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Abstract

We describe two direct quasilinear methods for camera pose (ab-
solute orientation) and calibration from a single image of 4 or
5 known 3D points. They generalize the 6 point ‘Direct Linear
Transform’ method by incorporating partial prior camera knowl-
edge, while still allowing some unknown calibration parameters to
be recovered. Only linear algebra is required, the solution is unique
in non-degenerate cases, and additional points can be included for
improved stability. Both methods fail for coplanar points, but we
give an experimental eigendecomposition based one that handles
both planar and nonplanar cases. Our methods use recent polyno-
mial solving technology, and we give a brief summary of this. One
of our aims was to try to understand the numerical behaviour of
modern polynomial solvers on some relatively simple test cases,
with a view to other vision applications.

Keywords: Camera Pose & Calibration, Direct Linear Transform,
Polynomial Solving, Multiresultants, Eigensystems.

1 Introduction

This paper describes two quasilinear methods for camera
pose (absolute orientation) and calibration from a single im-
age of 4 or 5 known 3D points. The methods are “direct’
(non-iterative) and quasilinear, so: (i) only linear algebra is
required; (ii) they give a unique solution in non-degenerate
cases; (iii) additional points are easily included to improve
stability; and (iv) all points are on an equal footing. The
classical ‘Direct Linear Transform’ (DLT) [1, 16] recovers
the 5 internal and 6 pose parameters of a fully projective
camera from the images of 6 known 3D points. The new
methods are analogous to the DLT, but adopt more restric-
tive calibration models so that; (i) the minimum number
of points required is reduced to 4 or 5; (ii) the results for a
given number of points are (at least potentially) more sta-
ble, as there is more prior knowledge and hence fewer un-
knowns to estimate from the input data. The implemented
‘4 point’ method assumes that the focal length f is the only
unknown calibration parameter, the ‘5 point’ one that the
unknowns are focal length f and principal point (ug,vo).
Other one (4 point) or three (5 point) parameter linear cali-
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bration models could easily be implemented using the same
techniques. There are also associated multi-solution meth-
ods capable of handling one additional calibration parameter
apiece: at most 24 = 16 solutions for pose plus 2 calibration
parameters in the 4 point case, 4> = 16 for 4 in the 5 point
one. We will not consider these here as they yield too many
solutions to be practically useful, and numerical stability is
likely to be poor. However we will consider a related mod-
ification of the quasilinear 4 point method, which has fewer
degeneracies but which may return 2 or at most 4 solutions.

Notation: X denotes 3D points and x image ones. We
use homogeneous coordinates and the full projective cam-

era model P = KR(I| —t) where: P is the camera’s

3 x 4 projection matrix; the rotation R and translation t
a s ug

give its orientation and position; and K = <0 L o ) is
001/f

its internal calibration matrix. The calibration parameters
fya, s, (uo,vo) are called effectivefocal length, aspect ratio,
skew and normalized principal point. Numerically, we will
assume well-normalized image coordinates based on some
nominal focal length and principal point (e.g. the image cen-
tre). Fixed parameters are assumed to have their nominal
values (a, s, ug,v9) = (1,0,0,0).

Rationale & Existing Work: Our methods use some
prior calibration knowledge, and are best seen as in-
termediate between classical 3—-4 point pose-with-known-
calibration algorithms [16, 8, 15], and > 6 point DLT-like
ones which assume completely unknown calibration [1, 16].
They were motivated mainly by the need for approximate
camera pose + calibration to initialize bundle adjustment in
close range industrial photogrammetry problems. User con-
venience dictates the use of as few reference points as possi-
ble: accurate 3D references are troublesome and expensive
to acquire and maintain, and application constraints often
mean that only a few points are visible from any given lo-
cation. As the bundle adjustment can correct quite a lot of
residual error, stability is more important than high preci-
sion. This suggests the use of simple approximate camera
models with minimal free parameters. Aspect ratio a and
skew s are both stable and easily measured, so they can usu-
ally be pre-calibrated. In contrast, the ‘optical scale’ param-
eters focal length f and principal point (ug,vo) are difficult
to pre-calibrate. Even with a fixed lens they vary slightly



with focus, aperture, mechanical/thermal motion of the lens
mount, and (with lens distortion) image position. Radial
lens distortion is also significant in many close range ap-
plications, but we will not consider it here as it is difficult
to handle in our DLT-like framework. See [16, 2] for exten-
sions of the DLT which partially account for lens distortion.

