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The problem of finding the collineation between two 3D projective
reconstructions has been proved to be useful for a variety of tasks
such as calibration of a stereo rig and 3D affine and/or Euclidean
reconstruction. Moreover, such a collineation may well be viewed as
a point transfer method between two image pairs with applications
to visually guided robot control. Despite this potential, methods for

ing methods for estimating this collineation from stereoscop
data.

In this paper we address the problem of estimating such
collineation from two projective reconstructions obtainedpre
cisely, we attempt to estimate the 3D projective transformatic
allowing us, in some optimal sense, to overlap one projecti
reconstruction onto the other. Therefore, the design of an op

properly estimating such a projective transformation have received
little attention in the past. In this paper we describe linear, nonlinear,
and robust methods for estimating this transformation. We test the
numerical stability of these methods with respect to image noise, to
the number of matched points, and as a function of the number of
outliers. Finally, we devise a specialized technique for the case where
3D Euclidean coordinates are provided for a number of control
points.  © 1999 Academic Press

mal criterion, as well as the choice of a technique to minimiz
this criterion, are crucial. Since projective entities are define
only up to a scale factor, one cannot define a metric criterion
projective space.

The first method that we describe below “throws” out the sca
factors and transforms thexd4 matrixH representing the pro-
jective transformation into a 16-vectior The solution is the null
space of a measurement matBixi.e.,Bh=0.

The second method that we describe below attempts to e
mate the scale factors rather than throwing them out. This fc
mulation leads, as in the previous case, to a linear formulatic

Until very recently it was believed that visual tasksrequir€he solution vectos is found by solving the linear problem
some form of off-line camera calibration. For example, amovings =r .
calibrated camera provides a sequence of images from which 30When the 3D points are projected onto images, their 2D po:s
Euclidean structure can in principle be recovered. More recentiigns can be measured in pixel coordinates. Even if the interr
it has been shown both theoretically and experimentally that eamera parameters are not known, it is possible to define f
image sequence taken with an uncalibrated camera can providelidean distance between two image points and build an «
3D Euclidean structure as well [11]. The basic paradigm magr criterion based on the sum of the squares of these distanc
well be viewed as a form of self- or on-line calibration and iThe estimation of 3D projective transformations from such i
consists of recovering projective structure first, then upgradiage measurements resembles bundle adjustment technigues
it to affine structure, and then to Euclidean structure. widely both in photogrammetry and computer vision for cam

Another possibility that has been recently investigated byesa calibration. The advantage of these methods over the lin
number of researchers is to consider a sequence of image pe#tmators mentioned above is better behavior in the presence
gathered with a moving uncalibrated stereo rig [1, 17, 2, Madly conditioned data. Unfortunately such an estimator lea
With such an uncalibrated image pair, matched points are te-nonlinear minimization techniques and some form of initial
constructed in projective space [6]. If the stereo pair undergdeation must be provided.
rigid motion, the two projective reconstructions (before and af- To summarize, neither of the above methods are entirely sat
ter the motion) are related by a 3D projective transformatidactory. In order to overcome these drawbacks, a robust estima
which is conveniently represented by & 4 regular matrix—a in necessary. We describe such a robust estimator which ma
collineation. Therefore, methods that attempt to recover projagse of either one of the two linear methods in its inner loop ar
tive, affine, or Euclidean structure from a moving stereo paihich provides an initial guess to the nonlinear estimator.
need to estimate this collineation. Interesting enough, with theNext, we study the behavior of the linear and nonlinear es
exception of [1] which briefly outlines a method for estimatingnators in the presence of image noise and as a function of 1
this projective transformation, there appears to be no publishegimber of matched points. We also study the behavior of tl
paper in the computer vision literature describing and evaluabbust estimator in the presence of outliers. In the light of the:

1. INTRODUCTION AND MOTIVATION
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experiments it appears that the nonlinear method performdndeed, five points in the projective space generally defir
slightly better than the linear methods. However, for levels af projective basis gP? such that the collineation between the
noise below one pixel in magnitude, the linear method perforretandard projective basis and the set of pojtgi_; s is given
as well as the nonlinear ones and, hence, they should be frgthe matrix
ferred because they are less time consuming than the nonlinear
methods. _ o o Ti=(naXs p2Xz wsXs paXa),

Finally, we devise a specialized technique in the case where
3D Euclidean coordinates are provided for a number of Contr\%ere (11, 2, 3, wa)” = (X1, Xa, X3, X2)"1Xs. The collin-

points. eationT, which maps the standard reference points to the seco

set of points{Y;}i—1.5 can be obtained similarly. Finally, the
2. LINEAR AND NONLINEAR ESTIMATION collineation betweefX; }i—1 s and{Y; }i_1 s is then:

OF 3D COLLINEATIONS
, L H=T,T;.
Given a pair of images denoted lyyand the fundamental 2l
matrix Fy that describes the epipolar geometry associated with
the two cameras, there exists a projective basis of the projecThis method is straightforward, but unstable in the presen:
tive spaceP? such that the projections from this space onto tHf noise since we only use the minimum number of points t

images are represented'tiyo 3 x 4 matrices [4, 12], compute the collineation matrid. If we havem > 5 pairs of
points, it is better to use all of them and estimbitdoy some
P,=(3 03), P,=(G, €) (1) Minimization technique.
’ X X X/

whereG, is a 3x 3 regular matrix and the 3-vectef is called 2-1. Linear Method 1

the epipole and is the projection onto the second image of theThe classical way to estimate the entriesHois to eliminate

optical center associated with the first camera. the scale factors;. A homogeneous linear system in the entrie:
Letx, X’ be the images of a three-dimensional pdéitthen  of H is thus obtained [15],
from the projection equations,x = Px X and p;x’ =P, X, we

obtain the projective coordinatésof point M in the projective Y@y _yOy@ _ g

basisBy defined by Py, P,) [12]. Notice that the above projec- o b

tive equalities are defined up to unknown scale fagigendps,. vy @ _y@y@ _ g ©)
Consider a second pair ofimagesfthe same scene but taken b b

from a different viewpoint and denote Iy, the corresponding YOv® _ y@y® = g,

fundamental matrix. The new projective matrices are

where we used the notatioh = (V?, V@, V@, v*)T for the

Py=(3 03), P,=(Gy €), vectorH X;:

and ify, y’ are the new projections of the poi¥t, its 3D projec-
tive coordinates in the bask, are denoted by which verifies
pyy=PyY andp(y' =PY. _ _ o
Assume now, that we have a Setrnfpoin[s, and |ep(l’ Xo, In the affine or Euclidean cases we havé) =1 which is often

..., Xm and Y1, Ya, ..., Ym be their homogeneous represenat a different magnitude than'®, Y@, Y. This explains the
tations in the projective basiS,, respectively3,. Then, there choice of these three equations wh¥f& has the same role. In
exists a 4x 4 collineation matrixH that maps the pointX; to the projective case, we cannot say the same thing, so if we w
the pointsY;, all four coordinates to play the same role, we can add the thr

other possible equations (which are not independent from tl

wiYi = HX; (2) previous ones):

VD = HinX® + HioX® + HisX® + Hia X, (4)

with p; arbitrary nonnull scalars. Yi(z)\/i(l) _ yi(l)\/i(Z) -0
H, defined up to a scale factor, has 15 degrees of freedom, so
to determine it, we need at least five point correspondences since YOV YOy — o (5)
each pairK;, Y;) gives us three constraints after eliminating G D06
YOV® - vOV® = o,

1 We denote byl,, the n x n matrix of identity and by0, the n-vector con- This _SyStem can pe SOIVed.V.VhfmZ 5 pOinF correspondences
tainingn zeros. are available and with an additional constraint, such a$? =1.
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If we denoteh = (Hi1, Hio, ..., Has)T, Egs. (3) and (5) can ple, the first of these linear constraints can be written as:

be written in the forn?, . ] 3 4 1
Hllxi( )+ lexi( )+ H13Xi( )—I- H14Xi( ) _ MiYi( ) _ 0.

