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Abstract

We introduce a finite difference expansion for closely spaced cam-
eras in projective vision, and use it to derive differential analogues
of the finite-displacement projective matching tensors and con-
straints. The results are simpler, more general and easier to use
than Åström & Heyden’s time-derivative based ‘continuous time
matching constraints’. We suggest how to use the formalism for
‘tensor tracking’ — propagation of matching relations against a
fixed base image along an image sequence. We relate this to non-
linear tensor estimators and show how ‘unwrapping the optimiza-
tion loop’ along the sequence allows simple ‘linear � point’ update
estimates to converge rapidly to statistically near-optimal, near-
consistent tensor estimates as the sequence proceeds. We also give
guidelines as to when difference expansion is likely to be worth-
while as compared to a discrete approach.

Keywords: Matching Constraints, Matching Tensors, Image Se-
quences, Tensor Tracking, Difference Expansion.

1 Introduction

This paper studies differential matching constraints —
limiting forms of ordinary multi-image matching constraints
[5, 7, 8, 12, 15], when some of the image projections nearly
coincide. We introduce a finite difference based formal-
ism that is easy to use and covers most aspects of projec-
tive multi-image geometry: matching constraints and ten-
sors, feature transfer, reconstruction. Modulo suitable image
rectification (fixation, dominant plane stabilization [9, 10]),
the results extend to all small translation geometries, i.e.
whenever some of the camera centres are near-coincident
on the scale of the scene. For convenience we will often ex-
press results in terms of feature displacements (‘flow’). But
this is largely cosmetic: feature positions could equally well
be used. Our method spans the gap between infinitesimal
[17, 2] and discrete approaches: only some of the cameras
need coincide and our difference expansions are short, finite
polynomials not infinite Taylor series.

This section gives motivation and previous work,
�
2 re-

views discrete matching constraints,
�
3 reviews and cri-
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tiques Åström & Heyden’s differential approach,
�
4 intro-

duces our difference formalism and differential matching
tensors,

�
5 derives various differential matching constraints,

and
�
6 summarizes and concludes.

Motivation: Theoretically, “nothing is gained” by a dif-
ferential approach: the same underlying geometric con-
straints and image error models apply in both differential
and discrete approaches. However, small displacements are
practically common (e.g. video sequences) and have special
properties that make purpose-built methods desirable:
( � ) Feature correspondence is much easier so more data
is available, especially with region based (‘direct’, ‘least
squares’, ‘intensity based’) approaches.
( � ) Differential problems are often less nonlinear than dis-
crete ones, as nonlinear geometry (rotations, calibration,
matching tensor consistency) can be locally linearized and
included in the initial linear estimation for improved stabil-
ity. Simpler models can be used, and local minima may be
less of a problem.
( � ) Small motion linearization is only an approximation. It
has limited validity and introduces bias/truncation error.
( � ) The additional correspondences are often of low qual-
ity: they may add a lot of computation but relatively little
precision.
( � ) Signal-to-noise ratio is lower with small motion, so
fewer parameters can be estimated accurately (e.g. SFM,
perspective) and error modelling is more critical: bias, out-
liers, linearization error.

Given that geometric constraints are known to improve
robustness and efficiency even for small motion (c.f. ‘Geo-
metrically Constrained Multiphoto Matching’ [3]), it seems
worthwhile to develop the matching constraint formalism in
this direction. We will also link our differential matching
constraints to the local linearization used in nonlinear es-
timators for the discrete case, so a better understanding of
differential case may lead to better estimators for the dis-
crete one. Another motivation was to develop routines for
matching constraint tracking, i.e. updating the matching
geometry along an image sequence from linear change es-
timates, rather than wastefully recalculating it from scratch
each time, or using the image tracks only to get correspon-
dences between the two widely-spaced end images.
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Previous Work: There are many papers on all aspects of
optical flow — see [4] for references — but here we will
focus on differential analogues of the uncalibrated discrete
matching constraints. The key contributions on this are by
Viéville & Faugeras [16, 17] for the two image case and
Åström & Heyden [1, 2] for the multi-image one. We will
return to the Åström-Heyden approach below. Other related
work includes [13, 6, 14].

