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The problem of finding the collineation between two 3D projective
reconstructions has been proved to be useful for a variety of tasks
such as calibration of a stereo rig and 3D affine and/or Euclidean
reconstruction. Moreover, such a collineation may well be viewed as
a point transfer method between two image pairs with applications
to visually guided robot control. Despite this potential, methods for
properly estimating such a projective transformation have received
little attention in the past. In this paper we describe linear, nonlinear,
and robust methods for estimating this transformation. We test the
numerical stability of these methods with respect to image noise, to
the number of matched points, and as a function of the number of
outliers. Finally, we devise a specialized technique for the case where
3D Euclidean coordinates are provided for a number of control
points. c© 1999 Academic Press
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Until very recently it was believed that visual tasksrequ
some form of off-line camera calibration. For example, a mov
calibrated camera provides a sequence of images from whic
Euclidean structure can in principle be recovered. More rece
it has been shown both theoretically and experimentally tha
image sequence taken with an uncalibrated camera can pr
3D Euclidean structure as well [11]. The basic paradigm m
well be viewed as a form of self- or on-line calibration and
consists of recovering projective structure first, then upgra
it to affine structure, and then to Euclidean structure.

Another possibility that has been recently investigated b
number of researchers is to consider a sequence of image
gathered with a moving uncalibrated stereo rig [1, 17, 2,
With such an uncalibrated image pair, matched points are
constructed in projective space [6]. If the stereo pair underg
rigid motion, the two projective reconstructions (before and
ter the motion) are related by a 3D projective transforma
which is conveniently represented by a 4× 4 regular matrix—a
collineation. Therefore, methods that attempt to recover pro
tive, affine, or Euclidean structure from a moving stereo
need to estimate this collineation. Interesting enough, with
exception of [1] which briefly outlines a method for estimat
this projective transformation, there appears to be no publi
paper in the computer vision literature describing and eva
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In this paper we address the problem of estimating suc
collineation from two projective reconstructions obtainedp
cisely, we attempt to estimate the 3D projective transforma
allowing us, in some optimal sense, to overlap one projec
reconstruction onto the other. Therefore, the design of an o
mal criterion, as well as the choice of a technique to minim
this criterion, are crucial. Since projective entities are defi
only up to a scale factor, one cannot define a metric criterio
projective space.

The first method that we describe below “throws” out the sc
factors and transforms the 4× 4 matrixH representing the pro
jective transformation into a 16-vectorh. The solution is the nul
space of a measurement matrixB, i.e.,Bh= 0.

The second method that we describe below attempts to
mate the scale factors rather than throwing them out. This
mulation leads, as in the previous case, to a linear formula
The solution vectors is found by solving the linear problem
Cs= r .

When the 3D points are projected onto images, their 2D p
tions can be measured in pixel coordinates. Even if the inte
camera parameters are not known, it is possible to define
Euclidean distance between two image points and build an
ror criterion based on the sum of the squares of these dista
The estimation of 3D projective transformations from such
age measurements resembles bundle adjustment technique
widely both in photogrammetry and computer vision for ca
era calibration. The advantage of these methods over the l
estimators mentioned above is better behavior in the presen
badly conditioned data. Unfortunately such an estimator le
to nonlinear minimization techniques and some form of init
ization must be provided.

To summarize, neither of the above methods are entirely s
factory. In order to overcome these drawbacks, a robust estim
in necessary. We describe such a robust estimator which m
use of either one of the two linear methods in its inner loop
which provides an initial guess to the nonlinear estimator.

Next, we study the behavior of the linear and nonlinear e
mators in the presence of image noise and as a function o
number of matched points. We also study the behavior of
robust estimator in the presence of outliers. In the light of th
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experiments it appears that the nonlinear method perfo
slightly better than the linear methods. However, for levels
noise below one pixel in magnitude, the linear method perfo
as well as the nonlinear ones and, hence, they should be
ferred because they are less time consuming than the nonl
methods.

