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Abstract 
In this paper, we use an alternative formulation of 

the Euclidean Plucker coordinates t o  define the new 
of normalized Plucker coordinates alignment of lines. 
This concept is  more relevant than usual image alagn- 
men t  t o  position a single calibrated camera with respect 
to a set of known 3~ lines. 

An explicit control law is derived which realizes such 
a task both for  one or several lines. It is  tested by po- 
sitioning the camera with respect t o  a n  orthogonal tri- 
hedron. This application is all the challenging an that 
it requires depth to  be observed. W e  do this by using 
the image projection of a laser pointer and adequately 
completing the control law. 

1 Introduction 
Our work is related to the control of one camera 

mounted onto a robot gripper. The camera is cali- 
brated: its intrinsic parameters and its relative posi- 
tion with respect to the robot end-effector (also re- 
ferred to as hand-eye transformatmion [17]) are fixed 
and known in advance. 

The problem we address is to move the camera from 
a current position where it observes a static scene rep- 
resented by a set of lines to a target position specified 
by a desired image projection of the scene (Figure 1).  

To solve this problem, we will use the visual ser- 
voing approach [ 5 ] .  Visual servoing is a sensor-based 
closed-loop control [16] with one or several cameras as 
sensors: the measurement of an error, computed from 
images, determines the next instantaneous motion to 
be taken by the camera (or the robot, since they are 
rigidly linked in our case) in order t o  drive the error 
to zero. 

Most of the efforts in visual servoing are devoted 
to points (see [9] for an exhaustive reference list) but 
interestingly, only few works were devoted to visual 
servoing from lines. As far as we know there exists 
only one class of approach using monocular vision [5, 

*The authors acknowledge support from the European Com- 
munity through the Esprit-IV reactive LTR project number 
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Figure 1: The problem is to move the camera such that 
it attains a position where the current image coincides 
with the desired one. 

181 and another one using stereovision [7]. 
One reason to this lack of interest is the difficulty 

to find a good representation for lines while points are 
rather easy to handle. In particular, the monocular 
approach [5] used a parameterization of image lines 
by their angle and distance to origin which did not 
fit its representation of 3 D  lines as the kernel of two 
plane equations of the form A X  + BY + CZ + D = 0. 
Moreover, this approach is based on image (or 2 D )  
line alignment while, in practice, 3 D  line alignment is 
looked for. 

The main contributions of this paper are: the use 
of a representation of 3 D  lines that is well suited to ex- 
press the relation between the instantaneous motion of 
the camera and the apparent motion observed in the 
image (Section 2); the definition of a new line position- 
ing task which we claim to be more relevant than the 
usual 2 D  alignment of lines (Section 3); the derivation 
of an explicit control law which realizes this task for 
any number of lines (Section 4); and, finally, the ap- 
plication of this control law to an industrial problem 
(Section 5), validated by experimental results (Sec- 
tion 6). 

2 Line representation 
2.1 3 D  line 

The representation of lines we propose to use is 
based on the Euclidean Plucker coordinates of a 3 D  
line [2]. They are a Euclidean variant of the projec- 
tive Plucker coordinates [14, 61 and can be defined 
from the fact that a 3 D  point and a 3 D  orientation 
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Vectors are denoted with lower case upright bold letters 
(e.g.u). Unit vectors are denoted as underlined vectors 

Points in the 3D space are written with upper case bold let- 
ters ( P )  while points in the image are written with lower- 
case bold characters ( p ) .  

3D Lines are noted with calligraphic upper case letters (e.g. 
L) and image lines with calligraphic lower case letters (e.g. 

(e.g. U). 

4. 
Angular velocity is written ft and linear velocity V. 
The  scalar product is noted with the transpose formalism 
(e.g. aTb) and the cross product of a by b is written a x  b. 
The notation * (e.g. 11' denotes a desired value and the 
notation ( t = O )  (e.g. u(t=O)) represents an initial value. 

Table 1: Notations used in this paper 

Figure 2: Euclidean Plucker coordinates of a 3 D  line 

define a unique 3 D  h e .  
Let P be a 3 D  point and U a unit vector expressed 

in the camera frame (O,i , j ,k)  and L be the 3 D  line 
they define. 

Define h = 016 x U and remark that this vector is 
independent of the point we choose on the line. Thus, 
the Euclidean Plucker coordinates are defined as C = 
(U, h) with 1 1 ~ 1 1  = 1 and hTU = 0 (Figure 2). 

Notice that h is orthogonal to  C and to  the plane 
defined by the camera center and C (hence, hTP = 
hTg = 0). This plane is often called the interpretation 
plane. 

The case where h = 0 happens when the 3 D  line 
contains the camera center and hence projects as a 
point in the image. In the following, we assume that 
it never occurs. 

