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Abstract

We investigate the motions that lead to ambiguous Euclidean
scene reconstructions under several common calibration con-
straints, giving a complete description of such critical motions
for: (i) internally calibrated orthographic and perspective cam-
eras; (ii) in two images, for cameras with unknown focal lengths,
either different or equal. One aim of the work was to evalu-
ate the potential of modern algebraic geometry tools for rigor-
ously proving properties of vision algorithms, so we use ideal-
theoretic calculations as well as classical algebra and geometry.
We also present numerical experiments showing the effects of
near-critical configurations for the varying and fixed focal length
methods.
Keywords: structure from motion, critical motions, autocalibra-
tion, algebraic geometry.

1 Introduction

‘Structure from Motion’ (SFM) is the problem of recover-
ing 3D scene geometry from several images. Using pro-
jective image measurements, it is only possible to recover
structure, camera poses (‘motion’) and camera internal pa-
rameters (‘calibrations’) up to an unknown 3D projectiv-
ity [8, 5]. With additional scene, motion or calibration
constraints, one can reduce the ambiguity to a Euclidean
similarity [13, 4, 12, 7]. Autocalibration is the recovery
of Euclidean structure, motion and calibration using par-
tial (often qualitative) constraints on the camera calibra-
tions, e.g. vanishing skew or equal focal lengths between
images. It is useful because cameras often obey such con-
straints rather well, whereas — especially for hand-held
cameras viewing unknown scenes — motion or structure
assumptions are often rather dubious. Unfortunately, most
autocalibration methods have situations in which they fail
or are exceptionally weak. Practically, it is important to
characterize and avoid these critical sets. Criticality is
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often independent of the specific camera calibrations, in
which case we speak of critical motions.

‘Classical’ autocalibration assumes a moving projective
camera with constant but unknown intrinsic parameters
[4, 18, 1, 23, 17]. Sturm [19, 20] categorizes both the
intrinsic and some algorithm-specific critical motions for
this. The uniformity of the constraints makes this case rel-
atively simple to analyze. But it is also somewhat unreal-
istic: it is often reasonable, e.g. to assume that the constant
skew actually vanishes (a stronger constraint), whereas
focal length often varies between images (a weaker con-
straint). Also, although he characterizes the degeneracies
fully, Sturm only manages to give a rather implicit de-
scription of the corresponding critical motions. For prac-
tical purposes a more explicit description would be useful.

This paper derives explicit critical motions for Eu-
clidean SFM under several simple two image ‘unknown
focal length’ calibration constraints [6, 16, 24, 2, 9]. How-
ever, we start by giving a complete description of critical-
ity for known calibrations, for both perspective and ortho-
graphic cameras in multiple images. Although this analy-
sis does not result in any new ambiguities, it rules out the
possibility of any further unknown ones.

A second goal of our work — one aspect of our Eu-
ropean project CUMULI — was to investigate the use of
formal algebraic reasoning tools to deduce rigorous prop-
erties of vision algorithms. Sturm [19] relies mainly on
geometric intuition. This is unreliable in our less symmet-
rical situation and we have used a mixture of geometry,
classical algebra, and ideal-theoretic algebraic geometry
calculations (Gröbner bases, ideal quotient, radical and
decomposition) in MAPLE and MACAULAY 2. However
we will focus on giving geometric interpretations of our
algebraic results whenever possible.

We consider only autocalibration degeneracies: scene
and motion constraints are explicitly excluded from con-
sideration. Also, for both projective and Euclidean re-
construction there are certain scene geometries for which
SFM is inherently ambiguous [12, 15, 11, 10]. We ex-
clude such critical surfaces by assuming that the scene is
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generic enough to allow unambiguous recovery of projec-
tive structure. Hence, criticality occurs iff the calibration
constraints admit alternative Euclidean ‘interpretations’
of the given projective structure.

2 Background

Image projection: We assume familiarity with the mod-
ern projective formulation of vision geometry [3, 12, 23].
A perspective (pinhole) camera is modeled in homo-
geneous coordinates by the projection equation x � PX
where X � �

X � Y � Z � W ��� is a 3D world point, x � �
x � y � z ���

is its 2D image and P is the 3 � 4 camera projection ma-
trix. In a Euclidean frame P can be decomposed

P � K R
�
I3 	 3 
�� t � K � �

f f s u0
0 f a v0
0 0 1 

into a rotation R and translation t encoding the camera’s
3D pose (extrinsic parameters), and a 3 � 3 upper trian-
gular calibration matrix K encoding its internal geome-
try. Here, f is the focal length, a the aspect ratio, s the
skew and

�
u0 � v0 � the principal point.