Finally, we devise a specialized technique in the case w
3D Euclidean coordinates are provided for a number of con
points.

2. LINEAR AND NONLINEAR ESTIMATION
OF 3D COLLINEATIONS

Given a pair of images denoted byx and the fundamenta
matrix Fx that describes the epipolar geometry associated
the two cameras, there exists a projective basis of the pro
tive spaceP3 such that the projections from this space onto
images are represented by1 two 3× 4 matrices [4, 12],

Px = (I3 03), P′x = (G′x e′x), (1)

whereG′x is a 3× 3 regular matrix and the 3-vectore′x is called
the epipole and is the projection onto the second image o
optical center associated with the first camera.

Let x, x′ be the images of a three-dimensional pointM ; then
from the projection equationsρxx=Px X andρ ′xx′ =P′x X, we
obtain the projective coordinatesX of point M in the projective
basisBx defined by (Px,P′x) [12]. Notice that the above projec
tive equalities are defined up to unknown scale factorsρx andρ ′x.

Consider a second pair of imagesy of the same scene but take
from a different viewpoint and denote byFy the corresponding
fundamental matrix. The new projective matrices are

Py = (I3 03), P′y = (G′y e′y),

and ify, y′ are the new projections of the pointM , its 3D projec-
tive coordinates in the basisBy are denoted byY which verifies
ρyy=PyY andρ ′yy′ =P′yY.

Assume now, that we have a set ofm points, and letX1, X2,

. . . , Xm and Y1,Y2, . . . ,Ym be their homogeneous represe
tations in the projective basisBx, respectivelyBy. Then, there
exists a 4× 4 collineation matrixH that maps the pointsXi to
the pointsYi ,

µi Yi = HXi (2)

with µi arbitrary nonnull scalars.
H, defined up to a scale factor, has 15 degrees of freedom
to determine it, we need at least five point correspondences s
each pair (Xi , Yi ) gives us three constraints after eliminatingµi .

1 We denote byIn the n× n matrix of identity and by0n the n-vector con-
tainingn zeros.

s
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Indeed, five points in the projective space generally defi
a projective basis ofP3 such that the collineation between th
standard projective basis and the set of points{Xi }i=1..5 is given
by the matrix

T1 = (µ1X1 µ2X2 µ3X3 µ4X4),

where (µ1, µ2, µ3, µ4)> = (X1, X2, X3, X4)−1X5. The collin-
eationT2 which maps the standard reference points to the sec
set of points{Yi }i=1..5 can be obtained similarly. Finally, the
collineation between{Xi }i=1..5 and{Yi }i=1..5 is then:

H = T2T−1
1 .

This method is straightforward, but unstable in the prese
of noise since we only use the minimum number of points
compute the collineation matrixH. If we havem> 5 pairs of
points, it is better to use all of them and estimateH by some
minimization technique.

2.1. Linear Method 1

The classical way to estimate the entries ofH is to eliminate
the scale factorsµi . A homogeneous linear system in the entri
of H is thus obtained [15],

Y(4)
i V (1)

i − Y(1)
i V (4)

i = 0

Y(4)
i V (2)

i − Y(2)
i V (4)

i = 0 (3)

Y(4)
i V (3)

i − Y(3)
i V (4)

i = 0,

where we used the notationV i = (V (1)
i ,V (2)

i ,V (3)
i ,V (4)

i )> for the
vectorHXi :

V ( j )
i = Hj 1X(1)

i + Hj 2X(2)
i + Hj 3X(3)

i + Hj 4X(4)
i . (4)

In the affine or Euclidean cases we haveY(4)
i = 1 which is often

at a different magnitude thanY(1)
i ,Y(2)

i ,Y(3)
i . This explains the

choice of these three equations whereY(4)
i has the same role. In

the projective case, we cannot say the same thing, so if we w
all four coordinates to play the same role, we can add the th
other possible equations (which are not independent from
previous ones):

Y(2)
i V (1)

i − Y(1)
i V (2)

i = 0

Y(3)
i V (1)

i − Y(1)
i V (3)

i = 0 (5)

Y(3)
i V (2)

i − Y(2)
i V (3)

i = 0.