Degeneracy is a significant problem for all calibration
methods using near-minimal data: for certain relative posi-
tionings of the points and camera, there are infinitely many
solutions and the method fails. Coplanar reference objects
are especially easy to manufacture and measure. But all
6 point DLT-like methods fail for planar scenes, and any
method with free focal length (including all of ours) fails
for frontoparallel planes, as forward motion is indistinguish-
able from zoom. This is problematic as near-planarity and
frontoparallelism are common in practice. A planar scene
gives only two constraints on the calibration (“the images
of the plane’s two circular points must lie on the image of
the absolute conic” [20, 11, 18, 22]). As there are 5 cali-
bration parameters, at least 3 prior constraints are required
to recover from planarity. Our 5 point method has only 2
prior constraints, so it must (and does) fail for planes. The
4 point quasilinear method should do better, but in fact it
also fails owing to an algorithm-specific rank deficiency.
In contrast, relatively simple homography-based methods
[21, 10, 18, 22]* solve the 4 point planar pose + focal length
problem rather stably (barring fronto- and other axis paral-
lelisms). Unfortunately, these methods fail for more than
about 5% non-coplanarity, so it would be useful to develop
algorithms for the difficult (but practically common) near-
planar case. | will describe a preliminary version of such a
4 point method below, which uses recent eigenvector-based
polynomial solving technology to separate the true root from
the false ones. The underlying technique is worth knowing
about as it potentially applies to many other vision problems
with degeneracies and/or multiple roots.

Contents: §2 outlines our general approach, §3 covers
the necessary material on polynomial solving, §4 summa-
rizes the algorithms and gives implementation details, §5
describes experimental tests, and §6 concludes.

2 Approach

Each image of a known 3D point gives two linear constraints
on the projection matrix P, or equivalently two nonlinear
ones on the camera pose and calibration. So fromn > 3
points we can estimate at most the 6 pose parameters and
2n — 6 calibration ones. These minimal cases lead to poly-
nomial systems with multiple solutions. But we will see
that by estimating one fewer parameter, we can convert such
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problems to linear null space computations which generi-
cally yield a unique solution. Hence, we can estimate pose
plus 2n — 7 = 1,3,5 calibration parameters quasilinearly
from 4, 5,6 points. 6 points is the standard DLT, so we fo-
cus on the 4 and 5 point cases. For 4 points we develop
methods for pose + focal length f; for 5 points, pose + f
+ principal point (ug,vp). Other selections of 1-3 of the 5
linear camera parameters f, a, s, ug, vo can be handled anal-
ogously. The basic idea is to enforce the constraint that the
remaining entries of (a, s, ug, vo) have their default values
(1,0,0,0). “4’ and ‘5 point’ really denote the calibration
model assumed, not just the minimum number of points re-
quired. All of our methods can incorporate further points on
an equal footing, if available.

Direct formulations in terms of camera calibration K and
(i) pose (R,t) (using eg. quaternions for R), or (ii) the
camera-point distances (c.f. [8, 15]), are possible, but seem
to lead to rather unwieldy matrices. Instead, we proceed in-
directly as follows: (i) find the linear space of 3 x 4 projec-
tion matrices consistent with the given points; (ii) recover
the estimated projection matrix P quasilinearly from this
subspace using the calibration constraints; (iii) extract the
calibration and pose K, R,t from P in the usual way. We
focus mainly on step (ii) which is the novel contribution.

Step 1 is very similar to the standard 6 point DLT [1, 16].
Given a 3D point X and its image Ax = PX, elim-
inate the unknown depth A\ by forming the cross-product
x A (P X) = 0, and select two independent homogeneous
linear constraints on P from this. (In fact, | project P X
orthogonal to x using x’s 3 x 3 Householder matrix. This
is slightly different, but the overall effect is similar). The
constraints from n points can be assembled into a 2n x 12
matrix which generically has rank min(2n,11). With the
standard DLT, n > 6, the rank is generically 11, and the 12
components of the unique null vector directly give the cor-
responding projection matrix P. For n = 4,5 the rank is
generically 8,10 leaving a d = 4, 2 dimensional null space.
In the noiseless case, this still contains the true projection:
P = P(u) = Y0, u; P; where the P; are 3 x 4 pro-
jections corresponding to the d vectors of a null space basis,
and p; are unknown parameters. The null space is calculated
numerically by SVD. Even if n > 4,5 and the rank is clearly
greater than 8,10, we still take the d = 4, 2 smallest singular
vectors to span the space P(u) used in the next step.