Absolute Conic: Projective geometry encodes only
collinearity and incidence. Affine structure (parallelism)
is encoded projectively by singling out a plane at infinity
Π∞ of direction vectors or points at infinity, and Eu-
clidean (similarity) structure by a proper virtual conic on
Π∞. This absolute conic Ω∞ gives dot products between
direction vectors. Its dual, the dual absolute conic Ω �∞,
gives those between plane normals. Ω �∞ is a 4 � 4 sym-
metric rank 3 positive semidefinite contravariant matrix.
Ω �∞ � diag

�
1 � 1 � 1 � 0 � in any Euclidean frame. Π∞ is Ω �∞’s

unique null vector: Ω �∞ Π∞ � 0. Ω �∞’s image projection is
ω �∞ � PΩ �∞ P ��� K K � , a dual image conic that encodes
the camera calibration. K is recoverable from ω �∞ or its
dual image point conic ω∞ � ω �∞ � 1 by Cholesky factor-
ization. ω �∞ and ω∞ are proper virtual (positive definite)
so long as the camera centre is finite. In calibrated image
coordinates K � I, ω �∞ � ω∞ � I. We often use the abbre-
viations (D)(I)AC for (Dual)(Image) Absolute Conic.

False absolute conics: Given only a 3D projective re-
construction derived from uncalibrated images, the true
absolute conic Ω∞ is not distinguished in any way from
any other proper virtual planar conic in projective space.
In fact, given any such conic Ω � , it is easy to find a ‘recti-
fying’ projective transformation that converts it to the Eu-
clidean DAC form Ω �∞ � diag

�
1 � 1 � 1 � 0 � and hence defines

a false Euclidean structure. To recover the true structure,
we need constraints that single out the true Ω∞ and Π∞
from all possible ‘false’ ones. In this paper we will con-
strain only the camera intrinsic parameters Ki, or equiva-
lently the images of the true absolute conic ω �∞i � Ki K �i .
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Figure 1: Intersecting the visual cones of two image conics sat-
isfying the Kruppa constraints generates a pair of 3D conics.

The constraints may apply to individual image conics (e.g.
vanishing skew s � 0), or link them as a group (e.g. equal
but unknown focal lengths fi � f for all i). Ambiguity
arises only if some non-absolute conic and its images sat-
isfy the constraints. We call such conics potential or false
absolute conics. They correspond one-to-one with possi-
ble false Euclidean structures for the scene. Ω denotes
a potential 3D absolute conic, Ω � its dual, ω its image
and ω � its dual image. True absolute conics are denoted
Ω∞ � Ω �∞ � ω∞ � ω �∞.

Affine camera: A camera whose optical plane coin-
cides with Π∞ is affine [14]. This is a good approxima-
tion for distant (and therefore large focal length) cameras
viewing small objects. All visual rays except those on Π∞
become parallel and the dual image absolute conic ω �∞ de-
generates to rank 2. An orthographic camera is a cali-
brated affine one and has ω�∞ � diag

�
1 � 1 � 0 � .

Kruppa constraints: Given image conics in several
images, there may or may not be a 3D quadric having
them as image projections. Constraints which guaran-
tee this in two images are called Kruppa constraints.
Any proper image conic is tangent to exactly two epipo-
lar lines (possibly complex and/or coincident). It turns
out [12, 3, 24] that there is a corresponding 3D quadric
iff the tangent lines in the two images are in epipolar cor-
respondence (see fig. 1). In fact, for non-coincident im-
age centres and proper image conics satisfying the Kruppa
constraints, there is always a linear one parameter family
of 3D dual quadrics with these images. This family con-
tains exactly two planar (rank 3) dual quadrics, and also
the rank 2 one defined by (the symmetric outer product
of) the two camera centres. If the image conics are vir-
tual, the planar 3D quadrics are too and hence can serve
as potential absolute conics. Thus: In two images with dis-
tinct finite centres, a pair of proper virtual conics defines
a potential 3D absolute conic iff it satisfies the Kruppa
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constraints, and in this case it always defines exactly two
potential 3D absolute conics1.

