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Abstract

This paper establishes a link between uncalibrated
stereo vision and the motion of rigid and articulated bod-
ies. The variation in the projective reconstruction of a dy-
namic scene over time allows an uncalibrated stereo rig to
be used as a faithful motion capturing device. We intro-
duce an original theoretical framework – projective kine-
matics – which allows rigid and articulated motion to be
represented within the transformation group of projective
space. Corresponding projective velocities are defined in
the tangent space. Most importantly, these projective mo-
tions inherit the Lie-group structure of the displacement
group.

These theoretical results lead immediately to non-
metric formulations of visual servoing, tracking, motion
capturing and motion synthesis systems, that no longer
require the metric geometry of a stereo camera or of the
articulated body to be known. We report on such a non-
metric formulation of a visual servoing system and present
simulated experimental results.

1 Introduction

In this paper we address the problem of representing and
controlling the motion of robot manipulators or, more gen-
erally, of articulated mechanical devices using image mea-
surements and continuous feedback from an uncalibrated
stereo camera pair - a stereo rig. It is well-known that such
a camera pair can recover the 3D projective structure of an
observed object from point-to-point matches between the
two images - this result has been simultaneously shown by
Faugeras [5] and Hartley [8]. The relationship between the
projective structure thus recovered has been further inves-
tigated by a number of authors: Zisserman revealed how
to upgrade projective structure to metric if the stereo rig
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undergoes a general displacement [18] and to affine if the
rig undergoes planar motion [1], Devernay & Faugeras re-
vealed important algebraic properties associated with the
similarity between rigid and projective motion [3]. Horaud
& Csurka devised a closed-form solution for computing the
internal parameters from general motion [11], and from a
single planar motion [2].

In parallel other authors investigate the relationship be-
tween a stereo rig and the visual control of a robot ma-
nipulator. Hollinghorst and Cipolla considered an affine
approximation of the perspective camera model [10] and
Hager et al. investigated both, the representation of align-
ments using projective invariants and the sensibility of
stereo-based visual control in the presence of coarse cal-
ibration [7].

Therefore, based on the current state-of-the-art, a pos-
sible solution for stereo-guided visual servoing using un-
calibrated cameras would be to calibrate the stereo rig first
and then to use the classical Euclidean robot to establish a
visual control law [4].

The work described in this paper takes a different ap-
proach, where neither internal camera parameters, nor Eu-
clidean robot representations are required anymore. Since
the motions of a robot are combinations of elementary rota-
tions (revolute joints) or translations (prismatic joints), we
introduce two special projective transformations, namely,
projective rotationsand projective translations. These
transformations are special parameterizations of4 × 4 ho-
mographies that arise when a weakly calibrated stereo rig
observes either rotations or translations. We reveal the
Lie-group structure of these transformations and we ana-
lyze the action of these groups onto 3D projective space.
We explicitly devise the projective tangent operators asso-
ciated with them. Next, we establish the projective for-
ward kinematics and inverse models of a robot manipula-
tor. Note that this model applies to articulated motion in
general. Moreover, we devise the projective velocity as-
sociated with such an articulated motion and we explicitly



derive the relationship between the joint velocities and the
2D velocities observed in the two images. Finally, we in-
troduce the concept of non-metric (projective) visual ser-
voing, where no Euclidean representations (neither for the
cameras nor for the robot) are required.

1.1 Notation

Bold typeH,T is used for matrices, bold italicM, k for
vectors, calligraphicF ,P for frames, and Romana, b, θ
for scalars, angles etc. Vectorsk are column vectors, and
row vectors are written by the transposehT . “ '” denotes
equality up to scale.