This system can be solved whenm≥ 5 point correspondence

are available and with an additional constraint, such as

∑
H2

i j =1.
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If we denoteh= (H11, H12, . . . , H44)>, Eqs. (3) and (5) can
be written in the form,2

Bi h = 0,

whereBi is a 6×16 matrix:

Bi =



Yi
4 X>i 0>4 0>4 Y(1)

i X>i

0>4 Y(4)
i X>i 0>4 Y(2)

i X>i

0>4 0>4 Y(4)
i X>i Y(3)

i X>i

Y(2)
i X>i Y(1)

i X>i 0>4 0>4

Y(3)
i X>i 0>4 Y(1)

i X>i 0>4

0>4 Y(3)
i X>i Y(2)

i X>i 0>4


.

Givenm correspondences (Xi , Yi ), we are looking forh that
minimizes the error function:

m∑
i=1

‖Bi h‖2 = h>
(

m∑
i=1

B>i Bi

)
h. (6)

With the constraint
∑

H2
i j = 1 the error function to be mini

mized becomes

min
h

(h>Bh+ λ(1− h>h)). (7)

The 16×16 matrixB=∑m
i=1 B>i Bi being symmetric, semi

definite, and positive, the solution forh is the eigenvector ofB
corresponding to the smallest eigenvalue ofB:

Bh = λh.

Indeed, form point correspondences the rank ofB is equal to
15 and, therefore, the null space ofB is a nonnull 16-vector
In practice, due to noise, the rank ofB is equal to 16 and the
null-space becomes the eigenvector associated with the sm
eigenvalue. LetB=QDQ> be the eigen decomposition ofB
with Q being an orthogonal matrix whose columns corresp
to the eigenvectors andD being a diagnoal matrix. The singu
lar value decomposition ofB is B>B=QD2Q>. Therefore, in
practice, the solution to the minimization problem consists
computing the singular value decomposition ofB and taking the
last column ofQ.

2.2. Linear Method 2

An alternative solution is to estimate simultaneously the

tires ofH and the scale factorsµ1, . . . µm. Equation (2) can be
decomposed into four distinct linear constraints and, for exa

2 If we use only three equations one can remove the rows correspondin
the other equations and obtainBi as a 3× 16 matrix.
IAN, AND HORAUD
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H11X(1)
i + H12X(2)

i + H13X(3)
i + H14X(4)

i − µi Y
(1)
i = 0.

Without loss of generality one scale factor is set to 1:µm= 1.
Therefore, we have 16 unknowns for the entries ofH andm− 1
unknown scale factors. The four constraints available with e
one of them equations (2) can be written as a linear syste
Cs= r , withs= (H11, . . . , H44, µ1, . . . , µm−1)>, r = (0, . . . ,0︸ ︷︷ ︸

4×(m−1)

,

Y(1)
m ,Y(2)

m ,Y(3)
m ,Y(4)

m )>, and

C =



E1 −Y1 04 · · · 04

E2 04 −Y2 · · · 04
...

...

Em−1 04 04 · · · −Ym−1

Em 04 04 · · · 04


.

The 4× 16 matricesEi are defined by

Ei =


X>i 0>4 0>4 0>4
0>4 X>i 0>4 0>4
0>4 0>4 X>i 0>4
0>4 0>4 0>4 X>i

 .

This linear system consists of 4m equations. Since there a
16+ (m− 1)= 15+m unknowns, we must havem≥ 5. The
linear system can be solved using the standard pseudo-in
technique,

s= (C>C)−1C>r ,

provided that the 3D points are not coplanar.