2 Discrete Matching Constraints

In homogeneous coordinates, image � has ����� projection
matrix ��� . The image x � of a 3D point 	 is 
�� x �������	 .
The scale factors 
 � are called projective depths. Gather �
image projections of 	 into a big ��������� ���� matrix [15]:����
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As there is a solution, the matrix has rank )*� �+� , i.e. all
of its ��� �,���-�.��� �/��� minors must vanish. Expanding
and simplifying gives ‘epipolar’, ‘trifocal’ and ‘quadrifo-
cal’ multi-image matching constraints linking correspond-
ing points x � in 2,3,4 images. Similar constraints exist for 3
images of a line and for 2 images of a line plus 1 image of a
point on it. Each constraint is multilinear in the 2–4 image
features involved, with coefficients that are ���0� determi-
nants built from 4 rows taken from 2–4 projection matrices.
The determinants can be arranged into 4 types of matching
tensor1, depending on how many rows are taken from each
image. It will be useful to view the tensors as multi-index,
multilinear forms in the components of 4 (possibly repeated)
projection matrices. Symbolically:

e !�21 e �4365�3�5 3�587�� epipole

F �9! 1 F �93�5�365:7;5:7�� fundamental matrix

T !:<� 1 T �4365�365:7=5:�6� trifocal tensor

Q �4!:<?> 1 Q �93�5:7;5?�@59�A� quadrifocal tensor

(2)

where, e.g. F �93�5 3CBD587=587�BE� stands for a �F�G� -matrix-valued
quadrilinear form F �D� � 5:��B� 5:� ! 5?��B! � in the four projec-
tion matrices � � 5?� B � 5?� ! 5?� B! , and the fundamental matrix
F �4!A�D����5?��!C� is the result of substituting ��B� �H��� and��B! �I��! into this. As multilinear forms in four projec-
tions, the components of e �9� �J5 F �4�K�L5 T �9� � are simple, fixed

1Tensors are just multi-index arrays of components. They are not intrin-
sically difficult to handle, but lie outside the usual matrix-vector notation.
For simplicity I’ll display results as matrices whenever possible, and switch
into indexed notation [15] when matrix notation is too weak. For calcula-
tions I use tensor diagrams — ‘circuit diagrams’ that show graphically
which indices are connected.

linear combinations2 of those of Q �4�K� . When their argu-
ments are repeated as shown above, e �9� �J5 F �9� �J5 T �4�K� contain
exactly the same information as the corresponding version
of Q �4�K� , in a more compact, easier-to-use form. Even when
the arguments are not repeated, e �4�K�L5 F �9� �J5 T �4�K� are automat-
ically symmetric in the arguments shown as repeated, e.g.
e �4365�3CB�5�3CB BD587�� and F �4365�3CBD587=587�BE� are symmetric under all per-
mutations of the three � � ’s and two � ! ’s.

Given the tensors, the matching constraints we will dif-
ferentialize below can be written symbolically as:

x M � F �4! x ! �I� epipolar constraint

x !ON+P T !?<� � x ��QRN x < � 0 trifocal point constraint

l M! P T !?<� N l � Q l < � 0 trifocal line constraint

l M! P T !:<� � x � Q l <S� 0 trifocal point-line constraint

Here, x � (l � ) denote corresponding image points (lines) in
image � , and N or TJ�9UKV denotes vector-vector or matrix-
vector cross product.

Geometrically, the matching constraints express 3D in-
cidence relations between the optical rays / planes pulled
back from corresponding image points / lines. The match-
ing tensors are a nonlinear encoding of the camera geome-
try in image coordinates. They can be estimated “linearly”
from image data using the matching constraints, but only
by: (i) using a heuristic error model; (ii) ignoring nonlin-
ear self-consistency constraints that guarantee that the ten-
sor(s) correspond to some underlying set of projection ma-
trices. Examples of such constraints include F �9! e !� �W� ,X=YJZ � F �4! �[�\� ,

X=Y�Z P T !?<� � x � Q �\� for all x � , and many
more [15]. One advantage of the differential approach is
that it often allows the consistency constraints and the true
statistical error model to be locally linearized, so that sim-
ple linear least squares tensor estimators can take nearly full
account of both.