We give without proof a well-known matrix identity

exp(A−1XA) = A−1 exp(X)A (1)

2 Projective reconstruction

A calibrated stereo rig is modeled as two pinhole cam-
eras which have intrinsic parametersK, K′, and which are
rigidly linked by (R′, t′). A point N in Euclidean space
projects onto the pointsm andm′ in the left and right pro-
jective image planeP2 [6]. Solving the projection con-
straints (2) forN yields aEuclidean reconstructionin the
Euclidean camera frameE

m ' [K|0]N, m′ ' [K′R′|K′t′
]

N. (2)

A weakly calibrated stereo rig is modeled as a pair of cam-
eras whose epipolar geometryF is supposed to be known
[9]. This allows two projection matricesP = [I|0] and
P′ to be calculated, such that the correspondingprojective
reconstruction, solving

m ' PM, m′ ' P′M (3)

for M, is relative to aprojective camera frameP . The
frameP is defined byF and can be thought of as five rigid
points attached to the stereo rig [8], [13].

If the stereo rig remains fixed, i.e. constantK, K′, and
(R′, t′), the so-calledprojective-Euclidean link (PE-link)
HPE is the well-defined homography

N ' HPEM, HPE '
[

K−1 0
aT 1

]
, (4)

that upgrades the projective reconstruction (3) inP to a
Euclidean one (2) inE . The PE-link encapsulates the com-
plete geometry of the stereo camera, and recoveringHPE

amounts to metric calibration [18], [3].

Throughout this paper, we consider a stereo camera
observing and reconstructing a dynamic scene containing
rigid and articulated motion. We assume a fixed but un-
known stereo geometryHPE (4).

3 Metric rigid motion

At a time instant t, generic pointsN on a rigid body
have coordinatesN(t) = [X(t), Y (t), Z(t), 1]T with re-
spect to the Euclidean camera frameE . The trajectory of a
rigid motionis described by

N(t) = TRT (t)N(0), TRT (t) =
[
R(t) t(t)
0T 1

]
, (5)

whereTRT (t) is a differentiable trajectory in the displace-
ment groupSE(3). Therefore,spatial point-velocitiesare
defined by the tangent

Ṅ(t) = [Ẋ, Ẏ , Ż, 0]T = ṪRT (t)N(0), (6)

whereṄ as well asN are relative to the frameE . Moreover,
the Lie-group structure ofSE(3) allows aspatial body-
velocityto be defined by the tangent operator

T̂RT (t) = ṪRT T−1
RT , (7)

which indeed yields the motion tangentṪRT (t) and the
point-velocity ofN(t) by simple left-multiplication

Ṅ(t) = T̂RT (t)N(t) = ṪRT (t)N(0). (8)

The instantaneous body-velocity as written in (7) is a ma-
trix representation of the Lie-Algebrase(3) of SE(3). It
has generally the form

T̂RT (t) =

[
0 −ωz ωy vx

ωz 0 −ωx vy

−ωy ωx 0 vz

0 0 0 1

]
, (9)

which is geometrically interpreted as follows. The vectos
w = [ωx, ωy, ωz]T andv = [vx, vy, vz ]T are the instanta-
neous angular- and linear velocity of the frameE as if it
were rigidly moving with the body at instant t [14]. This
has to be distinguished from the common usage of kine-
matic screws, where they represent the velocity of a rigid
body in its own, body-fixed frame and not in a spatial ref-
erence frame; here the frameE .

4 Rigid projective motion

In this section, we no longer assume a calibrated stereo
camera and the Euclidean frameE , but consider an uncal-
ibrated rig. The reconstruction is then projective, relative
to the projective camera frameP . Nevertheless, the PE-
link (4) between the pointsN(t) and their projective coor-
dinatesM(t) allows us to define the notions ofprojective
kinematics.