2.3. Nonlinear Method

One way to assess the quality of the estimated collineatioĤ
is to compare the projections ofŶi = ĤXi and of X̂i = Ĥ−1Yi

with the true image points. Letxi andx′i be the true image point
(in the left and right images) from which the 3D pointXi was
reconstructed, and letPx andP′x be the corresponding projectio
matrices (see (1)). The projections ofX̂i by Px andP′x are noted
by x̂i andx̂′i . Similarly we defineyi , y′i ,Py,P′y, ŷi , andŷ′i :

x̂i = PxĤ−1Yi

x̂′i = P′xĤ−1Yi

ŷi = PyĤXi

ŷ′i = P′yĤXi .
g toWith the notationy> = (ȳ> 1), letd(ȳ, ˆ̄y) denote the Euclidean
distance between the image pointsy and ŷ. The quality of the
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the linear methods will be affected as well because the 3D point
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collineation is assessed by the quadratic error function:

f (Ĥ, Ĥ−1) = 1

4m

m∑
i=1

(d(x̄i , ˆ̄xi )
2+ d(x̄′i , ˆ̄x′i )

2+ d(ȳi , ˆ̄yi )
2

+ d(ȳ′i , ˆ̄y′i )
2). (8)

Direct minimization of this error function over the entries
H results in a highly nonlinear objective function because
has to express the entries ofH−1 as a function of the entries o
H. Alternatively, one can minimize the objective function

min
H,H′

( f (H,H′)+ η‖HH ′ − I4‖2), (9)

where the term‖HH ′ − I4‖2 is known as a penalty function
High numerical values forη enforce this constraint and, henc
guarantee thatH′ = H−1.

Therefore, the minimization process considersH andH′ as
two independent sets of variables.

An alternative method is to use a less symmetric objec
function and to minimize only the distances betweenˆ̄yi , ˆ̄y′i and
the true image measurementsȳi , ȳ′i in the second pair of image
In this case we need no additional penalty term and the obje
function becomes

min
H

f1(H) = min
H

1

2m

m∑
i=1

ri (10)

with the residual

ri = d(ȳi , ˆ̄yi )
2+ d(ȳ′i , ˆ̄y′i )

2. (11)

3. EXPERIMENTAL COMPARISON USING
SIMULATED DATA

We implemented the methods described above to estimaH.
Prior to the estimation ofH projective reconstruction must b
performed such that the coordinates ofXi are estimated from
the image pointsxi andx′i and the coorrdinates ofYi are esti-
mated from the image pointsyi andy′i . This is done using the
triangulation method described by Hartley and Sturm [5]. T
latter minimizes reconstruction errors by constraining the l
image and right-image points to lie on conjugated epipolar lin
Certainly, this method reduces the effect of image noise an
ases the comparison described below. Nevertheless, the o
goal is to obtain the best available results and triangulatio
beneficial with respect to such a goal.

We carried out a large number of experiments in orde
compare the quality of the results. The algorithms have b
tested with a set of 41 points.

The first experiment uses all the points and analyzes the s
tivity with respect to image noise. Gaussian noise with vary
standard deviation (from 0 to 2 pixels) is added to the im

point locations. The second experiment analyzes the sensit
TIVE COLLINEATIONS 263
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as a function of the total number of points being used by
minimization processes, the minimum number of points be
necessarily equal to 5.

With all the minimization methods and in both experimen
the same error function, i.e., Eq. (8), was used to assess
quality of the results.

Figure 1 shows the results of the first experiment and disp
the median error over 100 trials of each algorithm and w
various levels of noise. The following notations are used:

L1—linear method 1;
L2—linear method 2;
N1—nonlinear method, minimizing the back-projections

the two image pairs, and
N2—nonlinear method, minimizing the back-projections

the second image pair.

Note that the quality of the collineation linearly degrades w
increasing image noise. The nonlinear methods (N1 and
sightly outperform the linear methods which, in turn, have
identical behavior.

Figure 2 shows the results of the second experiment, w
three levels of noise were used in conjunction with the non
ear method N2. This experiment reveals that in the presenc
noise 15 points at least are necessary to properly estimat
transformation.

