �!� �
with � � � �� � ��� � � . The complete log-likelihood is

� �� � � �6� � ��  #"!"$#&% �
� ��! #"%$ �9& ��� � � . � �0/ � �'� 7 More de-

tails on the EM algorithm could be found in [2]. Initializa-
tion of the clusters is done randomly. In order to limit de-
pendence on the initial position, the algorithm is run several
times (

�
�
times in our experiments) and the best solution is

kept.

Gaussian models. Gaussian mixtures are sufficiently
general to model arbitrarily complex, non-linear distribu-
tion accurately given enough data [7]. When the data is
limited, the method should be constrained to provide better
conditioning for the estimation. The various possible con-
straints on the covariance parameters of a Gaussian mix-
ture (e.g. all classes have the same covariance matrix, an
identity covariance matrix, .. ), defines

� : models. We
have implemented the following seven models derived from
the three general families of covariance forms: ( " �*),+� �
and (.- �/) + � the simplest model from the spherical fam-
ily ( � is the identity matrix); ( + �0) +� Diag � � " �878797�� � � �

av404.51 av424.51 av456.51
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av53.177 av65.177 av80.177

av903.136 av915.136 av943.136

Figure 3. Subset of tracked object models

and (.1 �2) +� Diag � � � " �978797)� � � � � from the diagonal family

where �Diag � � � " �878797)� � � � �'� � �
with unknown

� � " �879787)� � � � ;(�3 from the general family which assumes that all com-
ponents have the same orientation and identical ellipsoidal
shapes; (54 from the general family which assumes that all
covariance matrices have the same volume; Finally, (76 is
the most complex model with no restrictions. See [2] for
more details about their complexity and their maximization
step of the EM algorithm.

Model choice criterion. To avoid a hand-picked
number of modes of the Gaussian mixture, the Bayes In-
formation Criterion (BIC) [10] is used to determine the
best probability density representation (appropriate Gaus-
sian model and number of components). It is an approach
based on a measure that determines the best balance be-
tween the number of parameters used and the performance
achieved in classification. It minimizes the following cri-
terion: �8��9 �:( � �<; � �>=@?BA8=�C � � � � where �>= is the
maximized log-likelihood of the model ( and A = is its
number of free parameters.

Probabilistic recognition process. A set of � tracked
object models has been selected by the user, and each one
has been modeled by a Gaussian mixture. In order to be able
to classify a new occurrence (region) in the video, to one
of these learned classes, we collect their corresponding �
Gaussian mixtures to only a global Gaussian mixture of D
components, where D � �BEF  #" � F and � F is the number of
components of the C th Gaussian mixture. For that, the mean
and covariance of each component of the global Gaussian
mixture being build are held fixed and only the proportion
parameters are recomputed. Using the maximum a posteri-
ori probability we classify novel occurrences in the video.

5. Experiments

Object models. Experiments have been performed on
a decompressed MPEG sequence of

�
� �
�
frames, extracted



from the Avengersmovie (INA). Using our system it was
segmented into

�
�����
object occurrences corresponding to� �

tracked objects.
���

different tracked objects were se-
lected (randomly) and labeled in shots using the registration
system designed for this work. Thus, :�� � different views of
them were collected to estimate parameters of the Gaussian
mixture density. Figure 3 displays

�
different occurrences

of each one of the : learned tracked object models.
Features. The approach is evaluated using gray and

color global features resumed by histograms. The his-
togram approach is well known as an attractive method for
object recognition because of its simplicity, speed and ro-
bustness. The RGB space is quantized into

� : colors, and
the gray-scale one into

� �
intensities. Then, the PCA was

applied on the entire set of initial data of the each feature
space in order to reduce their dimensionality ( ��� in table 1).
This is an important step to overcome the curse of dimen-
sionality where the number of samples of an object model is
not in general sufficient to fit an optimal Gaussian mixture
model.

av514.69 av671.92 av717.99

av746.159 av759.159 av764.161

av260.30 av367.49 av583.81

av832.117 av953.136 av841.117

Figure 4. Subset of tracked object tests

Queries. Each occurrence image of tracked objects can
be considered as a potential query. The class of such query
is obtained using the maximum a posteriori probability rule.
However, we can make use of the tracking within a shot
to make more robust decision, particularly when some im-
ages are heavily distributed due to occlusions or other un-
predictable events. For such case, a robust decision is im-
plemented through a majority decision rule: the final class
is the class for which most of each individual belongs to; a
threshold of

���	�
consistent answers is required, otherwise

the classification process rejects the query. The query set
consists of

�
�����
individual queries which corresponding to� �

different sequences of tracked objects.
Results. To measure the performance of methods

we compute the percentage of total correctly classified

Meth. feat. �
� MaxNbC Total
hist. or dist. indi.

�
trac.