The Kruppa constraints have several algebraic formula-
tions [12, 3, 24]. Below we will use the following 3 � 3
symmetric rank 2 matrix version linking the two dual im-
age conics, the fundamental matrix and one epipole:

F � ω �2 F ��� e � 	 ω �1 � e � �	
This vanishes when dotted with the epipole and only holds
up to scale, so it gives only two independent constraints.

3 Approach

We want to explicitly characterize the critical motions
(relative camera placements) for which particular calibra-
tion constraints are insufficient to uniquely determine Eu-
clidean 3D structure. We assume that projective structure
is available. Alternative Euclidean structures correspond
one-to-one with possible locations for the absolute conic
in the projective reconstruction. Any proper virtual pro-
jective plane conic is potentially absolute, so we look for
such conics Ω whose images also satisfy the given cali-
bration constraints. There is ambiguity iff more than one
such conic exists. We want Euclidean critical motions,
so we work in a Euclidean frame where the true absolute
conic Ω∞ has its standard coordinates.

Several general properties help to simplify the problem:
Calibration invariance: The calibration constraints we
use assert either equality between images, or that certain
parameters have their ‘calibrated’ values

�
f � a � s � u � v � ��

1 � 1 � 0 � 0 � 0 � . They are satisfied for a set of cameras iff
they are also satisfied when each image is premultiplied
by its true inverse calibration K � 1

i . Hence, we are free
to assume that each camera is actually calibrated, Ki � I.
The only difference from the fully calibrated case is that
our weaker knowledge does not allow every false conic
with ω �i �� I to be excluded outright.
Rotation invariance: For known-calibrated cameras
ω �∞ � I, the image of any false AC must be identical to the
image of the true one which is invariant to camera rota-
tions. Hence, criticality depends only on the camera cen-
tres, not on their orientations. More generally, any cam-
era rotation that leaves the calibration constraints intact is
irrelevant. For example, arbitrary rotations about the opti-
cal axis and 180 � flips about any axis in the optical plane
are irrelevant if

�
a � s � is either

�
1 � 0 � or unconstrained, and�

u0 � v0 � is either
�
0 � 0 � or unconstrained.

Translation invariance: For true or false absolute con-
ics on the plane at infinity, translations are irrelevant so
criticality depends only on camera orientation.

1With more than two images the situation is more delicate and the
pairwise Kruppa constraints are not always sufficient to guarantee the
existence of a corresponding 3D quadric.

In essence, Euclidean structure recovery in projective
space is a matter of parametrizing all of the possible
proper virtual plane conics, then using the calibration con-
straints on their images to algebraically eliminate param-
eters until only the unique true absolute conic remains.
More abstractly, if C parametrizes the possible conics and
X the camera geometries, the constraints cut out some al-
gebraic variety in

�
C � X � space. A constraint set is use-

ful for Euclidean SFM only if this variety generically in-
tersects the subspaces X � X0 in one (or at most a few)
points

�
C � X0 � , as each such intersection represents an al-

ternative Euclidean structure for the reconstruction from
that camera geometry. A set of camera poses X is critical
for the constraints if it has exceptionally (e.g. infinitely)
many intersections.

For elimination calculations, algebraic varieties are de-
scribed by ideals (the sets of polynomials that vanish on
them), which in turn are characterized by certain ‘ex-
haustive’ polynomial sets called Gröbner bases. Va-
rieties can also be decomposed into irreducible com-
ponents — a generalization of polynomial factoriza-
tion that we often use as an aid to interpreting re-
sults. These are all ‘standard’ algebraic geometry calcu-
lations available in specialized tools like MACAULAY 2
(http://www.math.uiuc.edu/Macaulay2/) and SINGULAR,
and in slightly less powerful form in general systems like
MAPLE.

Potential absolute conics can be represented in several
ways. The following parametrizations have all proven rel-
atively tractable:

(i) Choose a Euclidean frame in which Ω � is diagonal, and
express all camera poses w.r.t. this [19, 20]. This is sym-
metrical w.r.t. all the images and usually gives the simplest
equations, but in a frame that changes as Ω � does. To
find explicit critical motions, one must revert to camera-
based coordinates which is sometimes delicate. The fi-
nite and Π∞ cases must also be treated separately, e.g.
Ω � � diag

�
c1 � c2 � c3 � c4 � with either c3 or c4 zero.