4. ROBUST ESTIMATION OF 3D COLLINEATIONS

A common source of errors in computer vision is image-
image point matching. State-of-the-art algorithms consist of
ing robust estimators to determine the epipolar geometry [
Such an algorithm finds point matches that are geometric
correct; i.e., they lie on conjugated epipolar lines [9], but th
may be physically incorrect: the point is correctly reconstruc
from a mathematical point of view but it does not correspond
an actual feature.

If two image pairs are considered, as is the case in this pa
mismatches can result even from correctly matched points, b
on the epipolar geometry associated with each one of the
image pairs. Such a mismatch will give a large error and
minimization methods described in the previous section can
deal with such mismatches.

This problem is illustrated on Fig. 3. Letx, x′, y, andy′ be
a quadruple of matched points in between the two image p
Among these points,x′ is a bad match because it results from t
projection of 3D pointN. Nevertheless,x andx′ correctly satisfy
the epipolar constraint becauseN lies in the same epipolar plan
asM . The projective coordinates ofM , when reconstructed from
y andy′ are denoted by the 4-vectorY. This point projects onto
the first image pair inx andx′′. The error betweenx′ andx′′

is large and will have a dramatic effect on the nonlinear m
imization process described in the previous section. Simila
ivityM is wrongly matched with the 3D pointQ.
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FIG. 1. Comparison of two linear methods and two nonlinear methods

Commonly used robust methods include M-estimators, le
median-squares (LMedS), and random sample consensu
We immediately ruled out M-estimators because in our case
method can tolerate only up to 7% outliers. The advantag
RANSAC over LMedS resides in the outlier rejection strate
RANSAC requires a user-defined threshold while LMedS d
not. Such a threshold is useful in practice for a number of reas

1. efficiency in the presence of nonhomogeneous noise;
2. Fifty percent outliers and above are allowed, and
3. increased time-efficiency because the inner loop of

algorithm can be quit as soon as a satisfactory solution is fo

When applied to the problem of estimating a 3D project
transformation, the robust method that we implemented ca
summarized as:

1. Among the set ofm matches considerN samples of five
matches;

2. For each samplek, 1≤ k≤ N,
2.1. Estimate a homographyHk from these five matches
2.2. Compute the total number of matchesmk consistent

with Hk, i.e., matches whose associated error is below a thr
old, the error being defined by Eq. (11);
3. Select the homographyHk which is associated with the
largest number of consistent matches;
for computing the projective collineation in the presence of image Gaussian

st-
[3].

this
of
y.
es
ns:

the
nd.

ve
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sh-

4. Use all of thesemk to refine the estimation of the be
available homographyHk, and

5. Use the latter estimation to update the list of inliers a
outliers.

In order to determine the number of samplesN we must set
the probability of selecting a good solution. The formula for t
probability is

γ = 1− [1− (1− εout)
p]N,

where p is the number of points in the sample (p= 5 for 3D
collineations) andεout is the percentage of outliers that are to
found in the initial data.

For example, forγ = 0.95 andεout= 0.5 we obtainN= 100.
Hence, the inner loop of the robust estimator algorithm ha
be run at least 100 times. The inner loop main step (2.2) c
sists essentially in estimating a collineationH from five point
matches. With five matches the solution is found in closed-fo
using either one of the two linear methods described above

4.1. Experimenting with the Robust Estimator

In order to assess the performance of the robust estim

described above, we tested it in the presence of simulated data.
For this purpose we used two sets of points: one set of 200 points
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FIG. 2. The sensitivity of the nonlinear method N2 as a function of the number of points and for three levels of Gaussian noise with standard deviations 0.1, 0.5,
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and 1.

and another set of 200 points. The first set was perturbed
Gaussian noise with standard deviation equal to 0.5 pixels.

FIG. 3. Quadruples of mismatched image points can result even if the im
points satisfy the epipolar geometry between the two image pairs. Points m

with a black dot are real points while points marked with a grey dot are virt
points predicted by geometrical computations.
with
The

age
rked

second set was perturbed with white noise whose ampli
varies between 3 pixels and 20 pixels.