4.1 Projective displacements

The projective coordinatesM(t) and M(0) of rigidly
moving points are related by a4 × 4 homography matrix
HRT ∈ PGL(3) – the three-dimensional projective group
– which can be calculated from at least 5 such point and
their correspondences

M(t) = HRT (t)M(0). (10)

Such homographies are algebraically similar to a displace-
ment by the PE-link up to the scalarγ

HRT (t) = γ H−1
PE TRT (t) HPE . (11)

By similarity, the trace and determinant determineγ and
allow normalizingHRT to unit scale

γ = sign(trace(HRT ))(|HRT |)1/4. (12)

We refer to normalized homographiesHRT that have the
form (11) andγ = 1 as projective displacements (p-
displacement). It is straight forward to see that they form
a subgroup ofPGL(3), modulo a fix matrixHPE em-
bodying the stereo geometry. What is more, thanks to
normalization, equation (11) is a well-defined differen-
tiable homeomorphism fromSE(3) into PGL(3), such
that the p-displacements inherit this structure and become
a subgroup, moreover a Lie-subgroup inPGL(3). They
are simply a matrix representation ofSE(3) in PGL(3),
which we will denote asPSE(3).

4.2 Projective body-velocity

In analogy with equation (7), a notion ofprojective
body-velocitiescan be defined as

ĤRT (t) = ḢRTH−1
RT . (13)

Geometrically, these are spatial velocities with respect to
the projective frameP . Algebraically, they are a matrix
representation ofPSE(3)’s Lie-Algebra, denotedpse(3),
and generally have the form

ĤRT (t) = H−1
PE

[
0 −ωz ωy vx

ωz 0 −ωx vy

−ωy ωx 0 vz

0 0 0 0

]
HPE . (14)

4.3 Orbit of projective points

From the PE-link(4), a scale factorρ can be identified
in the homogeneous coordinatesM of a projective point,
that is related to the unknown vector[aT 1] of the plane at
infinity.

ρN = HPEMρ, ρ = [aT 1]Mρ. (15)

All vectors Mρ haveρ as an implicit property, which we
call height. NeitheraT for the height are known, but the
height is invariantunder p-displacements.

HRT Mρ = H−1
PETRT HPEMρ = H−1

PETRT ρN =

ρH−1
PEN′ = M ′

ρ.

So Mρ ’s orbit under the action ofPSE(3) lies entirely
within the hyperplane[aT 1]T Mρ = ρ of R

4. Henceρ is its
orbital height.

4.4 Projective point-velocity

For a point on such a rigid orbitMρ(t), a projective
point-velocityis well-defined byṀρ(t). It is related to its
metric velocity (6) up to its fix but unknown height

ρṄ = HPEṀρ. (16)

Finally, applying a body velocitŷHRT (t) to a point-vector
Mρ(t), yields again its point-velocity

ĤRT (t)Mρ(t) = ḢRT (t)Mρ(0)

= H−1
PE ṪRT (t) HPE ρ H−1

PEN(0)

= ρH−1
PEN(0) = Ṁρ(t).

5 Articulated projective motion

In this section, the projective motions arising from rev-
olute and prismatic joints are derived, then the projective
motions of articulated chains are composed from these pro-
jective joint motions.

5.1 Projective revolute joints

Projective revolute joints are represented by means of a
projective formulation of pure rotational twists [14]. Ge-
ometrically, ageneral pure rotationis a revolution around
an axis at a general position in space. It can no longer be
represented byR(θ) ∈ SO(3), since this would constrain
the axis to go through the origin. Instead, it has a linear
representation inSE(3)

TR(θ) = T−1

[
R(θ) 0
0T 1

]
T, (17)

where the position of the joint is specified by means of its
displacementT away from the origin.

We define aprojective rotation (p-rotation)to be

HR(θ) = H−1
PE TR(θ) HPE , (18)



the p-displacement (11) corresponding to the general pure
rotationTR(θ).1 A similarity relation like (18) has the
Jordan decomposition of a p-rotation

HR(θ) = H−1
PET−1

[
cos θ - sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

]
THPE (19)

H−1
J JR(θ) HJ , (20)

Geometrically, this is achieved by writingR(θ) in (17)
w.l.o.g.2as a rotation around thez-axis. Algebraically, any
p-rotation is similar to the Jordan matrixJR, which implies
its rotation angleto be determined by

cos(θ) = 1/2(trace HR − 2). (21)

However, there is a whole familyHJ = CRTHPE of de-
compositions like (20), which is spanned by the commuta-
tor groupCR of the Jordan matrixJR.

