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Abstract

Scene geometry can be inferred from point correspondences between two im-
ages. The inference process includes the selection of a model. Four models
are considered: background (or null), collineation, affine fundamental ma-
trix and fundamental matrix. It is shown how Minimum Description Length
(MDL) can be used to compare the different models. The main result is that
there is little reason for preferring the fundamental matrix model over the
collineation model, even when the former the ‘true’ model.

1 Introduction

Model selection is a central task in computer vision: given data obtained from images
and given a number of models, which model is most strongly supported by the data? Is it
better to have i) a simple model fitting the data approximately; or ii) a complicated model
fitting the data very closely [1, 6, 7, 9, 10, 15, 18, 20]? Accuracy of fit to the data is
by itself not a sufficient criterion for choosing a model. The fit can always be improved
by allowing a greater flexibility or generality in the model. In many cases, a sufficiently
general model fits the data with zero error.

In simple cases, the allowable models are specified by probability density functions������� �	� defined on the data � and depending on a parameter vector � with a fixed di-
mension. In such cases the Maximum Likelihood (ML) principle is a good, widely used
strategy: given � , select the value of � at which ���
��� �	� attains its maximum value. The
ML principle fails if the dimension of � can vary. Tt is necessary to introduce a penalty for
the number of model parameters, otherwise a model with a large number of parameters
will always be chosen in preference to models with only a few parameters.

In the literature there are several suggestions for penalising overparameterisation, for
example [1, 18]. The Bayesian Information Criterion (BIC) of [18] applies if the allow-
able models can be divided into separate families such that the ML principle holds for
each family separately. The BIC yields for each family an error criterion of the form��
�� ������������������������������ ��
�� ��� � where �� is the maximum likelihood estimate of � for the
family, � is the total number of parameters in the model and � is the total number of
measurements. If the number of measurements is low, then the second term dominates
and models with low � are favoured. If the number of measurements is high, then the
first term dominates, because it depends on the fit of the model to the large number of
measurements, and the value of � is less important.

The BIC is applicable only if probability density functions are defined on the space of
possible errors in the measurements and on the space of parameter values for each family
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of models. These density functions are prior information which can strongly affect the
model choice.

Minimum Description Length (MDL) [9, 10] is an alternative way of comparing mod-
els. Unlike Bayesian methods it does not require explicit probability density functions for
the data and the parameters. In MDL the data are first expressed as a bit string � . If a
model

�
fits the data, then � contains internal structure depending on

�
. This structure

is removed, to give a compressed string. The compressed string and a bit string descrip-
tion of

�
are concatenated to give a string ��� � � � . The model

�
is strongly favoured if

��� � � � is much shorter than � . The compression must be information preserving, in that
� can be recovered exactly from � � � � � . Overparameterised models are penalised simply
because they require a long description.

The Shannon-Fano code [10] is an example of MDL. The code is for symbols supplied
randomly and independently. If a symbol � has probability � then the optimal 0,1 code
for � has length � � ��
�� � � �	� , where

� 
	�
is the logarithm to base 2. The key point here is

the close link between the model ( � supplied with probability � ) and the code length.
Applications of MDL to computer vision can be found in [3, 5, 8, 11, 13, 14]. In

many cases, for example [8, 11], MDL is used to assign a prior probability to a model.
The deviations of the data from the model are given probabilities assuming a standard
distribution such as the Gaussian. The probability of a model conditional on the data is
derived using Bayes’ theorem, and then maximised over the model parameters.

In this paper MDL is applied to sets of pairs of corresponding points obtained from
images of a room taken by a digital camcorder. The aim is to investigate a test case appli-
cation of MDL, and to see if it performs as expected. The models are 
 , � , � , 
 , as listed
in � 1.1. No explicit probabilistic assumptions are made. The only criterion for comparing
the models is the length of the compressed bit strings ��� � � � , ��� � � � , ��� � � � , ��� � � � . The
main new result is that � achieves a good compression in all cases, in particular,

� � � � � � ��� � � � � � � � when the ‘true’ model is 
�� (1)

Without more information, for example, additional images or constraints on the shapes of
objects, there is little reason for ever preferring 
 to � .