3 The Åström-Heyden Approach

This section summarizes and critiques Åström & Heyden’s
approach to differential multi-image matching constraints
[1, 2]. A moving camera with time varying projection ma-
trix ���D]9� viewing a static scene generates image projections
^�D]9� x ��]9���I���D]9�=	 . Taylor expand at ] :

����] �+_`]9�a�b�Gced:f �.�Gc � fg_`] �.�Gc ! fh�i_`]9� ! �kj�j�j
where � cmlLf 1 �l�npoLqo:r q � , and similarly for x ��] ��_`]9� and
^�D] �s_`]9� . Substitute into the projection equations, truncate
at order � , split by powers of _`] , and gather the resulting

2They are contractions of Q tDu v against image w tensors — e.g.
F x�yzti{L|9{4}i|i~C|�~8}�v-���� w8x@����wLy��'� Q �@����� ti{L|9{4}i|i~C|�~8}�v [15].
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equations into a �@�D� �[3 � �s�D� �k�D� �k3C�?� matrix����
�
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As in (1), all maximal minors vanish. Expanding gives mul-
tilinear differential matching constraints involving all of
the point derivatives x cEd:f 5 j�j�j 5 x c " f . The coefficients are
differential matching tensors formed from � � � minors
of 4 rows of the projection derivatives � ced:f 5 j�j j 5?� c " f .

This approach is certainly powerful, but I feel that it is
not “the right thing” for most applications: (i) The con-
straints combine infinitely many feature derivatives and dif-
ferential matching tensors of arbitrarily high orders, even
though the discrete case stops at � � � features and ten-
sors. (ii) The constraints are extremely complicated, even
for � � � . (iii) It is very difficult to relate them to the dis-
crete case, even though their derivation is almost identical.
(iv) They depend on the exact form of the camera motion
between ] and ] �,_`] , whereas we often know or care only
about the camera positions at the endpoints ] and ] � _�] .
(v) Many things remain to be done: lines, transfer, depth
recovery, cases where some images are from other, more
widely-spaced cameras, etc.

Note that only the geometric path of the camera matters
for the constraints, not its time parametrization. So they
should really be formulated in terms of some geometric,
parametrization-invariant analogue of differential equations
such as exterior differential systems (c.f. also [13]). This
was my first intention, but on reflection it does not solve the
main problem, which is simply that differentiation is not the
appropriate tool here.

In applications, images are always finitely (though per-
haps closely) spaced. What we measure is feature posi-
tions at these discrete times, and what we use is matching
constraints, projection matrices, etc, again at these discrete
times. Time derivatives never explicitly appear, and if in-
troduced, they are serve only to re-synthesize the finite-time
positions that we actually measure or use. Finite differences
are a more appropriate tool for such discrete-time problems.
Given measurements of some quantity x �D]9�L5 x ��] �s_`]9� , their
finite difference is simply _ x 1 x ��] �._`]9� � x �D]9� . So we
have a finite, one term ‘expansion’ x ��] � _�]9��� x ��]9� �S_ x
rather than an infinite Taylor series x �D] �*_`]9� � x �D]9� ��
x _`] � �! �x _`] ! ��j�j j . If we use x �D] � _�]9� in some polynomial
expression (matching constraints, transfer, SFM), difference
expansion gives a relatively simple polynomial in _ x, while
Taylor expansion a very complicated infinite series in _`] .
The Taylor series is ultimately more powerful in that it im-
plies values of x for all _`] . But if we measure and use x only
at one _`] as here,

�
x _�] � �! �x _�] ! ��j j�j is a very complicated

way of parametrizing the simple difference _ x.

In summary, Åström & Heyden got an infinite series of
complicated equations rather than a finite series of simple
ones simply because they asked for too much. Their results
are like a series solution to a differential equation: they im-
ply the matching constraints for every _�] with any analytic
camera motion, whereas in practice we usually only want
them at the endpoints of one particular _`] .
4 Projective Difference Expansion