CR =
[

a -b 0 0
b a 0 0
0 0 c d
0 0 e f

]
, rank(CR) = 4. (22)

This ambiguity is undesirable, sinceHJ encapsulates the
projective geometry of the joint. Nevertheless, lethT

j and
ki denote thejth row of someHJ and theith column of
someH−1

J .

The Jordan matrixJR(θ) is theSE(3) representation of
z-rotations, a 1D Lie-group of SE. It is generated over the
trivial Lie-Algebra with elementsθĴR:

JR = exp(θĴR), ĴR =
[

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

]
∈ se(3). (23)

As soon as (23) is substituted in (20), we have a differ-
entiable homomorphism fromSE(3) to PSE(3). There-
fore, the p-rotations form a family of 1D Lie-subgroups of
PSE(3), modulo an axis position and a fixed stereo geom-
etry, both embodied byHJ .

Formally applying the matrix identity (1) to
H−1

J exp(θĴR)HJ , yields the exponential formof a
p-rotation and itsgeneratorĤR:

HR = exp(θĤR), ĤR = H−1
J ĴRHJ . (24)

So, thegeneratorĤR of a p-rotation can be writes as

ĤR = k2hT
1 − k1hT

2 , (25)

Despite of the ambiguity ofHJ (22),ĤR itself is unique,
sinceCR commutates also witĥJR (24), (23).

1a joint can be positioned w.l.o.g. relative to frameE
2sinceT allows for free reorientation of the axis

We now prove theRodriguez formof p-rotations

HR(θ) = I + sinθĤR + (1 − cosθ)Ĥ2
R, (26)

Notice that−Ĥ2
R = k1hT

1 + k2hT
2 sincekihT

j = δij . Sub-
stitute(JR−I)+I into (20), expand in the sum, and collect
the rows and columns corresponding tosinθ and (cosθ−1)
to obtain (26) – q.e.d.

On the one hand, given the joint angleθ, the Rodriguez
form (26) allows us to analytically calculate the projec-
tive motion of a revolute joint. Its projective geometry
is uniquely represented by the generatorĤR of the cor-
responding Lie-subgroup ofPSE(3).

On the other hand, given a single p-rotationHR, calcu-
lated from a trial motion of the revolute joint (Fig. 3), the
logarithm of a p-rotation

ĤR =
1

2 sin θ
(HR − H−1

R ), (27)

allows us to recover its generator inpse(3). C.f.
1

2 sin θ (R − RT ) to go fromSO(3) to so(3).

5.2 Projective prismatic joints

The projective motion of prismatic joints is derived
along the lines of section 5.1. It is only summarized here
and can be found in greater detail in [15]. Starting from
a pure translation ofτ = 1 along thez-axis, theJordan
decompositions of p-translationshave the form

ĤT (q) = H−1
PET

[
1 0 0 0
0 1 0 0
0 0 1 τ
0 0 0 1

]
THPE (28)

H−1
J JT (q) HJ , (29)

They form a 1D Lie-subgroup ofPSE(3), modulo the
translation direction and the affine stereo geometry, both
embodied byHJ .

The generatorĤT of p-translations is the product of
the coordinate vectorsk3, their vanishing point, andhT

4 ,
the plane at infinity,

ĤT = H−1
J

[
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

]
HJ , ĤT = kT

3 h4. (30)

Their exponential formand logarithm are trivial, where
unit τ has the length of the trial motionHT

HT (q) = exp(qĤT ) = I + τĤT , ĤT = HT − I.