Step 2 recovers P(u) from the P; by estimating p us-
ing the calibration constraints. By the decomposition P ~
KR(I'| —t), the 4 x 4 Euclidean invariant absolute dual
quadric matrix = (4 9) projects to the dual image of
the absolute quadric (DIAC) [19, 9, 13]

w=PQP"T ~ KK'" (1)

We use this to convert constraints on the calibration K
into ones on candidate projections P(u) or their associated



DIACsw = w(u) = P(u)QP(u)". For the 4 point
method the only unknown calibration parameter is f. The
remaining parameters take their default valuesa = 1, s =
ug =g =0s0K = diag(fafa 1)1 KKT = diag(fzafza]-)
and the constraints (1) become

Wil = W w2 = w3 =w =0 (2

This overconstrained system of 4 homogeneous quadratics
in 4 variables p, ..., u4 generically has at most one solu-
tion. We will see below how to convert such a system into a
rectangular multiresultant matrix R. whose unique null vec-
tor encodes the solution. We can then estimate the null vec-
tor numerically (e.g. using SVD), extract the corresponding
1, substitute into P () to obtain P, and decompose P to ob-
tain full camera pose + calibration. In this case the resultant
matrix turns out to be 80 x 56 — large, but still tractable.
The 5 point method is similar. It recovers (u1, p2) using
the calibration constraintsa = 1, s = 0. These are no longer
linear in the entries of K KT, but fortunately they are linear
inthose of w1 ~ (KKT)~1, whose upper 2 x 2 submatrix

is proportional to _ls a;_:sz w~1 is proportional to the
matrix of cofactors of w, and hence quadratic in w = w(u)
or quartic in u. The system a = 1,5 = 0 or w;;' = wyy,

-1 _
wi; = 0 becomes

Wog W33 — w§3 = W11 W33 — w%s (3)
wo w3z —wazwz = 0

This overconstrained system of two homogeneous quartics

in (11, p2) yields an 8 x 8 (Sylvester) resultant matrix whose

null vector again gives the solution quasilinearly.

Notes: The globally optimal P lies somewhere in the
nonlinear variety of projection matrix space cut out by the
d calibration constraints. It has low error so it is usually
not far from the space spanned by the smallest few singu-
lar vectors of the DLT constraint matrix A. This motivates
the choice of the subspace P (). But with noisy data P (u)
rarely contains the exact global optimum. In fact, the cal-
ibration system has 1 redundant d.o.f. on P(u), so it sel-
dom has any exact solution there, let alone an optimal one.
Worst still, step 2 finds its “unique” near-solution by roughly
minimizing some highly twisted heuristic form of the con-
straint residual, regardless of the resulting image error. The
measured data points contribute only to the estimation of
the “null” space P(u) in step 1. This is fine for minimal
point sets where P () is the true null space of the DLT con-
straints. But for noisy, non-minimal, well-conditioned data
P(u) generally contains several far-from-null directions and
there is a risk that step 2 will return a solution with quite
large residual. In summary, the multiresultant solution nei-
ther exactly satisfies the constraints, nor minimizes the fit-
ting error even within the P(u) subspace, let alone outside
it. Experimentally this is verified: (i) nonlinear refinement

significantly reduces the residual of the multiresultant solu-
tions; (ii) the multiresultant methods are most suited to near-
minimal data — as more data is added their performance
improves comparatively little, so for well-conditioned high-
redundancy data the 6 point DLT is preferable.

3 Solving Polynomial Systems

This section briefly sketches the multiresultant theory re-
quired to understand our algorithms. Part of this material
is classical, but it has seen a significant revival lately and
we will use some recent results. There is no space for de-
tails here, but the material deserves to be better known in
the vision community as large-scale polynomial solving is
rapidly becoming a feasible proposition. See, e.g. [4, 14] for
references and further reading.