Then, the usual interpretation of the Euclidean 
Plucker coordinates is that C is the 3 D  line oriented 
by U passing through the point h x U. We prefer an 
alternative sequential interpretation which isolates the 
depth: ,C is the line lying in the plane orthogonal t o  
h = h/llhll and parallel to g ,  and at  a depth h = llhll 
from the origin. 

Thus, we represent a 31, line C by: 

T T  T L=(h , U  , h )  , llull = llhll = 1, UTh=O (1) 

Note that Hager et a1 [7] represent L: as the tuple 

( P ,  g )  but, in fact, implicitly use the representation 
above. 

We call the couple (hT,g) the normalized Plucker 
coordinates of the line. Remark that they represent 
the pencil of all the lines oriented by U and lying in 
the interpretation plane h. It is a one-dimensional 
(depth) manifold. 

2.2 2D line 
The reason for the representation (1) is that the 2D 

line C, projection of a 3 D  line C = (hT,gT, h)T onto 
the image plane is completely defined by h. Indeed, 
consider a point P = (zZ, yZ, Z)T of C projecting in 
the point p = (2, y, l)T of C (Figure 2). The equation 
of L is of the form az + by + c = 0 and we take the con- 
vention that a2 +b2 +c2 = 1. Rewriting now h T P  = 0 
as ( h l ~ ) ~ ( Z p )  = 0 and noticing that neither h nor Z 
can be equal to  0, yields h T p  = 0 which is precisely 
the equation of 1. Hence, h is the vector formed with 
the coefficients of the equation of C. 

Finally, we recall that C is the intersection of the 
interpretation plane and the image plane and that, 
reciprocally, C defines the interpretation plane. 

2.3 Motion of a line vs. motion of the 

Here, we relate the instantaneous camera motion to  
the 3 D  line motion (expressed in our formalism) and 
recall the apparent motion in the image of this line. 

The, instantaneous motion of a camera is defined by 
the instantaneous angular velocity St and the instan- 
taneous linear velocity V of a given point expressed in 
the camera frame. From them, one defines the velocity 
screw T = (V, St) .  

Let C = (hT,gT,h)T be a 3 D  line. Then its mo- 
tion is the vector (hT,~T,h)T .  Rives et a1 I151 recall 
the derivative (e, h) of the Euclidean Plucker coordi- 
nates (U, h) of a 3 D  line (2)-(3) and Navab [12] derives 
from these equations the line motion field equation. It 
can be interpreted as the relation between the camera 
motion and the apparent motion of a.3D line in the 
image. It is therefore the derivative h of the image 
projection h of the 3 D  line, which is given in (4). As 
for the derivative of the depth h (5), it is obtained by 
differentiating the expression defining h. Finally: 

camera 

(4) 

(5) 
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Figure 3: The solid lines are in normalized Plucker 
coordinates alignment with L* while the dotted lines 
are not, even though they project onto I * .  

3 Normalized Plucker coordinates 

We define now a normalized Plucker coordinates 
alignment task inspired by two ideas. The first one 
concerns the projection p* in the image of a 3 D  point 
P': The alignment of a point p with p* in the image is 
the alignment of their two lines of sight. It corresponds 
to bringing the physical 3 D  point P ,  whose projection 
is p ,  into the manifold of all the points equivalent to 
P' up to depth. The second idea comes from [ l l ] .  
This work defines a 2 D  1/2 visual servoing control law 
for a set of points, where orientation is controlled by 
driving 3 D  errors to zero and simultaneously position 
is controlled by driving errors in the image to zero. 

From the first idea we argue that the image align- 
ment of 3 D  lines should not consist in the alignment 
of their interpretation planes as it is done in [5, 181 
but in bringing them into a manifold of equivalent 3 D  
lines up to  depth. 

It is trivial to see that the set of the lines equivalent 
to a 3 D  line L = (h,g,h) up to depth is defined by 
{(h,g, Z) ,  2 E Et}. It is geometrically interpreted as 
the pencil of all the parallel lines, oriented by g and 
lying in the interpretation plane orthogonal t o  h. It is 
thus represented by normalized Plucker coordinates. 

This implies, as in [lo], a mixed 2 ~ - 3 ~  informa- 
tion. We thus define the new alignment of lines as the 
alignment of the pencil based on the current 3 D  line 
position with respect to the camera onto the pencil 
based on its desired position (see Figure 3). With our 
notations, it writes: 

alignment 

With this proper definition of line alignment, we can 
now define a control scheme with nice properties. 