�

mix. gray 5 1 45.80 45.69
mix. gray 5 2 52.10 51.00
mix. gray 5 3 49.42 45.47
mix. gray 5 4 56.57 54.53

key gray 16 � + 31.12 32.10
key gray 5 �
� 32.95 33.72

mean gray 16 � + 30.09 31.56
mean gray 5 � � 32.00 33.72

mix. RGB 10 1 73.65 82.99
mix. RGB 10 2 79.10 86.10
mix. RGB 10 3 81.50 86.30
mix. RGB 10 4 71.09 73.87

key RGB 64 � + 45.16 45.91
key RGB 10 �
� 42.90 44.50

mean RGB 64 � + 43.09 45.00
mean RGB 10 �
� 47.90 45.50

Table 1. Test results with Gaussian mixture (mix.),
Key-frame and mean-histogram methods.

queries: individual occurrences ( � � ���07 � ) and tracked ob-
jects ( �� � � 7 � ). The maximum number of permitted Gaus-
sian components, ( � ����� 9 , was ranged from

�
to : . The

BIC is used to chose the appropriate number of mixture
components and the best fitting Gaussian model (among
seven models). Table 1 shows the test results of the Gaus-
sian mixture method (mix.) and the two others compared
methods (next paragraph). Column

�
indicates the method

used and column
�

indicates the feature type. For the mix-
ture method column : indicates the maximal number of
components; otherwise, it indicates the type of the metric
distance computed.

Comparative analysis. Related work in video indexing
represents each video shot by a key-frame [8]. Generally,
the key-frame is chosen to be the middle frame of the shot.
Only localized objects in the key-frames are indexed, and a
median database is generated for the

���
object classes for

each kind of feature being tested. To match request object
occurrences to indexed tracked object classes in the median
database, both the � + -test in the real feature space and the
Euclidien metric, �
� , in the PCA space were considered. On
the other hand, we can compute the mean histogram ( . ) of
each tracked object model.

Comparing the results shown in table 1 of the three meth-
ods, we see that the � � ���07 � and �� � � 7 � of correctly answers
are increased considerably, by the using of Gaussian mix-
ture method, rather than the two key-frame methods, by at
least : ��� and

�����
for color and gray histograms respec-



tively. However, the two key-frame methods are simple and
efficient when the object is static but the most of our exper-
imental video objects are moving and deforming.

6. Discussion
Form of the distributions and our approach. As il-

lustrated in figure 2, some tracked object models were rep-
resented by a compact set of points in the feature space but
others are more disperse. This is the consequence of the de-
gree of variability of each tracked object within its shot. As
an evidence, the two key-frame methods will give poor re-
sults. This was confirmed by the experimental results given
above. The variability modeling approach proposed in this
paper performs best.

On the other hand, the results obtained by the Gaussian
mixture approach indicate that the distributions are not uni-
modal in general. A reliable estimate can be obtained by
the BIC criterion. Using BIC, we found that the maximum
number of modes that best represents the underlying distri-
butions was

�
for the RGB histograms and : for the Gray

histograms, indicates the better suitability of multi-modal
distributions to describe the data. We could see that the
more multi-modal the estimated distribution, the better the
classification results. However, the risk of over-fitting the
data is also higher. This case is shown for the RGB data
when ���������
	 is equal to : . The only explanation we have
yet reached is that the amount of data within each cluster
(one Gaussian component) becomes rather small, typically
�
; in such a high dimensional space, this leads to unstable

Gaussian distribution estimation. This is strongly related to
the follow: for the RGB histogram, the Gaussian model, (76
(most general), was only chosen twice but the model ( 3 ,
which assumes that all mixture components have the same
orientation and identical ellipsoı̈dal shapes, was chosen

� �

times. Compared to the gray-scale histogram, ( 6 was se-
lected

� � times and ( 3 only
�

times. Again, the number of
data is too limited with respect to the RGB space dimension
( � � � � �

).
Representation and performance. In computer vision,

the recognition rate is limited by the similarities in the class
descriptions given by the feature vector. So using invariant
color features [5] will hopefully decrease the misclassifying
of the Gaussian mixture. Whatever, methods will be used
this will not overcome tracking errors which occurs very
often in such a complex case, for instance shadow being a
significant part of the tracked yellow car,

���
, in image

�����

(
��� ����� 7 ��� ) of figure 4.

7. Conclusion and perspectives
This paper presents a methodology for increasing robust-

ness of existing features used in video object recognition.
The tracked object is represented by a multi-modal proba-
bility distribution, rather than by a simple point (key-frame)
in the feature space. As shown in the experimental study,

on a very variable video objects database, such modeling
improves the recognition rate considerably when compared
to the classical key-frame approach used in video indexing.
The use of tracked objects yielded better recognition perfor-
mance than the use of single occurrence images. Tracked
object tests were classified by a majority vote. One direct
extension of this consists in estimating their Gaussian mix-
tures. Then, to compute a metric distance (Kullback-Leibler
for instance) between their components and those of learned
object models. Finally, a future research direction we intend
to explore is to completely automate the classification pro-
cess of video objects, so that no tracked object models need
to be specified by the user. Such work would be very useful
but it will be quite challenging. It fits the general unsuper-
vised clustering problem in a context where individuals are
mixtures of distributions estimated in different ways (Gaus-
sian models).
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