(ii) Work in the first camera frame, encoding Ω� by its
first image ω�1 and supporting plane

�
n � � 1 � . Subsequent

images ω �i � Hi ω �1 H �i are given by the inter-image ho-
mographies Hi � Ri � ti n � where

�
Ri 
 � ti � is the ith cam-

era pose. The output is in the first camera frame and re-
mains well-defined even if the conic tends to infinity, but
the algebra required is significantly heavier.

(iii) Parametrize Ω � implicitly by two images ω �1 � ω �2 sub-
ject to the Kruppa constraints. In the 2 image case this ap-
proach is both relatively simple and rigorous — as above,
two proper virtual dual image conics satisfy the Kruppa
constraints iff they define a (pair of) corresponding 3D po-
tential absolute conics — but it does not extend so easily
to multiple images.
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4 Calibrated Cameras

We start with fully calibrated perspective cameras:

Theorem 4.1 Given projective structure and calibrated
perspective cameras at m � 3 distinct finite camera
centres, Euclidean structure can always be recovered
uniquely. With m � 2 distinct centres there is always ex-
actly a 2-fold ambiguity corresponding to a ‘twisted pair’.

Proof: The camera orientations are irrelevant because any
false absolute conic has the same rotation invariant images
as the true one. Assuming that K � I does not change
the critical motions. Calibrated cameras never admit false
absolute conics on Π∞, as the (known) visual cone of
each camera intersects Π∞ in a unique conic, which is
the true AC. Given a finite false AC, work in a frame in
which it is diagonal and supported on the z � 0 plane:
Ω � � diag

�
c1 � c2 � 0 � c4 � . Since the cameras are calibrated

and their orientations are irrelevant, the conic projection
in each camera becomes

�
I 
 � t � Ω � � I 
 � t � � � I. It is

easy to show that the only solutions to this are Ω � �
diag

�
1 � 1 � 0 � 1 � z2 � and t � � �

0 � 0 ��� z ��� for some z � 0.
Hence, ambiguity implies that there are at most two cam-
era centres, and the false AC is a circle of imaginary radius
i z, centred in the plane bisecting the two centres.

This two-fold ambiguity corresponds exactly to the
well-known twisted pair duality [11, 10, 15], where one
of the cameras is rotated by 180 � around the axis join-
ing their two centres. The improper self-inverse projective
transformation

T � �
1 0 0 0
0 1 0 0
0 0 0 z
0 0 1 � z 0 �

interchanges the true and false DACs TΩ � T � � Ω �∞
and takes the projection matrices P � � R � � I 
 � t � �
to P � T � 1 � P � and P 	 T � 1 � � P 	 U where U �
diag

� � 1 � � 1 � 1 � 1 � is a 180 � twisted pair rotation about
the z axis. The ‘twist’ T represents a very strong pro-
jective deformation which cuts the scene in half, moving
the plane between the cameras to infinity. By consider-
ing twisted vs. non-twisted optical ray intersections, one
can also show that it reverses the relative signs of the pro-
jective depths [21] of each correspondence, e.g. as recov-
ered by the equation λ1 Fx1 � λ2

�
e 
 x2 � . Moreover, any

proper virtual Kruppa geometry (fig. 1) has such a ‘twisted
pair’ projective involution symmetry, so calibrated or not,
two image Euclidean structures always occur in twisted
pairs. However the twist is a simple 180 � rotation only
for axisymmetric DIACs.

Theorem 4.2 Given projective structure and m � 3
scaled orthographic cameras with distinct projective cen-
tres (i.e. viewing directions, with diametrically opposite

ones identified), Euclidean structure can always be recov-
ered uniquely. With only m � 2 distinct centres there is a
one parameter family of possible structures correspond-
ing to the bas relief ambiguity [11, 10, 15, 22].