Bih =0,
Without loss of generality one scale factor is set tquk:=1.
whereB; is a 6x 16 matrix: Therefore, we have 16 unknowns for the entriesl@ndm — 1
unknown scale factors. The four constraints available with ea
le xiT 04T oI Yi(l)xiT one of them equations (2) can be written as a linear systen
Cs=r,withs=(H1, ..., Haa pt1, ..., tm-1)",r=(0, ..., 0,
OI Yi(4)xi7 01— Yi(z)XiT (H11 44, L1 Mm-1) ( -
4x(m-1
5 oF  0f YO YOxT YO, Y@, v®, YT, and
T v@xT vOyT g7 3
YioXi o YiTX 04 0, Eir -Y1 O 04
3 1
YOXT o]  YOXT o] E, 0, -Y» 04
0 YOXT ¥vOxT  of c=| : :
: : Em1 Oz O4 —Ym-1
Givenm correspondences(, Y;), we are looking foih that
minimizes the error function: Em 03 04 04

The 4x 16 matriceE; are defined by

m m
> IBih|*=h" (Z B?Bi) h. (©)
i1 i—1 X' 0, 0f 0
, . » , - 0, X/ 0o 0
With the constraind | Hf =1 the error function to be mini- E=| * ' 4 4
mized becomes 0, 0 X' 0]
0 o 0] X'

nLin(hTBh +A(1—=h"h)). (7)

This linear system consists oflequations. Since there are
The 16x 16 matrixB = Y ", B/ B; being symmetric, semi- 16+ (m — 1)=154+m unknowns, we must have>5. The

definite, and positive, the solution faris the eigenvector o8
corresponding to the smallest eigenvalu@of

Bh = Ah.

linear system can be solved using the standard pseudo-inve
technique,

s=(C'c)ic'r,

Indeed, form point correspondences the rankBis equal to Provided that the 3D points are not coplanar.

15 and, therefore, the null space Bfis a nonnull 16-vector. .

In practice, due to noise, the rank Bfis equal to 16 and the 2-3- Nonlinear Method

null-space becomes the eigenvector associated with the smallegine way to assess the quality of the estimated colline&tion
eigenvalue. LeB=QDQ" be the eigen decomposition 8f s to compare the projections & = H X; and of X; = A-Y;
with Q being an orthogonal matrix whose columns correspoRgith the true image points. L&t andx; be the true image points
to the eigenvectors arfd being a diagnoal matrix. The singu-(in the left and right images) from which the 3D poidt was
lar value decomposition d8 is BB =QD?Q". Therefore, in reconstructed, and I8 andP’, be the corresponding projection
practice, the solution to the minimization problem consists @fatrices (see (1)). The projectionsXf by P, andP,, are noted
computing the singular value decompositiorBadnd taking the py %; andg;. Similarly we definey;, ;. Py, P}, §i, and9;:

last column ofQ.

S. 7 -1 X
2.2. Linear Method 2 Xi = PX':' Yi
. o . , R =P HY,
An alternative solution is to estimate simultaneously the en- ! X
tires ofH and the scale factors;, . .. um. Equation (2) can be ¥i = PyHX;
decomposed into four distinct linear constraints and, for exam- ~ ~
Yy, = P/yH Xi.

2|f we use only three equations one can remove the rows correspondingdth the notatiory” = (y" 1), letd(y, y) denote the Euclidean
the other equations and obtdn as a 3x 16 matrix. distance between the image poigtandy. The quality of the
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collineation is assessed by the quadratic error function: as a function of the total number of points being used by th
minimization processes, the minimum number of points bein
~ a mno_ . _ e necessarily equal to 5.
-1y __ - \2 g7 o7\2 ¥ \2
fH.H™) = am Z(d(x., Xi)” 4 d(x;. )"+ d(yi. i) With all the minimization methods and in both experiments
=1 the same error function, i.e., Eq. (8), was used to assess"
+d(¥, ¥))3). (8) quality of the results.