5.3 Projective motion of articulated chains

Projective articulated motion is expressed by means of
a projective generalization of the twist model of articulated
chains and the product-of-exponentials expansion of their
zero-reference kinematics [14],[17], In particular, we con-
cisely prove this projective model of the kinematics of ar-
ticulated chains using exclusively our projective kinemat-
ics.

Consider an articulated chain whose elements are seri-
ally linked by either revolute or prismatic joints. Consider
further a stereo rig rigidly fixed with respect to one end of
the chain. This end is called thebaseof the chain, whereas
the opposite end is called itstip. Then joints are indexed
with i = 1 . . . n in base-to-tip order, and the element link-
ing joint i with joint i + 1 is indexed withi.

This convention allows us to uniformly cover both, the
independent-eye case, where the robot and the stereo rig
are independently but rigidly installed in the workspace,
and the eye-in-hand case, where the rig is rigidly mounted
on the robot hand, which is now taken as the base of the
chain. To help intuition, focus on a six-axes robot manipu-
lator moving in front of a stereo rig.

A vector q = [q1 . . . qn]T of joint variablesqi, which
stand forθi or τi depending whether theith joint is revolute
or prismatic, describes theconfigurationof the chain rela-
tive to its zero-reference: an arbitrary configuration cho-
sen as the originq = 0 of joint-space. Now, assign to
generic points on theith element the coordinatesMi(0)
in zero-reference, andMi(q) in configurationq. The p-
displacementHi(q) of theith element, and such for all the
elements, represent thearticulated projective motionfor q
(Fig. 1)

Mi(q) = Hi(q)Mi(0). (31)

The projective motion of a single articulationHi(qi) is
directly expressed using the respective projective joint
Ĥi(qi), since in zero-reference each joint has a specific po-
sition in space. More precisely, moving only theith joint to
qi results in either a p-rotationHRi(qi) or a p-translation
HTi(qi), that is generated either bŷHRi or by ĤTi, de-
pending on the type of joint. The generators encapsulate
the projective geometry of the joint in the zero-reference.

Mi(qi) = Hi(qi) Mi(0). (32)

Hi(qi) = exp(qiĤi), Ĥi = ĤRi or Ĥi = ĤTi, (33)

Given an articulated chain and its projective jointsĤi in
zero-reference, the p-displacementof theith element can
be written as a product-of-exponentials (Fig. 1)

Hi(q) = exp(q1Ĥ1) · · · exp(qiĤi). (34)

The argument is a simple induction. The points on the
1st element are affected only by the motion of the1st joint:
M1(q) = H1(q1)M1(0). Thus the hypothesis is that the el-
ements preceeding theith one move like (34). Now, points
on theith element move likeMi(qi) = Hi(qi)Mi(0) if
only the ith joint is actuated. And after theith joint is
locked toqi, the pointsMi(qi) on theith element move
rigidly with elementi − 1. Conclusively, we can apply the
hypothesis fori − 1, to see that elementary joint motions
have to be left-multiplied in tip-to-base order (34). – q.e.d.

Since eachHi(qi) in (34) is expressed w.r.t. to frame
P , their conjugate forms (19), (28) can be substituted into
(34). Since the inner pairsHPEH−1

PE cancel out,Hi(q) is
in fact the p-displacementof theith element’s articulated
motion.

Hi(q) = H−1
PE exp(q1T̂1) · · · exp(qiT̂i)HPE . (35)

Here, theT̂i in the Euclidean POE are the twists (14) rep-
resenting the zero-reference of each joint w.r.t.E . It is
essentially this particular modelling of the chain’s geome-
try, that allows us to directly exploit the correspondence of
the Euclidean and projective motion.
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Figure 1:Zero-reference model of articulated chain.

5.4 Projective velocity of articulated chain

The instantaneous motion of an articulated body along a
differentiable trajectoryq(t) in joint space is characterized
by the projective body velocitieŝHi of its elements. Con-
sider a time instant t, at which the chain instantaneously
has the configurationq = q(t) and the joint-space velocity
q̇ = q̇(t).