Proof: Choose coordinates in which camera 1 has orienta-
tion R1 � I. Orthographic and affine cameras have Π∞ as
their optical planes, so Π∞ is known and any potential AC

must lie on it. Potential DACs have the form Ω � ��� C 0
0  0 �

for symmetric 3 � 3 C. The orthographic calibration con-
straint is that U CU � � diag

�
1 � 1 � where U is the first two

rows of R. In image 1 this gives C11 � C22 � C12 � 0
and two analogous constraints in image 2. Representing
R2 by a quaternion q and eliminating C11 between these
constraints gives�
q2

0 � q2
3 � � q2

1 � q2
2 � ��� q0q1 � q2q3 � C13 � � q0q2 � q1q3 � C23 � � 0

This must hold for any motion satisfying the constraints.
The first two terms correspond to optical axis rotations
and 180 � flips that leave the optical centre fixed, and are
therefore excluded by the statement. Solving for C in
terms of q using the final term gives a linear family of so-
lutions C � αI � β

�
o1 o �2 � o2 o �1 � where o1 � �

0 � 0 � 1 ���
and o2 � (the third row of R) are the optical centres, and�
α � β � are arbitrary parameters. Given I and any false

DAC C �� I, we can uniquely recover the family and its
two camera centres (the three rank 2 members of the fam-
ily each decompose into point pairs, but only one of these
is real). Since each family encodes its centres, families
with distinct centres never coincide. By linearity, they
therefore intersect in at most one conic. All families in-
tersect in the true DAC C � I, so no other intersection
is possible. I.e. false structures are impossible for ortho-
graphic images from � 3 distinct centres. That the one
parameter ambiguity for two cameras corresponds to the
bas relief ‘flattening’ is well known [11, 10, 15, 22].

Two image orthographic absolute conic geometry is
easily understood in terms of the Kruppa constraints.
These are well behaved as the cameras tend to infinity, and
hence still define a one parameter family of dual quadrics.
However as the cameras recede and their focal length in-
creases, their DIACs become progressively flatter and this
constrains the 3D family to be flatter too, until in the limit
all members of the family become infinitely flat rank 3
disk quadrics squashed onto Π∞.

5 Focal Lengths from 2 Images

For two cameras, projective geometry is encapsulated in
the 7 d.o.f. fundamental matrix, and Euclidean geometry
in the 5 d.o.f. essential matrix. Hence, from 2 projec-
tive images we might hope to estimate Euclidean struc-
ture plus two additional calibration parameters. Hartley
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[6] gave a method for the case where the only unknown
calibration parameters are the focal lengths of the two
cameras. This was later elaborated by Newsam et.al. [16],
and Zeller & Faugeras and Bougnoux [24, 2]. Hippisley-
Cox & Porrill [9] give a related method for equal but un-
known focal lengths and aspect ratios. All of these meth-
ods are Kruppa-based. We will give a unified presentation
and derive the critical motions for the Hartley-Newsam-
Bougnoux (unequal f ) and Newsam (equal f ) case.

Suppose that we can write all pairs of dual image con-
ics satisfying the calibration constraints as a parametric
family

�
ω �1 � λ � � ω �2 � λ � � . As they already obey the calibra-

tion constraints, pairs of nonsingular conics in this family
represent possible 3D absolute conics iff they also satisfy
the Kruppa constraints, F � ω �2 � λ � F � µ � e � 	 ω �1 � λ � � e � �	
for some scalar µ. Solving these equations for λ � µ gives
the possible image DIACs and hence 3D absolute conics.
If ω �i � λ � are linear in their parameters λ, the system is bi-
linear in λ � µ. In particular, for zero skew and known prin-
cipal point pi, ω �i � λ � is linear in f 2

i and
�
ai fi � 2. For known

ai and unconstrained fi, this gives fully linear equations in
µ f 2

1 , µ and f 2
2 :

F � � f 2
2 D � p2 p �2 � F � � e � 	 � � µ f 2

2 � D � µp1 p �1 � � e � �	
where D � diag

�
1 � 1 � 0 � . Writing the 3 � 3 symmetric

rank 2 matrices F � DF ������� � � e � 	 p1 p �1 � e � �	 as 6 vec-
tors gives a 6 � 4 rank 3 homogeneous linear system
M6 	 4

�
f 2
2 � 1 � µ f 2

1 � µ � � � 0. This can easily be solved for
µ � f1 � f2. There are multiple solutions for fi — and hence
ambiguous Euclidean structures — iff the coefficient ma-
trix M6 	 4 has rank

�
2. We will study this case below.