1.1 The models

To be specific, suppose the data are the pixel coordinates of corresponding points ���������� ,�! #"$ #% in two images of the same scene. Two points � , ��� in different images
correspond if and only if they are projections of the same scene point [4]. The images
are embedded in the projective plane, & '�( , by adding 1 as a third coordinate, �
��)+* �-,.�
��)+*/) ��� . There are many possible models, each of which involves assumptions about the
relative position of the two cameras or the scene geometry [18, 19]. In this paper the
following models are considered.


 � Background: the image points have no discernable structure.
� � Collineation: there is a collineation 0213& ' ( . & ' ( such that 0 � �4� �65 ���� , �7 8"9 :% .
� � Affine fundamental: there is a ;=<>; matrix ? with rank 2 such that ?A@B@ 5 ?C@ ( 5? ( @ 5 ? (D( 5FE and �3G� ?H���� 5FE , �C I"� 8% [17].

 � Fundamental: there is a ;�<�; matrix J with rank 2 such that �KG� JL���� 5FE , �7 8"9 :% .
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1.2 Notation

A bit string is an element of � E ) ����� . The length of a bit string � is � � � . The floor function
is �:,.��
��� and the ceiling function is � ,. � � � , where � ��� is the greatest integer such
that � ���  � , and � � � is the least integer such that �  � � � .

The fixed length code of length 	 for a non-negative integer % is 
 � %�) 	 � . The usual
binary code for % is padded with zeros on the right to give a bit string of length 	 . If%���� , then 
 � %�) 	 � is defined only if 	 � � ��
�� � % � ��
 � , where

��
��
is the logarithm to base

2.
The logstar prefix code � 13& ��� . � E ) ����� is implemented as described in [2], � 4.3.2.

Note that � � � % � �C� ��
�� � � % ��
 � � � ��� �����4� � . A general discussion of the logstar code,
including the definition of

��
�� � , can be found in [10], with further information in [2]. The
map zton 1�� . & ��� is zton � % ��5��3% for %�� � , and zton � % ��5�� abs � % ��
 � for %�� � ,
and the logstar code is redefined on � by � � % �65 � � zton � % � � .

2 Coding the Data

In this section the strings � � � � � , � � � � � , � � � � � , � � � � � are defined. All the codes are
constructed using rational arithmetic, in order to avoid inaccuracies arising from floating
point approximations. The algorithms are implemented in Mathematica [21].

The image points are defined for �: "� % by � � 5 �
� � )D* � ) � � , ���� 5 �
� �� )D* �� ) � �
where � � , * � , � �� , * �� are integers. If the feature points are located in each image to an
accuracy of 1 pixel then the � � , * � etc. are the pixel coordinates. If feature points are
located with subpixel accuracy, then the � � , * � etc. are scaled pixel coordinates. The code 1!�#" . � E ) ����� used in this section is defined below in � 3.

2.1 Background $
Let � )D* ) � � )+* �&%'�#" be the vectors with respective components � � , * � , � �� , * �� . The code
for �4� ������ , �7 I"6 I% under the background model 
 is �9� � � �65( ��
� � �  �� * � �  �
� � � �  � * � � .

2.2 Collineation )
Let 0 1 & '9( . & '9( be a collineation, ie. a map of the the form � ,.+* � , where * is an
invertible ;-< ; matrix, and let � � , 	 � , , � , -4� be defined for �L 8"� I% by

0 � � � � 5 � � � ) 	 � ) � � G
� , � ) - � � 5 ��� � �� � � � 
 E � � � )!� * �� � 	 � 
:E �.� ���

The point �3�� can be recovered exactly from 0 , � � and the integers , � , - � .
Let , ) -/%0�#" be the vectors with respective coordinates , � , - � and let code � 0 � be a

coding of 0 . The � � , ���� , �L :"9 8% are coded by the string

1 5( �
� � �  � * � � code � 0 � �  � , � �  �� - � (2)

If 0 is a good fit to the data, then , , - are small and compression is achieved.
How should code � 0 � be constructed? A key issue is the precision with which the com-

ponents of 0 are specified. If the precision is low, then � code � 0 � � is small but �  � , � �  �� - � � is
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large. If the precision is high, then � code � 0 � � is large but �  �� , � �  � - � � is small. The problem
of choosing the best precision is circumvented by using RANSAC [16].