A polynomial p(x) > pax® in variables x =
(z1,...,xy,) is afinite sum of coefficients p,, times mono-
mials x* = T[[°,z, with integer exponents a =
(a1,...,ap,) € Z™ For homogeneous polynomials, all
exponents have the same degree |a| = ), a;. Any poly-
nomial can be homogenized by including an extra variable
xo at a suitable power in each term, and de-homogenized
by setting zo = 1. The product of polynomials p,q is

Pa)x) = >, (Eﬁpa_g q,g) x“. By choosing some
sufficiently large list of working exponents A (to be spec-
ified below), we can represent polynomials as row vectors
pa = (...Pa-...) and monomials as columns x* =
(...x*...)T, so that p(x) = pa - x* is the usual row-
column dot product. All of the nonlinearity is hidden in the

“simple” monomial evaluation mapping x — x*. Polyno-
mial multiplication can be represented by matrices M 4(q)
acting on the right on row vectors p: (p Q)4 = pa Ma(q).
Row « of M 4(q) contains the row vector of x* q(x), i.e.
the coefficients of g ‘shifted along’ by «. Coefficients
shifted outside of A are truncated, but we will use only un-
truncated rows.

We want to find the roots of a polynomial system
{P1(x),... ,pm(x)}, i.e the points x at which all p;(x) =
0. Itfollows that 3, p;(x) q;(x) also vanishes at all roots x,
for any other polynomials q;(x). As row vectors, such sums
are linear combinations of rows x® p;(x) from the multi-
plication matrices M 4(p;). Gather the (untruncated) rows
of these into a big ‘multiresultant’ matrix R. The vanish-
ing of x® p; at roots implies that the monomial vector x4
of any root is orthogonal to all rows of R.: The linear sub-
space of monomial vectors spanned by the root vectors x4
is contained in the right null space of R.. It turns out that by
making A larger, this null space can often be made to ‘close
in’ on the space spanned by the roots, until they eventually
coincide. If there is only one root x, x** can then be recov-
ered (modulo scale) as the unique null vector of R.. x then



follows easily by taking suitable ratios of components, with
at most some trivial root extractions. For numerical accu-
racy, large-modulus components of x“ should be selected
for these ratios.

For homogeneous polynomials, roots are counted projec-
tively in the homogeneous variables (zo, . .. ,z,). Bezout’s
theorem says that a system of n such polynomials of degrees
d; has either exactly [T, d; such complex roots (counted
with appropriate multiplicities), or (non-generically) an infi-
nite number. Adding further polynomials gives an overcon-
strained system that generically has no roots at all. But if it
does have one it is generically unique and can be recovered
by the above construction. In particular, for dense homo-
geneous polynomials (ones whose coefficients of the given
degrees are all nonzero and generic), Macaulay’s classical
multiresultant [12] chooses A to contain all monomials of
degree D =1+ Y7 (d; — 1).

Taking all untruncated rows of the multiplication matrices
as above generally gives a rectangular matrix R. Macaulay
gave a prescription for choosing a minimal set of rows (a
square R) that (generically) suffices to generate the null
space. This is useful for theory and most current multire-
sultant codes adopt it. But numerically it is ill-advised as
nothing says that the selected rows are particularly well-
conditioned. | prefer to include all available rows and use a
stable numerical null space routine, either pivoting to select
suitable rows, or using an orthogonal decomposition like QR
or SVD that averages errors over all of them. This also al-
lows any available additional polynomials to be included on
an equal footing for better stability and/or reduced degener-
acy, simply by adding the appropriate rows of their multipli-
cation matrices to R.. If some of the polynomial coefficients
vanish the Macaulay construction may fail. Sparse ‘New-
ton’” multiresultants are available in such cases [7, 6, 4].

The above is all we need for the quasilinear 4 and 5 point
methods, as the P; and hence (2), (3) are usually dense.
However, as mentioned above, the 4 point method fails un-
necessarily for coplanar points. R develops 3 additional
null vectors in this case, corresponding roughly to infinite
and zero focal lengths (though not necessarily to coherent
roots). The true root monomial still lies in this 4D null
space, but it is no longer isolated by the null space com-
putation alone. This failure is annoying, as coplanarity is
not actually an intrinsic degeneracy of the 4 point problem.
Indeed, stable specialized methods exist for the planar case
[21, 10, 18, 22]. Unfortunately, these fail even for mildly
non-coplanar scenes. It would be useful to develop a method
that handled both cases simultaneously, and in particular the
difficult near-planar region. To do this we need some more
theory.