Now we begin to assemble the elements of our finite dif-
ference approach to projective vision. First, a clarification.
We work with projective quantities expressed in homoge-
neous coordinates, e.g. image points x, projections � . We
want to expand projective expressions in x BD5:��B in terms of
“nearby” base quantities x 5?� and “projective differences”_ x � x B � x, _G� �b��B � � . Unfortunately, homoge-
neous quantities like x 5 x B are only defined up to scale, so
differences like x B � x are not well defined: as their relative
scale changes, x B � x sweeps out the entire projective line
through x 5 x B . Nevertheless, if we are careful about scales,
we can still use _ x 1 x B � x to represent the displacement
between two projective points. Fix the scale of x once and
for all. Under rescaling x B � �43 ���^� x B , _ x changes as_ x � _ x ��� x B	� _ x �
� x ���k�� _ x � . So for small
rescalings � and displacements _ x, _ x is only defined mod-
ulo the approximate affine freedom _ x � _ x ��� x. The
expressions we need to expand are always separately homo-
geneous in x and x B � x � _ x, so this freedom leads to
the following important invariance principle: The term of
lowest nonvanishing order in _ x is explicitly invariant un-
der shifts _ x � _ x ��� x. We usually work only to this
order, so formulae which use _ x are invariant, and formulae
which calculate it can do so only up to an unknown multiple
of x. For example, our formulae for differential matching
tensors are defined only up to multiples of the underlying
base tensor. In practice, for input data we simply choose
similar normalizations for x 5 x B so that � is small. But for
numerically calculated _ ’s we always need to enforce some
sort of normalization condition to remove the superfluous
rescaling degree of freedom.

A related point which greatly simplifies many of the for-
mulae is that: Difference expansion in a variable is only
worthwhile if the problem is nonlinear in that variable.
One can certainly derive expansions for linearly-appearing
variables of the form ��� �2_�� � j j�j:� �h� x �2_ x ���
� � x ��� �6_ x � _�� � x ��� P _ ! Q , where � stands for
other stuff independent of x B � x �/_ x and hence _ x. But
there’s really no point. If you already have x 5:_ x and are try-
ing to calculate ��5:_�� , you might as well just use x B in the
exact expression. This is simpler, has less truncation error,
and (at least in vision) is unlikely even to cause problems
with numerical loss of precision: _ ’s usually scale roughly
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as measured image differences, which have a minimum rel-
ative size of about 3 � � > as differences much smaller than
a pixel or greater than the image width can not be mea-
sured. In fact, since we are working to lowest nonvanish-
ing order in _ and � is independent of x B , invariance under_ x � _ x �
� x implies that � � x must actually vanish (at
least in the zero noise case). Conversely, if you are trying to
calculate _ x given � 58_�� , the equation is linear in either_ x or x Bp� x �,_ x, so you might as well just form the up-
date � � � _�� ��j�j j9� and calculate x B directly. This remains
true even if � depends on x, so long as it is independent of
x B .

For example, matching constraints and transfer relations
are usually linear in each of their image features, so there is
no real advantage in using image displacements or ‘flow’
for them — one can just as well use the underlying fea-
tures x 5 x B . Arguably, this also applies to ‘direct’ (intensity
based, optical flow) approaches — one can use intensity dif-
ferences to estimate local correlation shifts just as well as
image derivatives3. Similarly, for epipoles, homographies
and trifocal tensors, some of the projection matrices appear
linearly and there is no real advantage in making a difference
expansion in these. (More precisely, there is none once the
coefficients multiplying the projection to form the epipole,
etc, have been recovered). On the other hand, for linear
tensor-based parametrizations, the consistency constraints
are always nonlinear and hence do benefit from expansion.

We will sometimes need to take differences in several im-
ages simultaneously, e.g. for each � , if �`B� is near to � � we
define _G� � 1 ��B� �[� � . If there are several projections��B� 5:��B B� near the same base projection � � , each generates its
own independent difference _`��B� 5:_G��B B� .

By substituting the updates � B� �k� � ��_G� � � �93 � _G�9� �
into the multilinear matching forms (2) and expanding,
we can derive exact finite difference expansions of all the
matching tensors. For example, for the 1 B –2 fundamental
matrix

F � � ! 1 F �43 B 5 3 B 5:7=587��a� F �9�43 �._ �4�`� 5C�43 �+_G�9��� 5:��!�5:��!C�� F �43�5 3�587=5:76� �.7 F ��_�3�5�365:7;5:7�� � F �i_�3�58_365:7;5:7��
where _�3 stands for _G�`� , etc. If only one projection varies,
the full list of such expansion types is:

e !� � � e !� � e !� � � e !��� � � e !��� �
F � � !k� F �4! � F � �9! � F ��� �4!
T !:<� � � T !?<� � T !:<

� � � T !:<
� � �

e ! �� � e !� � e
� !�

T ! � <� � T !?<� � T
� !:<�

Q � � !?<?> � Q �4!:<9> � Q
� �9!?<?>

(3)