Let �/� ���3� , �A 2"� �� be pairs of corresponding points in & '�( , such that no three of
the �/� are collinear and no three of the � � are collinear. There is a unique collineation 0
such that 0 � � � ��5 � � , �  2"� �� . A coding of the � � , � � , �  "9 �� yields a coding of 0 .
Ideally, all quadruples � ��� �������� , �L 	�= 
� of corresponding points should be examined
to find the quadruple for which

� code � 0 � �  � , � �  � - � � (3)

is a minimum. In practice there are too many quadruples, so a random selection of �
quadruples is made and (3) is minimised over the chosen quadruples.

An advantage of RANSAC is that the precision of 0 is appropriate for the data; in
addition, the code for 0 is redundant because it includes the points � ��� , �L ��  �� already
coded in  ��
� � �  �� * � . The redundancy is removed and compression achieved by omitting
the �4� � from code � 0 � , and instead coding the index of the four-tuple 
 5 � " @ )D" ( )+"��3)D"�� � ," @ � " ( � "�� � "�� in the list of all ordered four-tuples with distinct entries drawn from% . The code length for 
 is at most � ��
�� � 	 � %�)���� �	��
�� bits where 	 � %�)���� is the binomial
coefficient.

Further compression of
1

in (2) is achieved by omitting from , , - the eight entries
known to be zero, yielding the code ��� � � � .

2.3 Affine fundamental matrix �
Let ? be an affine fundamental matrix, and let � be the line �	� 5 �3G6? . The geometrical
interpretation of the equation �KG�?H��� 5 E is that �3� lies on � � . If � , ? are given, then
��� can be coded by giving its position on �	� . Compression is achieved because only one
coordinate is needed rather than two.

As with � , RANSAC is used to find a suitable matrix ? compatible with the �3�������� ,�  "L % . Let �/� ���3� , �� "  �� be pairs of corresponding points in & '�( such that
no three of the �/� are collinear, no three of the � � are collinear, none of the � � , �3� are on
the line at infinity and there is no affine transformation T such that ����� 5 �3� , �A I"� �� .
Then there is a unique affine fundamental matrix ? such that ��G� ?��3� 5 E , �L 8"� 
� .

The point �3�� is specified relative to an origin which depends on " , the ��� and ? . In
detail, there is a three dimensional family of collineations which preserve the epipolar
lines associated with ? in that if � is any one of the collineations and � is an epipolar line
of ? in the first image, then � � � � is the corresponding epipolar line in the second image
[12]. The three dimensional family is spanned the collineations associated with any four
linearly independent matrices * for which

? * 
 * G ? G 5FE (4)

Let � ��� � ������ , �> ��:  � be the pairs of corresponding points which define ? . From
the � ��� select the three points � ��� , � �"! , � �$# which define a triangle with the greatest area.
A unique collineation is specified by the matrix * for which * � ��� 5 ���� � , * � �"! 5 ���� ! ,* �4� # 5 ���� # and (4) holds.

Let % � be a unit vector in & & ( parallel to �3G� ? , let %('� be a unit vector perpendicular to
% � , and define � � , � � by �3�� � * � � 5 � � � % � 
 � � %('� ) � � as shown in Figure 1. Define integers
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, � , -4� by � , � ) - � �65 � ��� � � 
:E �.� � ) ��� �4� 
:E �.� � � (5)

The factor 2 on the right hand side of (5) is needed to remove quantisation errors.
� � � � � � � � � � � � � � �

�
* � �

� �
� �
�����

� ��

� � � �
���� �

� � � ���
� � �

�� �

Figure 1. Definition of � � , � � .
The code for the � � ������ , �7 I"� :% is

 ��� � �  � * � � code � ? � �  � , � �  � - � (6)

The matrix ? is specified by giving the index of 
 5 � " @ )+" ( )+"��3)D"���� in the list of ordered
four-tuples of distinct elements drawn from % . When coding - , the four entries known to
be zero are omitted.