We obtain themotion tangenṫHi(q, q̇) from the tempo-
ral derivative of the POE-formula (34)

Ḣi(q, q̇) =
dHi(q)

dq
q̇ =

i∑
k=1

q̇k
∂Hi(q)

∂qk
(36)

∂Hi

∂qk
= H1(q1) · · · Ĥk exp(qkĤk) · · ·Hi(qi) (37)



Theprojective body-velocitŷHi(q) of theith element

Ĥi(q, q̇) = Ḣi(q, q̇)H−1
i (q) (38)

=
i∑

k=1

q̇k

(
Hk−1(q) Ĥk H

−1
k−1(q)︸ ︷︷ ︸

Ĥk,q

)
. (39)

follows from definition (13). The expression̂Hk,q in (39)
follows by inserting (34) (37) into (38). It represents the
projective motion of thekth joint for its new position in
configurationq. Consequently, the body velocity as written
in (39) can be seen as the joint-wise linear superposition of
projective motionsĤk,q weighted by the joint-velocities
qk.

Finally, pointsMi(q) rigidly moving with theith ele-
ment have theprojective point-velocity

Ṁi(q, q̇) = Ĥi(q, q̇)Mi(q) = Ḣi(q, q̇)Mi(0), (40)

=
i∑

k=1

q̇k Ĥk,qMi(q) =
i∑

k=1

q̇k
∂Hi(q)

∂qk
Mi(0),

=
i∑

k=1

q̇k
∂Mi(q)

∂qk
. (41)

Equation (40) agrees with direct differentiation of (34).
Again, (41) rewrites is as a joint-wise linear superposition
of respective velocity components.

6 Non-metric Visual Servoing

In this section, we introduce anon-metric formula-
tion of the visual servoing paradigm, based on the projec-
tive representation of articulated motions. Classically, this
paradigm consists in servoing the end-effector to a target
position by means of aligning its velocity screw with the
difference between the current and the target image of its
features. To fix ideas, consider a gripper, mounted on a
six-axis robot arm, moving under visual control of a stereo
rig.
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Figure 2:Initial and target image of the gripper and the feature
trajectories over the iterations of the control loop.

We call our formulation non-metric for three reasons:
First, generally speaking, the geometry of the entire system
is modeled w.r.t. the projective camera frameP . Metric
frames do not appear anymore. Second, no a-priori knowl-
edge about the geometry of the system is required. The
camera geometry,P,P′, the geometry of gripper features
M6, and the robot geometry in terms of̂Hi are acquired
on-line. Third, the actual control law no longer servos
the robot’s Cartesian velocity, but servos the manipulator’s
joint-velocities. Therefore, we seek to derive a Jacobian
that relates image-velocitiesṡto joint ones:̇s = J(q, M6)q̇.

Most important is to understand theJacobian as an ana-
lytic expressionin q, M6, which ensures its soundness over
the robot’s entire configuration space. In contrast to exist-
ing systems, it is neither an on-line estimated linear model
[12], nor an a-priori given approximation around the target
[4], [7].. First of all, for each jointk, its projective motion
is developed around the current configurationq, i.e. for its
current position in space. The calculation is that ofĤk,q

in (39). Second, for each pointM6 on the gripper and for
each jointk, a point-velocity component̂Hk,q · M6 is de-
veloped aroundq and the current positionM6 of the point.
Now, their superposition (41) can be expressed by a Jaco-
bian matrixJH

Ṁ6(q, q̇) = JH(q, M6)q̇ (42)

=
[

∂M6(q)
∂q1

. . . ∂M6(q)
∂q6

]
q̇. (43)

∂M6(q)
∂qk

= Ĥk,q · M6 (44)

Finally, the camera JacobianJC between spatial velocity
Ṁ6 and image velocitẏs is developed around the point’s
current imagem = PM6 in the projective planeP2. This
first step has the trivial JacobianP. The mapC : m →
s = [m1/m3, m2/m3]T from P