3As with the Taylor series above, the derivatives are only an indirect
way of synthesizing image displacements, which could have been produced
more directly using (sub-pixel/multi-scale/ ����� ) image interpolation.

where we define the following differential matching ten-
sors by successively replacing projections �`B with projec-
tion differences _G� 1 � B � � :

e !� �s1 � e ��_�3�5�365�365:7��
F � �9! 1 7 F �i_�3�5 3�587=5:76�
T !?<
� �s1 7 T �i_�3�5 3�5:7;5?�A�

Q
� �9!?<?> 1 Q �i_�3�587=5?�@59� �

e
� !� 1 e �93�5�365�365:_ 7��

T
� !:<� 1 T �93�5 3�5:_ 7;5?�6�

e !� � � 1 � e ��_365:_�3�5 3�587��
F � � �9! 1 F ��_�3�5:_�365:7=587��
T !:<
��� � 1 T ��_365:_�3�587=5:�6�

e !��� � 1 e �i_�365:_�3�58_365:76�
Very few of these are needed in any one application. If _G�
is small, we can truncate the finite difference expansions at
any desired order. The scales of the differential tensors were
chosen to make the difference expansions simple, as this is
essentially the only place they appear. The derivations use
the symmetry of the forms e �9� �J5 F �4�K�L5 T �4�K� . There are analo-
gous expansions when several projections vary at once. We
attach primes and _ ’s to indices rather than whole tensors
(e.g. F � � ! , e !� � ), because the latter becomes hopelessly con-
fusing when several projections vary at once.

The differential tensors depend on the normalizations of
the _G� ’s, and are only defined up to admixtures of lower
order terms, e.g. F � � ! � F � � ! � � F �4! . Saturated
differential tensors have all � ’s of a certain type replaced
by _G� ’s. They behave just like ordinary matching tensors
formed with “projections” _`� , e.g. the “fundamental ma-
trix” F � � �4! � F �i_�365:_�3�587=5:76� satisfies

X=Y�Z � F� � � ! ���I�
and has “epipoles” e

� �! and e !��� � . But unsaturated tensors
are more common in low order expansions: these have the
same index structure but different properties.

5 Differential Matching Constraints

Given these expansions, it is very straightforward to de-
velop differential forms of the various discrete matching
constraints, transfer relations, etc. Simply take each discrete
formula, choose the type of near-coincidence that should
occur between its projection matrices, substitute the corre-
sponding difference expansions (and optionally the differ-
ence expansions of the corresponding image features), ex-
pand, and truncate at the desired order.

Note that only some of the projections need be near co-
incident, unlike, e.g. [2]. In particular, we are investigat-
ing methods for matching constraint tracking, i.e. propagat-
ing a matching tensor against a base image along an image
sequence by small updates, without having to recalculate
it from scratch at each new image. This sort of approach
should be useful for providing search constraints in geo-
metrically guided feature trackers, as a tensor is available at
each time step. And numerically it should allow linearized
approximations to nonlinear error models and tensor con-
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sistency relations, so that a linearly-estimated tensor con-
verges to a near-consistent, near-optimal estimate as the se-
quence continues. I.e., the usual iterative refinement loop for
the tensor would be ‘unwrapped along the image sequence’,
tracking the moving tensor by a kind of locally-linearized
control law, c.f. [13].

Differential Epipolar Constraint: The simplest case is
the epipolar constraint between a fixed camera � � and a
moving one � ! ��]9� . We suppose that we have already cal-
culated the fundamental matrix F �9! �� � , and want to up-
date it to F �9! � where ��B! � ��! � _G��! . Using (3), and
optionally x B! � x ! � _ x ! and the 1–2 epipolar constraint
x M � F �9! x !&� � , the first order expansion of the 1–2B epipolar
constraint is simply

�[� x M � F �4! � x ! � � x M � � F �9! � F � � !C� x B!
� x M � F �9! _ x ! � x M � F � � ! x !