A random selection of � quadruples is made and the length of the code (6) minimised
over the quadruples. The code with the minimum length is � � � � � .

In a full reconstruction of the 3D scene the collineation * described above defines
a plane in space which passes near to the 3D points projecting down to corresponding
points in the two images.

2.4 Fundamental matrix �
The coding of � as �6� � � � is similar to the coding as ��� � � � , with one significant change,
due to the fact that four pairs of image correspondences are not sufficient to specify a
unique fundamental matrix. Let � � � � ���� � , �  �$ � be seven pairs of corresponding
points. There are in general exactly two linearly independent ;-< ; matrices J @ , J ( such
that ��G� � JL���� � 5 E , �  
�> � . The fundamental matrices compatible with the � � � � ���� � ,�L :"9 � are obtained by solving the cubic polynomial equation in

1
[19],

	�

� � J @ 
 1 J ( ��5 E (7)

There are at most three real roots. To specify a unique fundamental matrix it is necessary
to record the appropriate root of (7), which requires two bits.

Let
1 � be a real root of (7) and let �J 5 J�@ 
 1 � J ( . The matrix �J is replaced by a

rational approximation J , retaining the constraint
	�
�� � J � 5 E . Let �� be the eigenvector

of �J G��J with the least eigenvalue, let � be a rational approximation to �� and let � be a
rational approximation to �J . The matrix J is defined by

J 5 � � � ��� � ��� @ � ��� �
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3 Code for Vectors in � %

If  @ ) � �4� )  �� are different codes for vectors � % ��" , then a new code  can be constructed
by first finding the index � such that

�  � �
� � � 5������ � �  � ��� � � ) �A :"� � �
and then setting  �
� � 5 
 ��� ) 	 � �  � �
� � , where 
 is defined in � 1.4. If � is small and % is
large, then  may give shorter average code lengths than any single code  � .

The code  in � 2 is constructed from four separate codes  @ ,  ( ,
 � ,  � , which are

described in turn.

3.1 Codes 	�
 and 	
�
Let ��� be defined for ��% & � by

� � 5 � � % � " )�� � � �  � ) �  8"� I% �
The set � � contains � � � 
 � � " points. The elements of � � are enumerated by a function� � 1�� � . & ��� constructed such that

��� � E��65 � , and such that
� � is an extension of

� � � @
for � ��� . The functions

� � , � �2E together define a single function
� 1 ��" . & � � .

Let � be the median of the � � and let � be the vector with components � � 5 � � � � ,�L :"9 8% . The codes  @ ,  ( are defined by

 @ �
� ��5 � � � ��� ��� and  ( �
� ��5 � � zton � � ��� �  @ � � �

3.2 Code 	
�
Let � 5 abs �
� � � for some � , let � be the vector of components � � such that abs ��� � �  � ,
and let � be the vector of components � � � sign �
� � � � for those " such that � � � ��� � . Let� � %�� E ) ��� " be defined such that ��� � � � 5 � if � � is a component of � and ��� � � � 5 E if� � � sign �
� � � � is a component of � .

The code 
 � is defined by 
 � �
� � 5�� � �  @ � � � �  @ � � � . Let � be the value of � at which� 
 � ��� � � is a minimum over all the distinct values of � 5 abs ��� � � , �  "  % , that is� 
�� �
� � � 5������ � � � 
 � �
� � � � . The code  � is defined by  �	�
� �95 
 � ��� � .
3.3 Code 	"!
Let � be the median of � , let * @ ) � �4� )D*#� be the distinct integers appearing in the set
� � � � � ) �  "  % � , and let * � occur $ � times, �F "  � . Let % be the set of
all permutations of � . The number 	 of elements of % is given by the multinomial 	 5%'& � � $ @ & � �4��$�( & � . The elements of % are ordered in any convenient way. Let 
 be the index
of � in the chosen order, let * , $ be the vectors with the respective components * � , $ � , and
let �*) be median of $ . The code  � is defined by

+ �
� � 5 � � $ @ � � ) � � � � * @ � � � �4� � � � $ � � � ) � � � � *#���
 ���
� � 5 � � � � � � � � ) � � + �
� � � 
 � 
 ) 	 �

If the � � are independent realisations of a random variable and % is large, then �  � ��� � � � %
is, with a high probability, close to the shortest possible expected length of a code word.
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See for example [10], � 1.11.4. In practice the effectiveness of  � is reduced because of
the extra code needed for * , $ .

