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Abstract

This paper describes a theory and a practical algorithm for the autocalibration of a moving projective camera,
from ����� views of a planar scene. The unknown camera calibration, and (up to scale) the unknown scene
geometry and camera motion are recovered from the hypothesis that the camera’s internal parameters remain
constant during the motion. This work extends the various existing methods for non-planar autocalibration
to a practically common situation in which it is not possible to bootstrap the calibration from an intermediate
projective reconstruction. It also extends Hartley’s method for the internal calibration of a rotating camera,
to allow camera translation and to provide 3D as well as calibration information. The basic constraint
is that the projections of orthogonal direction vectors (points at infinity) in the plane must be orthogonal
in the calibrated camera frame of each image. Abstractly, since the two circular points of the 3D plane
(representing its Euclidean structure) lie on the 3D absolute conic, their projections into each image must
lie on the absolute conic’s image (representing the camera calibration). The resulting numerical algorithm
optimizes this constraint over all circular points and projective calibration parameters, using the inter-image
homographies as a projective scene representation.
Keywords: Autocalibration, Euclidean structure, Absolute Conic & Quadric, Planar Scenes.

1 Introduction

This paper describes a method of autocalibrating a moving projective camera with general, un-
known motion and unknown intrinsic parameters, from � �	� views of a planar scene. Auto-
calibration is the recovery of metric information — for example the internal and external cali-
bration parameters of a moving projective camera — from non-metric information and (metric)
self-consistency constraints — for example the knowledge that the camera’s internal parameters
are constant during the motion, and the inter-image consistency constraints that this entails. Since
the seminal work of Maybank & Faugeras [14, 3], a number of different approaches to autocalibra-
tion have been developed [5, 6, 1, 27, 26, 2, 13, 9, 16, 15, 22, 10]. For the ‘classical’ problem of
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a single perspective camera with constant but unknown internal parameters moving with a general
but unknown motion in a 3D scene, the original Kruppa equation based approach [14] seems to be
being displaced by approaches based on the ‘rectification’ of an intermediate projective reconstruc-
tion [5, 9, 15, 22, 10]. More specialized methods exist for particular types of motion and simplified
calibration models [6, 24, 1, 16]. Stereo heads can also be autocalibrated [27, 11]. Solutions are
still — in theory — possible if some of the intrinsic parameters are allowed to vary [9, 15]. Hart-
ley [6] has given a particularly simple internal calibration method for the case of a single camera
whose translation is known to be negligible compared to the distances of some identifiable (real
or synthetic) points in the scene, and Faugeras [2] has elaborated a ‘stratification’ paradigm for
autocalibration based on this. The numerical conditioning of classical autocalibration is histori-
cally delicate, although recent algorithms have improved the situation significantly [9, 15, 22]. The
main problem is that classical autocalibration has some restrictive intrinsic degeneracies — classes
of motion for which no algorithm can recover a full unique solution. Sturm [18, 19] has given a
catalogue of these. In particular, at least 3 views, some translation and some rotation about at least
two non-aligned axes are required.

Planar Autocalibration: All of the existing approaches to classical autocalibration rely on
information equivalent to a 3D projective reconstruction of the scene. In the Kruppa approach
this is the fundamental matrices and epipoles, while for most other methods it is an explicit 3D
reconstruction. For some applications (especially in man-made environments) this is potentially
a problem, because planar or near-planar scenes sometimes occur for which stable 3D projective
reconstructions (or fundamental matrices, etc.) can not be calculated. This well-known failing
of projective reconstruction is something of an embarrassment: the calibrated reconstruction of
planar scenes is not difficult, so it is exactly in this case when autocalibration fails that it would
be most useful. The current paper aims to rectify this by providing autocalibration methods that
work in the planar case, by ‘rectifying’ the inter-image homographies induced by the plane. In the
longer term, we would like to find ways around the ill-conditioning of projective reconstruction
for near-planar scenes, and also to develop ‘structure-free’ internal calibration methods similar
to Hartley’s zero-translation one [6], but which work for non-zero translations. The hope is that
planar methods may offer one way to attack these problems.