Figure 1 shows the results of the first experiment and displa

Direct minimization of this error function over the entries othe median error over 100 trials of each algorithm and wit
H results in a highly nonlinear objective function because onarious levels of noise. The following notations are used:

has to express the entriesldf as a function of the entries of

H. Alternatively, one can minimize the objective function L1—linear method 1;

L2—linear method 2;

N1—nonlinear method, minimizing the back-projections ir
the two image pairs, and

N2—nonlinear method, minimizing the back-projections ir
where the term|HH’ — 1,4]|? is known as a penalty function. the second image pair.
High numerical values foy enforce this constraint and, hence,
guarantee thatl’ = H™1,

min(f (H. H') + 7[HH' = 14]%). ©)

Note that the quality of the collineation linearly degrades witt
increasing image noise. The nonlinear methods (N1 and N

Therefore, the minimization process considerandH’ as sightly outperform the linear methods which, in turn, have a
two independent sets of variables. SIghtly ouTperto ' '
identical behavior.

An alternative method is to use a less symmetric objective_. .
. S . ~ o Figure 2 shows the results of the second experiment, whe
function and to minimize only the distances betwgeny; and . . . : ) .
three levels of noise were used in conjunction with the nonlir

the true im m remegtsy inth n irofim . ) : .
€ true Image measuremenisy, e second pair ofimages ear method N2. This experiment reveals that in the presence

In this case we need no additional penalty term and the ObjeCtW&se 15 points at least are necessary to properly estimate.
function becomes P y to properly

transformation.
l m
min fy(H) = min — > "r; (10)
H H 2m & 4. ROBUST ESTIMATION OF 3D COLLINEATIONS

with the residual A common source of errors in computer vision is image-to
image point matching. State-of-the-art algorithms consist of u.
ro=d(yi, Vi) + da(y,, %)2, (11) ing robust estimators to determine the epipolar geometry [1¢
Such an algorithm finds point matches that are geometrical
3. EXPERIMENTAL COMPARISON USING correct; i.e., they lie on conjugated epipolar lines [9], but the
SIMULATED DATA may be physically incorrect: the point is correctly reconstructe

from a mathematical point of view but it does not correspond t

We implemented the methods described above to estirhatean actual feature.
Prior to the estimation off projective reconstruction must be If two image pairs are considered, as is the case in this pap
performed such that the coordinatesXf are estimated from mismatches can result even from correctly matched points, bas
the image pointx; andx; and the coorrdinates of; are esti- on the epipolar geometry associated with each one of the tv
mated from the image pointg andy;. This is done using the image pairs. Such a mismatch will give a large error and t
triangulation method described by Hartley and Sturm [5]. Thainimization methods described in the previous section cann
latter minimizes reconstruction errors by constraining the lefleal with such mismatches.
image and right-image points to lie on conjugated epipolar lines.This problem is illustrated on Fig. 3. Let X', y, andy’ be
Certainly, this method reduces the effect of image noise and higuadruple of matched points in between the two image pai
ases the comparison described below. Nevertheless, the ovekalbng these points’ is a bad match because it results from the
goal is to obtain the best available results and triangulationgpsojection of 3D pointN. Neverthelesss andx’ correctly satisfy
beneficial with respect to such a goal. the epipolar constraint becauNdies in the same epipolar plane

We carried out a large number of experiments in order &sM. The projective coordinates &, when reconstructed from
compare the quality of the results. The algorithms have begmndy’ are denoted by the 4-vect¥r This point projects onto
tested with a set of 41 points. the first image pair inx andx”. The error between’ and x”

The first experiment uses all the points and analyzes the seisilarge and will have a dramatic effect on the nonlinear mir
tivity with respect to image noise. Gaussian noise with varyirighization process described in the previous section. Similarl
standard deviation (from 0 to 2 pixels) is added to the imaglee linear methods will be affected as well because the 3D poi
point locations. The second experiment analyzes the sensitivillyis wrongly matched with the 3D poir@.
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Backprojected errors
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FIG. 1. Comparison of two linear methods and two nonlinear methods for computing the projective collineation in the presence of image Gaussian r