Newsam et.al. [16] use the SVD of F to project 3 inde-
pendent rows out of this system. Bougnoux [2] uses prop-
erties of fundamental matrices to solve it in closed form:

f 2
2 � � �

p �2 FD � e � 	 p1 � � p �2 Fp1 �
p �1 F � DFD � e � 	 p1

If the focal lengths are known to be equal, f1 � f2 � f , the

system takes the form M6 	 2
�
µ � � f 2

1 � � 0 where M6 	 2
�
µ �

is linear in µ and generically has rank 2. This system has
a nontrivial solution iff all of its 2 � 2 minors vanish — a
set of quadratic constraints on µ. If the focal lengths re-
ally are equal, at most two of these quadratics are linearly
independent and we can generically eliminate the µ2 term
between them, solve linearly for µ, substitute into M6 	 2
(which then has rank 1) and solve uniquely for f 2. This
fails iff all of the quadratics are: (i) proportional — in
which case the single quadratic gives exactly two possible
solutions for µ and f ; (ii) zero — in which case M6 	 2 � 0
and any f is possible. We will return to these cases below.
Finally (c.f. [9]), equal but unknown aspect ratios and fo-
cal lengths a1 � a2 � a, f1 � f2 � f , give a 6 � 3 rank 3

system M6 	 3
�
µ � � f 2 � � a f � 2 � 1 ��� � 0, which has a solution

iff the determinant of any of its nontrivial 3 � 3 minors
vanishes — a single cubic in µ, giving at most 3 solutions
for µ � f � a.

Now consider the critical motions of the above meth-
ods. Assume finite a � f and t �� 0.

Theorem 5.1 For the known a, unequal f problem, the
critical motions for the Hartley, Newsam and Bougnoux
methods are all identical and intrinsic to any method for
this problem. In fact, they are exactly the two evident sin-
gularities of Bougnoux’ equations: (i) p �2 Fp1 � 0 and
(ii) p �2 FD � e � 	 p1 � 0.

Case (i) occurs when the principal points are in epipolar
correspondence, i.e. the optical axes intersect. (ii) oc-
curs whenever the point D � e � 	 p1 on the line at infinity
in the first camera lies on the epipolar line F� p2 of the
other principal point. This condition is actually symmet-
ric between the images. If p1 � p2 � �

0 � 0 � 1 ��� , (ii) occurs
whenever F � p2 contains the direction orthogonal to the
epipolar line � e � 	 p1, i.e. whenever the epipolar plane of
optical axis p1 is orthogonal to that of axis p2 [16]. If ei-
ther principal point coincides with an epipole, both (i) and
(ii) apply and a second order singularity occurs.

Theorem 5.2 For the known a equal f problem, there is
a unique solution for f everywhere outside the critical va-
riety of the unequal f method. On this variety there are
generically exactly two solutions corresponding to the two
roots of the single surviving quadratic in µ. Both solutions
may be real, or one may be imaginary ( f 2 � 0). There are
more than two real solutions (in fact any f is possible)
only on the following subvarieties of the corresponding-
principal-point variety p �2 Fp1 � 0, where

�
R
�
q � � t � is the

relative pose of the second camera with quaternion q:
(i) t3q2 � t2q3 � t1q0 � 0 and t3q1 � t1q3 � t2q0 � 0
(ii) t1q1 � t2q2 � t3q3 � 0 and t2q1 � t1q2 � t3q0 � 0
(iii) q1 � 0 and q2 � 0
(iv) q3 � 0 and q0 � 0

Each of these subvarieties has codimension 2 in the space
of all motions, and codimension 1 in the corresponding
principal point variety. (iii) and (iv) correspond to paral-
lel optical axes (axis rotations, and 180 � flips about any
axis in the optical plane, plus arbitrary translation). (ii)
requires both planar motion q � t � 0 and corresponding
principal points. The intersection of these two varieties
has two components: (a) arbitrary planar motions when
the optical axes lie in the plane (e.g. a driving car with
forwards-pointing camera), and (b) ‘turntable rotations’
about the intersection point of the two optical axes, when
these do not lie in the plane. Subvariety (ii) corresponds
to case (b). Case (a) has two solutions for f but is generi-
cally nonsingular.
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Figure 2: Relative errors in quasi-linear f and bundle-based 3D
structure vs. camera elevation, for unequal and equal f methods.