The columns of the resultant matrix R. are labelled by the

exponent set A. If we partition A into subsets A1 + Ao,
R can be partitioned conformably (after column permuta-

tion) as R = (R;|Ro). Choose the partition so that:
(i) Ry has full column rank Ny = |Aq|; (ii) Ap is rel-
atively small and compact in the sense given below. For
any left pseudoinverse? RI of Ry, the column span of the

N x Ny matrix U = (—R% RO) contains the null space of

the columns of R.. In fact, U regenerates null vectors v from
their Ag components: Rv = R; vy + Rgvg = 0 implies
Uvy = (fRIvl(}ovo) - (RIVROlvl) = (W) =v.

Now choose a non-constant polynomial g(x) such that
the row vectors x* q are untruncated in A for all & € Ay.
(It is to avoid truncation here that Ay needs to be small and
compact. g can have negative exponents if necessary). As-
semble these Ao rows of M 4(q) into an Ny x N matrix
M = (M; | My), and form the Ny x Ny reduced multipli-
cation matrix

MAo(qlpl---Pm) = MU = MO—M1RJ{RO

What is happening here is that the polynomials x? p; (the
rows of R, acting via R’{) have been used to eliminate the
Ajz exponents of the polynomials x* q, leaving a matrix on
the reduced exponent set 4q representing multiplication by
q followed by reduction modulo (multiples of) the p;. The
reduction leaves the value of q unchanged at all roots x of
the p;, as multiples of p;(x) = 0 are added to it. Hence,
using the above regeneration property, for any root x of the
system {p; ...pm }, the monomial vector x*° isan eigen-
vector of M 4, (q) with eigenvalue q(x) :

M4, (q) x = Mx* = g(x)x*

Even if we can’t reduce the null space of R to a single vec-
tor owing to multiple roots, ill conditioning, etc, we can still
obtain roots by solving a nonsymmetric eigenvalue prob-
lem. Given x“° we can recover x as before, if necessary
regenerating x* = Ux° to do so. Possible problems
with this construction are: (i) it may be impossible to find
an Aq with well-conditioned RJ{ and non-constant, untrun-
cated q; (ii) if the chosen q takes similar values at several
roots, the eigenvalue routine may fail to separate the corre-
sponding eigenspaces cleanly, leading to inaccurate results;
(iii) post-processing is required, as some of the recovered
eigenvectors may be garbage (i.e. vectors that define valid
linear forms on polynomials, but whose components do not
correspond to the monomials of any root). Beware that non-
symmetric eigenproblems are intrinsically rather delicate,
and in this application can become spectacularly unstable
for ill-conditioned R, or ill-chosen g. This is not immedi-
ately obvious from the recovered eigenvalues or eigenvec-
tors. However the condition number of the eigenvector ma-
trix is a fairly reliable indicator.

2le, RJ{ Ri1 = In, xn,. Such RJ{ are easily calculated from most
numerical decompositions of R .



This multiplication matrix approach to numerical root-
finding is quite recent [17, 14, 4], although its roots go back
a century. So far as | know, the observation that it contin-
ues to work when A, and U span more than the null space
of R is new. This is numerically useful, as it allows eigen-
system size to be traded against elimination stability. This
approach can be used to find all of Bezout’s projective roots
of a dense n polynomial system by building a Macaulay ma-
trixwith D = 1+ 37 (d; — 1) and choosing .4, to contain
all monomials x* with 0 < «; < d;. Here, Ry generically
spans the column space of R, so there are no extraneous
eigenvalues. Sparse analogues also exist.

We will use the eigenvector method to stabilize the 4 point
quasilinear one against near-planar scenes. Coplanarity in-
creases the null space dimension of the 4 point multiresul-
tant R from 1 to 4. So we need to choose four exponents
of A for the reduced exponent set 4q, and the routine will
return at most four potential roots. Currently | use the four
lowest degree exponents (p1, p2, 43, 1) (Where pg = 1 is
the homogenizing variable). This choice parametrizes the
true root and at least one false null vector stably, but it is
not ideal as the remaining 1-2 false null vectors are mainly
supported on ‘high’ exponents deep within A;. | know of
no way around this dilemma: the supports of the null vec-
tors are too widely separated to gather into an A supporting
an untruncated q, even if we could isolate which exponents
were needed. With the heuristics discussed below, the mod-
ified 4 point routine performs tolerably well despite the fact
that both R‘; and the eigenvalue problem are often fairly ill-
conditioned, but a cleaner solution would be desirable.