Figure 2. Images for collineation model.
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Figure 3. Code lengths when the ‘true’ model is a collineation

%

code length 
 �
�

Figure 4. Images for affine fundamental matrix model.

4 Experiments

Images of a laboratory were taken by a Canon MV-1 Camcorder mounted on a tripod.
Typical pairs of images are shown in Figures 2, 4, 6 with the ‘true’ models shown in the
captions. In each case the ‘true’ model is known, but only because of the prior information
available to a human observer. Figure 2 shows two images of a flat poster, Figure 4 is
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Figure 5. Code lengths when the ‘true’ model is an affine fundamental matrix
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code length 

 ��

obtained by translating the camera parallel to the image plane, and in Figure 6 the camera
is moved forwards to produce significant projective distortions of the image.

The task of the program is to make the best choice of model using only the data
� � ������ , �L :"� I% and the models 
 , � , � , 
 . This best choice can and does differ from
the ‘true’ model.

The size of the original images in pixels is � � E < ��� E . Feature points were located
in each image and matched to obtain pairs of corresponding points � � � ���� , �= !"  !% .
The graphs of code length against % for �  %  ; E are shown in Figures 3, 5, 7. The
maximum number on the vertical scale is 1200 bits, and the spacing between numbers
is 200 bits. The number of random samples in the RANSAC algorithm was � 5 �4E .
Increasing the value of � as far as 20 did not produce significant changes in the graphs.
Higher values were not investigated because of the long run times.

It is apparent from the graphs that � is always the preferred model even when the
‘true’ model is 
 . The models � , 
 show a similar performance, and 
 is always the
worst model.

Figure 6. Images for fundamental matrix model.

5 Discussion

The experiments show that the collineation model � is a good choice even for sets of
image correspondences for which the ‘true’ model is a fundamental matrix. This is in
agreement with the comment in [18], Section 4, that for two images, simple models are
strongly favoured over more complex ones. Why does the model 
 perform so badly
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Figure 7. Code lengths when the ‘true’ model is a fundamental matrix
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�

under MDL? The reason can be seen in Figure 1. In the usual methods for assessing
the fit of 
 to the data, the error measure is the sum of the squares of the � � , and the
�4� , measuring distances along the epipolar lines, are ignored. In MDL the ��� must be
included, to obtain a loss free coding of the data. The extra code length needed for the � �
reduces the preference for 
 , so that in these experiments � is almost always preferred.
This argument suggests that � will still be preferred if all the image pixel values are used
rather than than just the locations of a few salient points.

If additional information is given, then 
 may become the preferred model. For
example, suppose that � is augmented by an assumption that �K�� � 0 � � � � is a realisation
of a Gaussian random variable with a known covariance, and that �K�� � 0 � � � � is coded
under this assumption. When the ‘true’ model is a fundamental matrix, then the code for
���� � 0 � � � � will be long and 
 will be preferred to � .

Simple parameter counting, in agreement with general arguments based on the BIC,
suggest that for long image sequences a generalisation of 
 will be preferred over a
model in which pairs of images are related by a collineation. For example, suppose that
images 1,2,3 are given with fundamental matrices J @ ( , J ( � , J @ � . Let � � ����� ��� � be
a triple of corresponding points. Then � � � is determined by � , �3� and J @ � , J ( � , because
it is the intersection of the epipolar lines �KG6J @ � and �3� G�J ( � . If the J � � are replaced by
collineations * � � such that * � � preserves the epipolar lines associated with J�� � , then
there is no certain way of locating � � � given only � , �3� and the * � � . This suggests that the
fundamental matrix model will yield a shorter code for the points in the third image.
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