4 Control 
Before deriving our control, let us recall some el- 

ements of the control law in the previous monocular 
visual servoing from lines approach [5]. A 3 D  line was 

represented as the intersection of two planes: 

(7 )  
U ~ Z  + bly + c1z + dl = 0 { U ~ X  + b z y  + C ~ Z  + d z  = 0 

and a 2 D  line by an angle 6' and a distance to the 
origin p: cos6'x + sin0y - p = 0. This yielded the 
following motion equations for a 2D line: 

~~~o ~~~o - - x e P  --pee -pse (i) = ( A,co Apso - A p p  (i+p2)so -(i+pz)ce P' ) ( x 
where A6 and A, depend on the plane equations co- 
efficients as well as on 8. By numerically inverting 
these equations, provided enough lines are available, 
one obtains the camera velocity screw which realizes 
a desired motion (0, p )  of the 2 D  line. Then, by choos- 
ing that this motion should be aligned at  each itera- 
tion of the control-loop with the error (:$) t o  be 
servoed to zero, exponential convergence was proven. 
However, one could not distinguish what contributed 
to  control the orientation of the camera from what 
helped in controlling its position. 

Moreover, as these motion equations are compli- 
cated, one is reluctant to compute all the coefficients 
in the matrices above a t  each iteration. Therefore, 
taking advantage of continuity properties of the con- 
trol, an estimate of each matrix was computed in the 
desired position of the camera and the control was re- 
stricted to a neighborhood of this position. 

On the opposite, our representation of lines yields 
much simpler motion equations. 
4.1 Case of a single line 

The motion equations (2) and (4) show a partial 
decoupling. Indeed, translations of the camera do not 
modify the 3 D  line orientation. Therefore, we can take 
advantage of this property to provide a control law 
which makes the rotation control R and the translation 
control V explicit, is globally convergent and does not 
require any depth estimation. 

To benefit from the decoupling, and assuming that 
- U can be recovered, we define the following control 
scheme which works in two phases. First, align the 
orientation g of the line with the desired one, U*, using 
the control defined by: 

(8) 

R = p c L , g x g *  p, > o  (9) 
v = o  (10) 

Then, after convergence in orientation align the inter- 
pretation plane, i.e. control h to its desired value 4* 
with: 

R =  p , g x g *  P, > 0 (11) 
v = -pv g x (4 - h*) (12) pu > 0 
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Figure 1: The rotational control brings g over g* and 
h onto h': someu-here in the plane orthogonal to g* .  

Figure 3: Controlling the interpretation plane normal 
vector when U = g* .  

Ideally. 0 should alnays be 0 in the second stage. K e  
do not make this simplification to  cope xi th  robot 
calibration errors. Then. 

Theorem 1 The first stage [rotatzon control only) 2s 
asymptotzcally stable provzded that an the anataal posa- 
tzon g(t=O) # -g* Then. the second stage [adeally, 
translataon control only) IS also asymptotzcally stable 
provzded that g = g* and h(t=O) # -W. 
Details of the proof. based on the study of the Lya- 
punov functions L ,  = Ilg - U* ] I 2  and L h  = 114 - 
are available in [l]. but we will give here only a geo- 
metrical insight of i t .  

The first control law generates a rotation in the 
plane (0.g.u') until g = U'. Its effect on the inter- 
pretation plane is to bring h into the plane orthogonal 
to  U* (Figure 4). Then. the translation control rotates 
- h around the now fixed orientation g = g' until h lies 
in the plane defined by and h* (Figure 5). Indeed, 
reporting (12) into (4) yields 

Notice nom that this control takes the shortest path 
towards the configuration which minimizes the angle 
between h and h* even if g # U' (Figure 6). However, 
there is a singular case when, a t  initial time, g ,  h and 
- h* lie in the same plane with a non minimal angle; 
then. the control vanishes. However, this singular case 
is unstable (Figure 6) .  

Consequently the translation control is highly sat- 
isfying since, if g = U*. then h is parallel to h', with 
minimal angle; hence. they are equal. 

P 

Figure 6: 
along the shortest path (Left). Cnstable singular case 
(Right): perturbating h into h' brings back h to the 
configuration with minimal deviation from h'. 

The translation control brings h to 

4.2 Case of several lines 
In the case of several lines. we make the follon-- 

ing assumptions : the desired configuration of lines 
is reachable, a one-to-one correspondence can be es- 
tablished between the current and desired lines and 
the orientations g I  can be recovered. Then. n-e simply 
sum up the influence of each line (represented by its 
subscript i = l . .n )  into a compound control scheme: 
First. align the orientation g ,  of each line with the 
desired one U:: 

rl 

0 = p a  x u 1  x12: P* > 0 (11) 
r = l  

l ' = O  (1.5) 

Then. after convergence in orientation align the inter- 
pretation planes, i.e. control each h, to  its desired 
value h: by: 

n 

0 = C L ,  E., x g: P ~ ,  > 0 (16) 

(17) 

1=l 
n 

I '  = -pt. x u ,  x (h, -hT) pr > 0 
r=l 