The above results are straightforward but fairly heavy to
prove using the automated algebraic tools we are study-
ing here. (Newsam et.al. [16] — a reference we were
unaware of while completing this work — give a fairly
simple SVD-based proof for their unequal f method,
but an incomplete result for the equal f one). Since
we were initially sceptical that the general Kruppa ap-
proach and Bougnoux’ detailed manipulations [2] intro-
duced no spurious ambiguities, we proved the results
twice: once in a fundamental matrix / Kruppa constraint
based parametrization, and once in an image conic /
plane homography based one. In each case, given the
parametrization we can more or less mechanically calcu-
late and decompose the variety on which the constraints
degenerate using MACAULAY 2. The calculations are
‘routine’, although the homography based ones are near
the limits of the current system.

6 Experiments

We have performed some synthetic experiments to evalu-
ate the effects of critical motions. We will focus on the
question of how far from critical two cameras must be to
get reasonable estimates of focal length and Euclidean 3D
structure. The first experiment studies the unequal f case,
the second the equal f one. For both experiments, two
unit focal length perspective cameras view 25 points dis-
tributed uniformly within the unit sphere. Gaussian noise
of 1 pixel standard deviation was added to the 512 � 512
images. For each pose, an optimal projective structure and
fundamental matrix is estimated by projective bundle ad-
justment, the focal length(s) are estimated quasi-linearly
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Figure 3: Errors in quasi-linear and bundle-based f , and 3D
structure with unknown and known f , for equal f methods.

as above, Euclidean bundle adjustment is applied to get
Euclidean structure, and the resulting 3D error is calcu-
lated by Euclidean alignment. Means over 100 trials are
shown. The Bougnoux and Newsam unequal f methods
give essentially identical results: only the latter is plotted.

In the first experiment, cameras at
� � 2 � � 2 � 0 � and�

2 � � 2 � 0 � focus on the origin. Their elevation angles are
then varied, upwards for the left camera and downwards
for the right one, so that their optical axes are skewed and
no longer meet. Quasi-linear focal lengths and bundle ad-
justed Euclidean structures are estimated, both with and
without the equal f constraint. Fig. 2 shows the result-
ing RMS errors as a function of elevation angle. At zero
elevation, the optical axes intersect and the cameras are
equidistant from this intersection, so both equal and un-
equal f methods are critical. This can be seen clearly
in the graphs. The unequal f method also breaks down
when the epipolar planes of the optical axes become or-
thogonal at around 35 � elevation — the second compo-
nent of the unequal f critical variety, but non-critical for
the equal f method. For geometries more than about 5-
10 � from criticality, the unequal and equal f bundles both
give results very similar to the optimal 3D structure ob-
tained with known calibration.

In the second experiment, cameras at
� � 1 � � 2 � 0 � and�

1 � � 2 � 0 � focus on the origin, then the left camera is ro-
tated so that its optical axis sweeps the world plane z � 0.
This is always critical for the unequal f method and the
equal f one always gives two possible solutions. But in
these trials, one is always tiny or imaginary and can safely
be discarded. In fig. 3, the upper graph compares the
quasi-linear equal f result with that obtained after optimal
equal f bundle adjustment. The lower graph compares the
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structures obtained with equal f and known-calibration
bundle adjustments. At rotation angles of around � 27 �
the camera axes are parallel, and at around � 27 � their in-
tersection is equidistant from both cameras. These are in-
trinsic equal f degeneracies, clearly visible in the graphs.
Moving about 5-10 � from criticality suffices to ensure rea-
sonably accurate focal lengths and Euclidean structure.

7 Conclusions

We have explicitly described the critical motions for a
number of simple calibration constraints, ranging from
unknown focal lengths to fully calibrated cameras. Nu-
merical experiments studying the effects of near-critical
configurations were also presented.

One of our aims was to see what could be achieved
in vision with formal ideal-theoretic calculations. It is
clear that although automated tools for this (MACAULAY

2, SINGULAR, COCOA) have progressed significantly in
recent years, they can not yet replace geometric intuition.
Even when a calculation terminates — and the ‘ceiling’
for this is still frustratingly low — the geometric interpre-
tation of the results remains a difficult ‘inverse problem’.
However when it comes to rigorously proving formal
properties of systems of equations we have found these
tools a powerful computational aid and a good deal more
reliable than ‘proof by intuition’. Hence, we feel that these
methods do have a place in vision, particularly for study-
ing singularities of simple algebraic (auto)calibration and
camera pose methods.

We are currently investigating critical motions where
even less is known about the calibration, e.g. cameras hav-
ing zero skew and unit aspect ratio, but with the other pa-
rameters unknown and possibly varying.
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