Using either form, F � � ! can be estimated linearly from
F �4! , x � , and x B! or x !�5:_ x ! . F �9! � can be recovered from
F �4! � � F �9! � F � � ! . The advantages over direct ‘lin-
ear 8 point’ estimation of F �9! � are: (i) we can enforce the
consistency constraint

X=YJZ � F ��� � , at least to a 3�� r -order
approximation; (ii) because of this, we need only 7 points;
(iii) we can use F �9! to pre-calculate approximately statisti-
cally optimal error weightings, so the initial linear estimator
should have near-optimal accuracy. The linearization of the
consistency constraint

X=Y�Z � F �9! � �R�k� isZ�������Y � �
	�� � F �9! � F � � ! � �
X;YJZ � F �9! �a�I� (4)

where
�
	�� � F �9! � � e �! e ! � M is the matrix of cofactors of

F �4! . Even if F �9! is inconsistent, this equation enforcesX=YJZ � F �9! � ���� to first order, and hence converges rapidly
towards consistency.

As expected, F � � ! is only defined up to multiples of
F �4! . For example, the error term x M � F � � ! x ! and the lin-
earized consistency constraint (4) have such invariances if
x M � F �9! x ! and

X=YJZ � F �9! � are exactly � . The exact multiple we
choose is irrelevant so long as it is small, but some choice
is needed to avoid numerical ill-conditioning. In practice,
we constrain F � � ! to be orthogonal to F �9! as a 9-vector, i.e.Z������JY � F M �9! F � � ! �`� � . Given the above and F �9! , near op-
timal ‘7 point’ estimation of F � � ! reduces to a 9 variable
linear least squares problem with 2 linear constraints. Any
standard numerical method can be used, e.g. Gauss (LU) or
Householder (LQ) based constraint elimination followed by
QR decomposition to solve the reduced least squares prob-
lem. (For 7 point RANSAC, the problem becomes a simple� � � linear system).

Only the 1–2 and 1–2 B epipolar constraints were used
here: the 1–2–2 B trifocal one will be considered below.

The Optimization Point-of-View: The above discussion
should sound very familiar to anyone who has implemented

a nonlinear fundamental matrix estimator. In fact, the above
F �4! � F �4! � update rule is exactly one step of a Sequential
Quadratic Programming (SQP) style refinement routine for
F �4! � , started from the estimate F �9! . Further iterations could
be used to improve the accuracy, if desired. The moral is
that: Tensor tracking and nonlinear tensor refinement are
basically the same problem. So the same numerical methods
can be used for both. We also emphasize that there is really
no advantage to using ‘flow’ _ x rather than position x B , and
the differential tensor F � � ! plays exactly the same role as
a conventional first order model update _ F. The difference
expansion merely serves as a systematic way to derive such
update equations.

Differential Trifocal Constraints: First order expansion
of the 1–2 B –3 and 1 B –2–3 trifocal point, line and point-line
matching constraints modulo the 1–2–3 ones gives:

P x !RN P T � !:<� � x � Q �+_ x !ON P T !?<� � x � Q Q N x < �I�P l M! P T � !:<� N l � Q �._ l M! P T !?<� N l � Q Q l <
�I�P l M! P T � !?<� � x � Q �._ l M! P T !:<� � x � Q Q l <
�I�
x ! N P T !:<

� � � x � � T !?<� � _ x � Q N x <
�I�
l M! P T !:<

� � N l � � T !:<� N _ l � Q l < �I�
l M! P T !?<

� � � x � � T !:<� � _ x � Q l < �I�
As in the two image case, the 27 components of T

� !?<� or
T !?<
� � can be estimated linearly from the constraints, modulo

a multiple of T !?<� . However this is a gross overparametriza-
tion as the unknown projections _G��! � 58_G��� � have only 12
d.o.f. apiece. We need to constrain the _ T’s to respect the
constancy of the constant � ’s involved. This is possible us-
ing inter-tensor consistency constraints, e.g. for T ! � <� use
either of

T  ! ��� <� � F  � � < ��� � ���  � ���I�� � <  < � < T
� ! � � <� � T  !  < � e

� <� �I� � ���  � ���I�
where as usual T ! � <� � T !:<� � T

� !:<� . But this whole
approach seems over-complicated. Given that T !?<� is actu-
ally linear in � ! , we might as well just find a homography-
epipole decomposition [7, 11]

T !?<� � H !��� e <� � e !��� H <�P T !:<� � x � Q �\P H !��� e !� Q�� 0 x �� x �� d�� P H <��� e <� Q M
and work directly in terms of ��� � P H �� � e �� Q for ���3�5:7;5:7�B 5?� . As always, H � e parametrization of T (or F)
is just a closet form of projective camera reconstruction, so
we might as well do things properly with a clean reconstruc-
tion method, followed by conventional tracking of the mov-
ing projection using the ‘linear 6 point’ DLT estimator (or
better). My experiments suggest that this is not only the
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easiest, but also the stablest and most accurate way to work
— the tensor is only useful for the initial reconstruction. I.e.,
tracking of the trifocal tensor is certainly possible, but I have
not found any advantage over conventional projection ma-
trix tracking.