Commonly used robust methods include M-estimators, least4. Use all of thesan, to refine the estimation of the best
median-squares (LMedS), and random sample consensus §8hilable homographiy, and
We immediately ruled out M-estimators because in our case this. Use the latter estimation to update the list of inliers an
method can tolerate only up to 7% outliers. The advantage aftliers.
RANSAC over LMedS resides in the outlier rejection strategy. .
. ; ; In order to determine the number of sampksve must set
RANSAC requires a user-defined threshold while LMedS do?hs - : : .
X . . € probability of selecting a good solution. The formula for thi
not. Such athresholdis useful in practice foranumber of reasons: o
probability is
1. efficiency in the presence of nonhomogeneous noise; \
2. Fifty percent outliers and above are allowed, and y=1-[1-(1-eou)]",

3. increased time-efficiency because the inner loop of the

algorithm can be quit as soon as a satisfactory solution is fouf{1€re P is the number of points in the samplp £ 5 for 3D
collineations) and,, is the percentage of outliers that are to be

When applied to the problem of estimating a 3D projectiveyund in the initial data.
transformation, the robust method that we implemented can bgegr example, fol = 0.95 andsqy = 0.5 we obtainN = 100.
summarized as: Hence, the inner loop of the robust estimator algorithm has
be run at least 100 times. The inner loop main step (2.2) co
sists essentially in estimating a collineatiinfrom five point
matches. With five matches the solution is found in closed-for
using either one of the two linear methods described above.

1. Among the set ofn matches consideX samples of five
matches;
2. Foreach sample 1<k<N,
2.1. Estimate a homograpliiy from these five matches;
. 2'2'. Compute the total numbe_r of ma‘C".E"S consistent 4.1. Experimenting with the Robust Estimator
with Hy, i.e., matches whose associated error is below a thresh-
old, the error being defined by Eq. (11); In order to assess the performance of the robust estima
3. Select the homographyy which is associated with the described above, we tested it in the presence of simulated d:
largest number of consistent matches; For this purpose we used two sets of points: one set of 200 poil
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FIG. 2. The sensitivity of the nonlinear method N2 as a function of the number of points and for three levels of Gaussian noise with standard deviations !
and 1.

and another set of 200 points. The first set was perturbed witlicond set was perturbed with white noise whose amplitu
Gaussian noise with standard deviation equal to 0.5 pixels. TVvaries between 3 pixels and 20 pixels.

Furthermore, the algorithm’s parameters were set for an e
pected number of outliers of 50% but the number of outlier
varied between 0 and 75%. Figure 4 shows the result of ru
ning the algorithm. The average back-projected error per ima
point (the error measure is the one given by Eq. (8)) is shown
a function of the number of outliers present in the data.

5. DEALING WITH EUCLIDEAN CONTROL POINTS

Given a projective reconstruction of a set of 3D points, a
important task is to upgrade it to Euclidean structure. In thi
case one may define the collineatldpwhich maps or upgrades
projective structure to metric structure. A number of author
studied the structure ¢, under various camera motions such
as general motion of a stereo rig [7] and rotations of a sing

\ camera [4]. Here we take a different approach and assume t|
/ large error \ \

the Cartesian coordinates of a set of landmark points or conti
points are provided. A similar approach was taken by Moh

) . ) . Boufama, and Brand [10], but they were unable to express t
FIG. 3. Quadruples of mismatched image points can result even if the im

points satisfy the epipolar geometry between the two image pairs. Points marggluuon in close form. @ (2)
with a black dot are real points while points marked with a grey dot are virtual It iS @assumed that the Euclidean Coordmafe& (Y7, Y,

points predicted by geometrical computations. Y 3 )T of at least five points in general position are known ir

between x" and x”
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FIG. 4. This curve shows the back-projected image error as a function of the number of outliers. With 50% outliers and less, the back-projected error i
constant and slightly higher than the initial image noise.