4 Implementation

The steps of the new pose + calibration algorithms are as
follows, where d = 4, 2 for the 4,5 point method:

1. Use SVD to estimate the d-D null space P(u) =
S°% | ui P; of the DLT constraints x A (P X) = 0.

2. Substitute P(u) into the 4 quadratic calibration con-
straints (2) (4 point) or 2 quartic ones (3) (5 point).

3. Form the rectangular multiresultant matrix R. of the re-
sulting polynomials, use SVD to recover its unique null
vector p4, and extract u. For the eigenvector method,
choose a splitting .Ao and a compatible random polyno-
mial q(y), use R} to form q’s reduced multiplication
matrix, extract eigenvectors p*°, and recover the solu-
tions p.

4. (Optional) Refine the recovered roots p by Newton it-
eration against the original calibration constraints.

5. Calculate the camera projection matrix P(x) and de-
compose it as usual to get pose + calibration.

The routines have been implemented in OCTAVE/MATLAB.
The necessary multiresultant matrices were calculated using
a MAPLE routine similar to [14] (available from the author).
The null space methods are straightforward to implement,
but the eigenvector one requires some care. The choice of
the “pivoting’ exponent set Ay is critical, and | am not happy
with the current heuristic. In fact, | have tried only the p4-
based exponent set, but varied which of the projection ma-
trices P; (the d smallest right singular vectors of the DLT
equations) is assigned to u4. | tried various permutations
and also random orthogonal mixings. None are wholly sat-
isfactory and a more effective pivoting strategy is clearly
required before the eigenvalue approach can be routinely
used to rescue resultants from multi-root degeneracies. For 4
points and near-planar scenes, making P4 correspond to the
greatest of the 4 singular values is by far the best choice. But
it performs erratically for non-coplanar scenes and n > 4
points. Changing strategies makes enormous differences to
the conditioning of R4, but does not necessarily stop the
routine from working. Slight (O(10~1%)) damping of the
pseudoinverse is also essential with the current Ag, as Ry
actually becomes singular for coplanar points.

Another issue for the eigenvector method is the choice of
multiplier polynomial q(x). For simplicity | have used a lin-
ear q, although anything up to 4t* order could be handled.
For maximum stability, it is important that q should take
well-separated values at different roots. In practice, | ran-
domly choose a few g’s and take the one that gives the best
conditioned eigensystem. The cost is negligible compared
to the calculation of R/

The current implementations use SVD for all null space
computations. This is perhaps overkill, but it guarantees the
stablest possible results. Speed is adequate (< 1 second),
but might become an issue if the 4 point methods were used
in a RANSAC loop.

The roots p are recovered by selecting suitable large-
modulus components of - and taking their ratios. Option-
ally, they may then be ‘refined’ by a simple Newton iter-
ation that minimizes the error in the calibration polynomi-
als (2),(3) over u. For the best results the original calibra-
tion constraints should be used, not their resultant matrix R..
Full Newton rather than Gauss-Newton iteration is advisable
here, owing to the nonlinearity of the constraints.

5 Experiments

The graphs show some simple experimental tests on syn-
thetic data. The 3D test points are well spread and by de-
fault non-coplanar. They are viewed from about 5 scene
diameters by a 512 x 512 camera with f ~ 1000 £+ 400
and a default Gaussian noise of 0.5 pixels (which is easily
obtainable with marked target points). Median errors over
300 trials are reported. For flat scenes, the plane is viewed



Focal Length Error vs. Image Noise

Focal Length Error vs. No. of Points

Focal Length Error vs. Scene Flatness
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Figure 1: Left: Focal length & rotation error vs. noise, for each method’s minimal point number and preferred scene flatness. Middle: Error
vs. number of points for 0.5 pixels noise. Right: Error vs. scene flatness for minimal point numbers.

at about 30 + 15° from normal to avoid the frontoparallel
degeneracy, which all of the algorithms here suffer from.