5.1 Coincident Images & Degeneracy

Now we study what happens to the differential matching
constraints when more of their images are near-coincident.
When some of the cameras (or modulo image rectification,
some of their centres) coincide, the discrete matching ten-
sors either vanish or degenerate to lower degree ones

e �� � 0 F �?� � 0

T �9!� ��� �� � e !� T !8�� � � e !� � � ��
T !:!� � F � � � ! � � !  ! � ! Q �:�9!?< � T

� ! � <� � � � �  � � �
The corresponding matching constraints also degenerate,
e.g. the trifocal point constraint x ! N P T !:<� � x � Q N x <`��� be-
comes P x M � F �4! x ! Q T x ! U V � � for � < � � ! and vanishes
for � < � � � . Similarly, some the differential matching ten-
sors degenerate to lower degree ones when their base images
coincide

� e �� � � e
� �� � e � �� F � � � ��� e � ���� V ��� e � ���� V

T � � !� ��� �� � e
� !� T �4!

� � ��� �� � e !� � � T
� �9!�

Coincidence also produces redundancies between various
differential tensors, e.g. F � � � � ! � �! n � � !  ! � ! T  ! � � !� � .
We will silently adopt whichever form is the most conve-
nient.

Differential Epipolar Constraint: If � � and � ! coin-
cide, F �4! vanishes and F � � ! reduces to � e � �� � V . We relabel3 B � 7 for clarity, i.e. _G� � � � ! �S� � . The exact expan-
sion of F �9! is

F �9! � F �?� � F � � � � F � � � � �b� � � e !� � V � F � � � �
The leading term is skew so the epipolar constraint vanishes
to first order. The second order term is Viéville & Faugeras’
‘first order’ motion equation [16, 17] :

x M � F c � f�4! x � � x M � � e !� � V _ x � �b� (5)

where F c � f�9! 1 �! P F �9! � F M �4! Q is the symmetric part of F �9!
or F � � � � . The constraint uses only e !� and F c � f�9! so it has� �
	�� �

linearly independent components, modulo joint
overall rescaling and the consistency constraint

X=Y�Z � F � � �
which becomes e !� M F c � f�9! e !� � � . Like

X=YJZ � F �4! ����� ,
this is cubic in the unknowns. The linearization base point
F �?� vanishes, so we can no longer linearize the consistency
constraint and error model. Hence, the differential method

has about the same degree of complexity and nonlinearity
as direct estimation of F �4! . Normalizing P F c � f�4! 5 e !� Q so that�

e !� � � 3 , we can recover F �9! from

F �4!.� T e U V � F c � f � e P F c � f e Q M � P F c � f e Q e M� T e U V � P I � e e M Q F c � f P I � e e M Q
(The second form is preferred as it automatically projects
onto e M F c � f e ��� ). In general

X;YJZ � F c � f � �� � : it vanishes
iff the motion is planar or a parallel twist.

I have investigated matching and depth recovery using
this differential approach, but found no practical advantage
over direct ‘8 point’ estimation of F �9! . The accuracy and
stability are at best the same, and become worse whenever
truncation error in (5) is above the noise level.

Trifocal Constraints: The differential trifocal con-
straints remain nondegenerate when two of their images
coincide, but their coefficient tensors simplify. This case
is especially interesting because it allows us to propagate
matches from a base image plus the current one to the next
image in the sequence. To first order in _ , both the 1–1B –2
and 1 B –1–2 trifocal point, line and point-line matching con-
straints reduce to

x � N P T � �9!� � x � Q N x ! �/� x � N _ x �J� P e !� N x ! Q M � 0

l M� P T � �9!� N l ��Q l ! �/� l � N _ l � � P l M! e !� Q � 0

l M� P T � �4!� � x � Q l ! � P l M� _ x � Q P l M! e !� Q � 0

Similarly, the 2–1–1 B constraints become

x � N P T � �:�! � x ! Q N x � � � F �9! x ! � � x � N _ x � � M
� Pi_ x M � F �9! x ! Q �AT x � UKV � 0

l M� P T � �?�! N l ! Q l � �*P:� l � N _ l � � M F �9! Q N l ! � 0

l M� P T � �?�! � x ! Q l � �,� l �zN _ l � � M F �9! x ! � 0

All of these are modulo the ordinary 1–2 epipolar con-
straint and maintenance of point-line incidence _ P l M� x � Q �
l M� _ x � �._ l M� x �0�b� .