Furthermore, the algorithm’s parameters were set for an
pected number of outliers of 50% but the number of outli
varied between 0 and 75%. Figure 4 shows the result of
ning the algorithm. The average back-projected error per im
point (the error measure is the one given by Eq. (8)) is show
a function of the number of outliers present in the data.

5. DEALING WITH EUCLIDEAN CONTROL POINTS

Given a projective reconstruction of a set of 3D points,
important task is to upgrade it to Euclidean structure. In
case one may define the collineationHu which maps or upgrade
projective structure to metric structure. A number of auth
studied the structure ofHu under various camera motions su
as general motion of a stereo rig [7] and rotations of a sin
camera [4]. Here we take a different approach and assume
the Cartesian coordinates of a set of landmark points or co
points are provided. A similar approach was taken by Mo
Boufama, and Brand [10], but they were unable to express
solution in close form.

It is assumed that the Euclidean coordinatesȲ = (Y(1)
,Y(2)

,
ual i i i
Y(3)

i )> of at least five points in general position are known in
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FIG. 4. This curve shows the back-projected image error as a function o
constant and slightly higher than the initial image noise.

some Euclidean basisBE. Let, as before,Xi be the 3D pro-
jective coordinates of a point indexed byi . Since Euclidean
space is a subspace of the projective space, one can compu
collineationHu that mapsXi ontoYi = (Ȳ>i 1)> (the homoge-
neous coordinates associated withȲi ), using any of the linear o
nonlinear techniques described in the previous sections. H
however, we would like to take full advantage of the know
Euclidean structure associated with the control points.

Consider the 4D vector space corresponding to the projec
subspace generated by the Euclidean basisBE [14]. In this sub-
space the hyper-planeX(4)= 1 corresponds to the 3D Euclidea
space. One way to estimateHu is to minimize the sum of square
of the Euclidean distances between the 3-vectorsȲi andV̄ i with

V̄ i =
(

(Hu Xi )(1)

(Hu Xi )(4)
,

(Hu Xi )(2)

(Hu Xi )(4)
,

(Hu Xi )(3)

(Hu Xi )(4)

)>
.

Hence, the error function to be minimized is

n

min
Hu

∑
i=1

ε2
i (12)
the number of outliers. With 50% outliers and less, the back-projected erro

te the

ere,
n

tive

n
s

with

ε2
i =

(
(Hu Xi )(1)

(Hu Xi )(4)
− Y(1)

i

)2

+
(

(Hu Xi )(2)

(Hu Xi )(4)
− Y(2)

i

)2

+
(

(Hu Xi )(3)

(Hu Xi )(4)
− Y(3)

i

)2

which is a nonlinear function in the entries ofHu. To minimize
this function, nonlinear optimization methods are necessary

Alternatively, it is possible to define a metric in the 4D ve
tor space associated with the Euclidean space when the l
is a subspace of the projective space. One way to define
Euclidean distance betweenYi (a control point) andHu Xi (a
transformed projective point) is to arbitrarily fix the scale fact
associated with the homogeneous vectorHu Xi and to compute
the distancedi between this vector and its projection onto th
direction ofYi (see Fig. 5).

The projection ofHu Xi ontoYi is given by their dot-product,
normalized by the length ofYi :( )2
pi =
Y>i Hu Xi

Y>i Yi
.
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FIG. 5. The Euclidean distance between vectorsYi andHu Xi in 4D vector
space can be approximated bydi .

The distance between the tip ofHu Xi and the tip of its projection
is equal to

d2
i = (Hu Xi )

>(Hu Xi )−
(
Y>i Hu Xi

)2
Y>i Yi

= X>i H>u I4Hu Xi −
(

1

Y>i Yi

)
X>i H>u Yi Y>i Hu Xi

= X>i H>u

(
I4− Yi Y>i

Y>i Yi

)
︸ ︷︷ ︸

A i

Hu Xi

= X>i H>u A i Hu Xi .