The graphs show that all methods are quite sensitive to
noise, but all scale linearly with it up to at least 50% relative
error. The planar 4 point f-only method [21, 10, 18, 22] is
both simpler and intrinsically stabler than the 3D ones, but it
can not tolerate more than about 5% non-coplanarity. Plane
+ parallax might be an interesting approach for pose + cal-
ibration from flat scenes. The 5 and 6 point DLT’s fail for
scenes within about 20% of planarity, whereas the 4 point
DLT one (whose failure is algorithmic not intrinsic) contin-
ues to work down to around 10%. The 4 point eigenvec-
tor method works even for planar scenes, but overall it is
somewhat erratic. (E.g. it gives better results for near-planar
scenes, and for 4 points rather than n > 4). As above, this is
due to the lack of a good policy for the choice of the residual
exponent set Ag.

The performance of the 5 point DLT is somewhat disap-
pointing. The traditional 6 point DLT is always preferable
when there are n. > 6 points, and for n > 10 even beats
the 4 point DLT on f (but not on orientation). In general
the relative rankings depend somewhat on the error measure
chosen. The fact that the 6 point DLT does better than the
4-5 point ones for large numbers of points is annoying but
not unexpected. As discussed in section 2, it happens be-
cause the multiresultant step blindly minimizes some sort of
twisted constraint residual over the subspace P (u), without
any consideration of the image errors produced. For redun-

dant data P (u) usually contains projections with significant
image error, hence the problem. | am currently working on
this, but for now the 4 and 5 point methods are most useful
for minimal and near-minimal data.

The “4pt DLT refined’ method runs Newton’s method on
the output of the linear 4 point one, to minimize the RMS er-
ror of the calibration constraints. Such nonlinear refinement
is highly recommended, as it reduces the overall residual er-
ror by a factor of 2-5. A mini bundle adjustment over the
resulting pose estimate would do even better, as it would not
be restricted to the d-D “null space’ of the DLT constraints.
The large reduction in residual suggests that there is consid-
erable scope for improving the heuristic least squares error
function embodied in the multiresultant root estimate. How-
ever, except for the initial DLT step, simple rescaling has
little effect: the multiresultant is insensitive to the scaling of
its input data over a range of at least 10+2,

Use of the rectangular multiresultant is recommended, as
it makes the results significantly more consistent, allows ad-
ditional points to be incorporated, and reduces errors by 20—
40% compared to the square Macaulay resultant.

All of the methods give more accurate relative results as
f grows larger and the camera recedes, simply because a
larger magnification camera with the same pixel noise is
a more accurate angle measurer. Conversely, for small f
angular errors and perspective become large and the prob-
lem becomes very nonlinear: spurious roots near f ~ 0 are
common in (auto-)calibration problems. This makes it clear



that 1/ f is a natural expansion parameter, and suggests that
pseudo-affine initialization may be a good implementation
strategy for pose + calibration methods, c.f. [5, 3].

6 Summary and Conclusions

The 4 point quasilinear pose method performs reasonably
well considering how much information it extracts from
such a small amount of input data. The 5 point method is
less good and is probably best reserved for special situa-
tions. Both methods are most useful for minimal or near-
minimal data. Neither competes with the traditional 6 point
DLT when there are > 6 well-spaced points, and hence nei-
ther realizes my hopes that calibration constraints could be
used to stabilize the 6 point method. The reason is basically
the splitting of the problem into ‘DLT” and ‘multiresultant’
parts with different, incompatible error metrics. This sort
of subdivision is commonplace in vision geometry, but it
is clear that it prevents the data and constraints from being
combined very effectively. | am currently reflecting on bet-
ter ways to handle this. Also, the whole issue of scaling,
pivoting, and the effective error metric used by polynomial
methods like multiresultants remains very unclear. But the
numerical side of this field is very recent, and significant
improvements are to be expected over the next few years.

The use of oversized, rectangular multiresultant matri-
ces R improves the numerical conditioning and also allows
redundant data to be included, so it should help to make
polynomial-based initialization of many vision optimization
problems more feasible. For more difficult cases where there
are multiple near-roots and other degeneracies, the eigenvec-
tor method has considerable potential. However, if my cur-
rent experience with the 4 point eigenvector method is any
guide, more work on pivoting/exponent choice strategies is
essential to make numerically trustworthy.
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