Once again, the tensor-based parameterization is feasi-
ble but seems overly complex. A homography-epipole
one is preferable, but reduces the problem to classical
reconstruction-reprojection. The parametrization can be
initialized using any homography obtained from F �9! (e.g.
H !� � T l !gUKV F !L� � e !� l M� for any non-epipolar l � 5 l ! , or

H !� � � e !� � V F !8� � 
 e !� e �! M in a well-normalized im-
age frame). The initial H � e decompositions are then
T �4!� ��� �� � e !� � 0 � H !� and T �:�! � H �! � e �! � e �! � H �! .

If all three images nearly coincide, the trifocal constraints
degenerate further and a 7� o -order 1–1 B –1 B B expansion is
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needed. For clarity, we rename 1 B ,1 B B to 2,3 and use our nor-
malization freedom to replace T

� ! � <� with T !?<� � � �� �
e <� � e !� � � �� � T

� ! � <� , giving matching constraints:

x � N �&P T !?<� � x ��Q �._ x ! e
<� M � e

!� _ x M< � N x ��� 0

l M� � T c !:< f� N l �J� l � � � l � N _ l ! � P l M� e <� Q � P l M� e !� Q � l � N _ l <C� � 0

l M� � T c !:< f� � x � � l � �*P _ l M! x � Q&P l M� e <� Q � P l M� e !� Q P _ l M< x � Q � 0

Here, T c !:< f� is the 18 d.o.f. symmetric part of T !?<� on its two
upper indices. The point equation uses 24 d.o.f. of T !:<� plus
two epipoles, so it does not seem competitive with standard
finite T !:<� estimation. The line and point-line equations use
only T c !:< f� 5 e !� 5 e <� and hence have 3 �

� � ����� 7�� linear pa-
rameters to estimate. The point-line equation is the basis of
Stein & Shashua’s ‘tensor brightness constraint’ [14], where
the lines are local tangents to the iso-intensity contour at x � ,
displaced by normal flow into nearby images 2 and 3. But in
this case the line-based constraints are quite ill-conditioned
and they require special motion assumptions which reduce
the problem to one considered by [6].

6 Conclusions

We have introduced a finite difference expansion for projec-
tive vision problems with near-coincident cameras. In con-
trast to Åström & Heyden’s time-derivative based approach,
it gives fairly manageable expansions for geometric vision
problems like matching tensors and constraints, transfer and
reconstruction. Here, we used it to systematically derive var-
ious differential matching constraints. Basically, three cases
occur when difference expansion is used:

� For problems linear in the expanded variables, expansion
is possible but redundant. This happens for most feature-
based calculations once the matching tensors or homogra-
phies are known — e.g. feature transfer or reconstruction.

� For nonlinear, non-degenerate problems, first order
difference expansion gives a useful local linearization.
Consistency-constraint-satisfying, statistically-near-optimal
tensor update becomes a simple constrained linear least
squares problem. This is always equivalent to one step of
an iterative nonlinear estimator started from the base tensor.

� For nonlinear problems where the expansion base case is
degenerate, second (or higher) order expansion gives a valid
but nonlinear local parametrization. This may be simpler or
less nonlinear than the original one, but it is not clear that
much is really gained. So far none of my experiments have
shown any clear advantage for the differential approach in
this case.

Future work will include experimental studies of con-
straint tracking in the 1 B –2 and 1–1 B –2 cases, and develop-
ment of analogous expansions for more constrained prob-
lems like calibrated cameras and autocalibration.
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[1] K. Åström and A. Heyden. Multilinear constraints in the
infinitessimal-time case. In IEEE Conf. Computer Vision &
Pattern Recognition, pages 833–8, San Francisco, 1996.
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