Notice that matrixA i just defined is a symmetric semi-defini
positive matrix and its eigenvalues are equal to (1, 1, 1, 0). W

the notations already used in Sections 2.1 and 2.2 we have used to upgrade the entire set of projective coordinates. This
FIG. 6. A pair of real images (left) and th
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e
ith

Hu Xi =


X>i 0>4 0>4 0>4

0>4 X>i 0>4 0>4

0>4 0>4 X>i 0>4

0>4 0>4 0>4 X>i


 H11

...

H44

 = Ei h.

The distancedi becomes

d2
i = X>i H>u A i Hu Xi = h>E>i A i Ei h.

By summation over all control points we obtain the error funct∑
i

d2
i = h>

∑
i

(
E>i A i Ei

)
h = h>Ah, (13)

whereA= ∑i (E
>
i A i Ei ) is symmetric, semi-definite, and pos

tive. The optimization problem is therefore identical to the o
expressed by Eq. (7) and the solution forh is the eigenvector
associated with the smallest eigenvalue ofA.

In order to illustrate this method consider the pair of imag
of Fig. 6. Three-dimensional Euclidean coordinates of 26 d
points are also provided with these images. Point corresp
dences were obtained interactively, and the fundamental
trix was estimated using the method described in [16]. Thr
dimensional projective coordinates are obtained by triangula
[5]. The collineation between projective and Euclidean coo
nates was estimated using the method described above and
e Euclidean reconstruction of the scene (right).
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resulted in a Euclidean map of some of the roofs which
displayed on Fig. 6.

6. CONCLUSION

In this paper we described various methods to estimate
collineation between two projective reconstructions. We
scribed two linear methods which minimize an algebraic d
tance in 3D projective space, two nonlinear methods which m
imize a metric distance in 2D image space, and a robust me
which combines any of the linear methods with an outlier
jection strategy. Moreover, for the special case where Euclid
coordinates of a few control points are available, we devise
linear method based on a metric distance in the 4D vector sp
associated with homogeneous coordinates.

In order to evaluate these methods and assess their res
tive merits, we carried out a large number of experiments w
both synthetic and real data. The synthetic data allowed u
add Gaussian noise to image data and to study the nume
stability of the various implemented methods. In the light
these experiments it appears that all the methods have an al
identical behavior and that the nonlinear methods outperfo
the linear ones. However, for levels of noise below one pixe
magnitude it is not possible to distinguish between the per
mances of the four methods. Another set of experiments allo
us to test the performance as a function of the number of po
being considered. The conclusion of this set of experiments
not surprisingly, that (i) the more point matches are availa
the better it is and (ii) below 15 to 20 point matches one sho
expect unreliable results.

For the special case where projective coordinates of a
control points are matched against Euclidean coordinates
have been able to devise a linear method which is based
metric distance in 4D space—the vector space associated
homogeneous coordinates of the 3D projective space an
Euclidean subspace. Such a linear error function could pro
bly be extended to other estimation problems, such as cam
calibration and bundle adjustment.

One interesting application associated with the computa
of such a 3D projective transformation is the transfer of 2
points from one stereo image pair to another stereo image
This transfer technique is useful whenever a set of 3D point
observed with one stereo pair and one wants to display the s
3D set as would be observed by another stereo pair. This st
transfer technique has been applied to a visual grasping me
developed elsewhere [8]. Another application associated w
the computation of a 3D collineation is the self-calibration o
stereo camera pair [7, 13].

Another promising outcome of this work that we plan to inve
tigate is the use of projective motion estimation to perform m
tion segmentation. Indeed, in this paper we considered a mo

stereo sensor observing a rigid scene. If the scene is not ri
the scene points undergoing some motion will be detected
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outliers. The outliers can be further analyzed in order to de
possible moving objects. It will therefore be possible to dis
guish between ego-motion and moving scene objects.
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