some Euclidean basi8g. Let, as beforeX; be the 3D pro- with

jective coordinates of a point indexed by Since Euclidean ) 5

space is a subspace of the projective space, one can compute the , _ <(Huxi)(1) B _(1)) ((HuXi)(Z) B _(2)>

collineationH, that mapsX; ontoY; = (W 1) (the homoge- P\ (He X))@ : (Hy X))@ !

neous coordinates associated With, using any of the linear or

nonlinear techniques described in the previous sections. Here, + (

however, we would like to take full advantage of the known

Euclidean structure associated with the control points.
Consider the 4D vector space corresponding to the project

subspace generated by the Euclidean bagifL4]. In this sub-

(HuX)® ve 2
(Huxi)(4) !

wgich is a nonlinear function in the entriesidf,. To minimize
s function, nonlinear optimization methods are necessary.

) Alternatively, it is possible to define a metric in the 4D vec
- 4) —_— L
space the hyper pIar)é:'( " 1.corres.p.on.ds tothe 3D EUCIIde‘ar}or space associated with the Euclidean space when the la
space. One way to estimétg is to minimize the sum of squares.

) ! o is a subspace of the projective space. One way to define 1
of the Euclidean distances between the 3-vectpendV; with Euclidean distance betweafy (a control point) ancH, X; (a

transformed projective point) is to arbitrarily fix the scale facto
— HoXD®  (Ho X))@ (HoX)®\ " associated with the homogeneous veétgX; and to compute
= ((HuXi)(“)’ (Hy X))@’ (Huxi)(4)) the distancel; between this vector and its projection onto the
direction ofY; (see Fig. 5).
The projection oH X; ontoY; is given by their dot-product,
normalized by the length of;:

Hence, the error function to be minimized is

(YT HuXi)*

n
H 2
min E; (12) p =
Hu ; | | Y'Y
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X7 o] 0] 0]
; of x' of of [(fu
HXi =1L or or x7 of

o 0] o X

: Eih.
Haa

FIG.5. The Euclidean distance between vectsrsandH, X; in 4D vector 1 he distance; becomes
space can be approximated dyy
d? = X/ HJAiH X; = h"ETAE;h.

The distance between the tiptdf, X; and the tip of its projection gy summation over all control points we obtain the error functiol

is equal to
, > d?=h"Y (E[AE)h=hTAh, (13)
: , (YTHuX,) i i
d2 = (HuXi)T(Hu X)) — =t

YiYi whereA = Y, (E AiE;) is symmetric, semi-definite, and posi-
T 1 T uT tive. The optimization problem is therefore identical to the on

= Xi HylaHu X — <—Y-TY-) Xi Hy YiYi HuXi expressed by Eq. (7) and the solution fois the eigenvector

v associated with the smallest eigenvalué\of
—XTHT (1. — YiY! H. X In order to illustrate this method consider the pair of image
A v U of Fig. 6. Three-dimensional Euclidean coordinates of 26 da
—_— points are also provided with these images. Point correspo
A . . .

dences were obtained interactively, and the fundamental
= X/ HJAHX;. trix was estimated using the method described in [16]. Thre

dimensional projective coordinates are obtained by triangulatic

Notice that matriXy; just defined is a symmetric semi-definitg5]. The collineation between projective and Euclidean coord
positive matrix and its eigenvalues are equal to (1, 1, 1, 0). Witlates was estimated using the method described above and t
the notations already used in Sections 2.1 and 2.2 we have used to upgrade the entire set of projective coordinates. Tt

7

FIG. 6. A pair of real images (left) and the Euclidean reconstruction of the scene (right).
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resulted in a Euclidean map of some of the roofs which acaitliers. The outliers can be further analyzed in order to dete
displayed on Fig. 6. possible moving objects. It will therefore be possible to distin
guish between ego-motion and moving scene objects.
6. CONCLUSION
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