Theorem 2 The first  stage (rotation control) is  
asymptotically stable provided that V i , u j ( t  = 0 )  # 
-gf . Then,  the second stage (ideally, translation con- 
trol) reduces non-strictly the errors llhi - k; 11 provided 
that V i h i ( t = O )  # -hr and Vz,g i  = g : .  

This theorem is a direct application of the results in [l] 
and extends Theorem 1. Indeed, the translation con- 
trol can not be proven asymptotically stable in t.he 
general case. However, it can in the application de- 
scribed in the next section. 

5 Application 
In this section, we focus on the application of the 

general control law defined in (14)-(17) to  the spe- 
cial configuration of the orthogonal trihedron. This 
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Figure 7: A laser pointer can be considered as a second 
camera reduced to its optical axis. 

configuration appears in the image as a junction of 
three 2 D  lines. This has shown to  be degenerate for 
the pose algorithms from lines [3, 41 since depth along 
the line of sight passing through the center of the tri- 
hedron is unobservable.We note 3 the orientation of 
this line. However, one can still find from the ex- 
tracted 2 D  lines (i.e. the hi's) the 3 D  orientation of 
each line (i.e. the gi's) using the closed-form solution 
given in [8]. Hence, the previous control law can be 
applied but when converging does not have any con- 
straint on depth along 3, thus risking to crash the 
robot against the trihedron. 

To observe the depth a simple laser pointer is fixed 
onto the camera. Thus, the laser spot projects onto 
a fixed line in the image (Figure 7). Hence, the laser 
spot in the image can be addressed by a single abscissa 
s without any kind of laser/camera calibration. It can 
be seen [l] that s varies linearly when the camera cen- 
ter moves along and the laser point remains on a 
fixed plane among those of the trihedron. It means 
that the relative depth between the current and de- 
sired position of the camera with respect to the trihe- 
dron center is directly observable from the difference 
between the current abscissa and its value s* at de- 
sired position. 

Consequently, we add a third step to  the general 
control law: 

n 

R = p w  -pi xu,' p w  > 0 (18) 

v = -pv Cgz x (hi - h;) + pLs(s - S*)% 

i = l  
n 

pv > 0 

(19) 
i=l 

where the terms coming from (14)-( 17) ideally vanish 
and the sign of the scalar gain ps is determined by the 
orientation of the plane hit by the laser beam. 

6 Results 
In the context of the VIGOR project', we plan to 

apply this three step control scheme (14)-(19) t o  the 

'http://uuu. inrialpes .fr/VIGOR 

' Figure 8: The kind of image to be dealt with. 

positioning of a welding torch with respect to a ship 
part (Figure 8). We present in Figure 9 simulation 
results to show the behaviour of the control law. The 
first step drives the orientation error (i.e. on the gi's) 
t o  zero with no effect on the trajectory but with drifts 
of the other errors (a) and displacement to the right 
in the image (c). Then, translation control occurs (b), 
reducing the error in terms of image alignment (a,c) 
and approaching the goal position (d). Finally, the 
laser spot is driven to its goal position (a) with no 
effect in the image and a straight line approach in 
space (d). 

(a) Errors 
_.. ,1191 i-: =?I , , , , 

.................. i... ................................. . . . .  . . .  
. .  , .  ,,. : :  
: :  

: : .  
.y.*>rh.n 

. .  
. :: 

*). . , . * . ,, ,. ,. .. 

(b)Velocities 

........ . I  .......... 

-.! . .  

. " * - .  - . * . . . /  

( c )  Image trajectory 

I 

(d) Trajectory in space 

Figure 9: Behaviour of the proposed control scheme. 

7 Conclusion 
In this work, we represented 3 D  lines with an al- 

ternative formulation of their Euclidean Plucker co- 
ordinates. This allowed a simple definition of a new 
alignment of lines. This formulation also provided a 
control law which realizes this alignment and is never- 
theless simpler than previous control laws realizing the 
sole 2 D  alignment. The soundness of the approach is 
illustrated in simulation by the positioning of a camera 
with respect to an orthogonal trihedron 

The control law, mixing 2 D  and 3 D  information, is 
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defined in three cascaded steps with orientation con- 
trol first. This may lead the lines to leave the field of 
view. Therefore, it may be valuable to run the three 
steps simultaneously. The extension of the conver- 
gence theorems will then require the use of cascaded 
system analysis [13]. 

The present work did not analyze the robustness of 
the control law with respect to  calibration errors and 
other perturbations, but this is a crucial point which 
also needs to be studied. 

Finally, from the practical point of view, one should 
try to extend this work to  the case where the scene 
structure is unknown, as it is done for points. This 
means that Euclidean reconstruction from lines 
should be used. As only orientation is required, it 
may lead to a simplification of such algorithms. 
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