2 onto the pixel plane de-



scribes the actual perspective projection, which has Jaco-
bianJC(m)

ṡ = JC

(
m
)

ṁ, JC

(
m
)

=

[
1

m3
0 −m1

m2
3

0 1
m3

−m2
m2

3

]
. (45)

Finally, the JacobianJ is a function ofq andM6[
ṡ
ṡ′

]
=
[
JC(P M6) P JH(q, M6)
JC(P′M6) P′ JH(q, M6)

]
q̇, (46)

where the projective geometry of the system is encapsu-
lated inP,P′ and in theĤi.

We now report onsimulationsof such a non-metric vi-
sual servoing system. The metric geometry of the simu-
lated setup is roughly a stereo system having20cm base-
line,20o vergence angle, a3/4′′ CCD, and12.5mm lenses,
capturing over time the motion of a PUMA-like robot from
1m distance. The latter has an arm with links of36cm,
48cm, and40cm length, and carries a gripper of10cm in
size. In contrast, the only inputs used by the non-metric
system are joint angle measurements and image projec-
tions of gripper features. To take into account real imaging
conditions, independent Gaussian noise withσ = 1px is
added, whereas joint angle are supposed to be accurate.

Figure 3:Robot in zero-reference and trial motions.

During theacquisition phase(Fig. 3) , six joint-wise
trial-motions[30, 20, 30, 40, 60, 60]T are acquired through
the p-rotation homographiesHi estimated for7 point fea-
turesM6 of the gripper. In a first step, the generatorsĤi are
calculated algebraically (27), but have to be refined using a
non-linear numerical method to obtain stable and accurate
results in presence of noise. The method employed has al-
ready proved its performance on real image data [15], [16].

During the servoing phase, three points on the visi-
ble face of the gripper are tracked, and the point-wise
stack of the error vectors from their current imagess, s′ to
their goal imagess∗, s′∗ constitutes the overall image-error.

This stack is used to invert the Jacobian relation (46) for
joint-velocitiesq̇. This proportional control law causes the
image-error to decrease exponentially [4].

 q̇1

...
q̇6


 = −J+


 s− s∗

s′ − s′∗
...


 (47)
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Figure 4:Joint-space trajectory

We show the result for a servoing task which translates
the gripper by82cm and rotates it by88o. The goal
was attained after20 iterations. In joint-space (Fig. 4), a
smooth, almost monotonous trajectory covers a distance
of q = [57, 10, 5, 51,−60, 158]T and attains the target
to within ∆q = [0.04, 0.15, 0.23, 0.31, 0.10, 1.5]T

for 0.5px image noise, and to within∆q =
[0.01, 0.04, 0.09, 0.19, 0.21, 0.35]T for 0.1px image
noise. In the image (Fig. 2), the approximately linear tra-
jectory covers a distance of about220px. The image error
(Fig. 5) shows exponential decay in all its components
until convergence is attained with the residual error below
the noise levels.
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7 Summary and Conclusions

We have shown how an uncalibrated stereo rig sees rigid
and articulated motion.The introduced original formalism
of projective kinematicshas proven to be almost as pow-
erful as the classical kinematics of a metric space. In de-
tail, projective formulations for displacements, for body-
and point velocities, as well as for revolute and prismatic
joints have been introduced. Most importantly, a projective
model for the geometry of an articulated chain has been
presented that lead immediately to an original approach to
“non-metric visual servoing”, which is formulated without
any knowledge about the metric geometry of the system, at
all.

We hope this theoretical work will give foundations and
motivations for the integration of uncalibrated visual sen-
sors into perception-action cycles. We judge the present
simulations and formerly published practical experiments
very promising. Future work will hence concentrate on fur-
ther developing the practical and numerical means to better
validate the contribution of non-metric systems in practice.
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