Planar autocalibration has other potential advantages. Planes are very common in man-made
environments, and often easily identifiable and rather accurately planar. They are simple to pro-
cess and allow very reliable and precise feature-based or intensity-based matching, by fitting the
homographies between image pairs. They are also naturally well adapted to the calibration of lens
distortion as some of the subtleties of 3D geometry are avoided1.

The main disadvantage of planar autocalibration (besides the need for a nice, flat, textured
plane) seems to be the number of images required. Generically, � � ��������	� images are needed
for an internal camera model with 
 free parameters, e.g. � � � for the classical 5 parameter
projective model (focal length, aspect ratio, skew, principal point), or � ��� if only focal length
is estimated. However for good accuracy and reliability, at least 8–10 images are recommended in
practice. Also, almost any attempt at algebraic elimination across so many images rapidly leads to a
combinatorial explosion. Hence, the approach is resolutely numerical, and it seems impracticable

1We will ignore lens distortion throughout this paper. If necessary it can be corrected by a nominal model, or —
at least in theory — estimated up to an overall 
���
 projectivity by a bundled adjustment over all the inter-image
homographies. (The pixel-pixel mapping induced by geometric homography H � is DH � D ��� where D is the distortion
model).

2



to initialize the optimization from a minimal algebraic solution. Although for the most part the
numerical domain of convergence seems to be sufficient to allow moderately reliable convergence
from a fixed default initialization, and we have also developed a numerical initialization search
which may be useful in some cases, occasional convergence to false minima remains a problem.

Organization: Section 2 gives a direction-vector based formulation of the theory of autocal-
ibration, and discusses how both non-planar and planar autocalibration can be approached within
this framework. Section 3 describes the statistically-motivated cost function we optimize. Sec-
tion 4 discusses the numerical algorithm, and the method used to initialize it. Section 5 gives
experimental results on synthetic and real images, and section 6 concludes the paper.

Notation will be introduced as required. Briefly we use bold upright � for homogeneous 3D
(4 component) vectors and matrices; bold italic x for 3 component ones (homogeneous image,
inhomogeneous 3D, 3-component parts of homogeneous 4-component objects); P for image pro-
jections and H for inter-image homographies; K, C � K � � for upper triangular camera calibration
and inverse calibration matrices;

�
and

���
for the absolute (hyperplane) quadric and (direction)

conic; and � � K K �	� P
�

P � and �
� � � C � C for their images. �
����� denotes the matrix
generating the cross product: � x ��� y � x � y.

2 Euclidean Structure and Autocalibration

To recover the metric information implicit in projective images, we need a projective encoding of
Euclidean structure. The key to Euclidean structure is the dot product between direction vectors
(“points at infinity”), or dually the dot product between (normals to) hyperplanes. The former leads
to the stratified “hyperplane at infinity + absolute (direction) conic” formulation (affine + metric
structure) [17], the latter to the “absolute (hyperplane) quadric” one [22]. These are just dual ways
of saying the same thing. The hyperplane formalism is preferable for ‘pure’ autocalibration where
there is no a priori decomposition into affine and metric strata, while the point one is simpler if
such a stratification is given.

Generalities: Consider � -dimensional Euclidean space. We will need the cases ����� (the pla-
nar scene and its 2D images) and ��� � (ordinary 3D space). Introducing homogeneous Euclidean
coordinates, points, displacement vectors and hyperplanes are encoded respectively as homoge-
neous ����� component column vectors ����� x  !�#"$� , %&��� t  (')"*� and row vectors +,��� n  (-." . Here
x, t and n are the usual � -D coordinate vectors of the point, the displacement, and the hyperplane
normal, and - is the hyperplane offset. Points and displacements on the plane satisfy respectively
+��!�/� n � x �0-1�2' and +��!%�� n � t �3' . Displacement directions can be appended to the point
space, as a hyperplane at infinity +54 of points at infinity or vanishing points. Projectively, +64
behaves much like any other hyperplane. In Euclidean coordinates, +748��� 0  !�9" so that +:4��;%&��'
for any displacement %<�=� t  �')" . Projective transformations mix finite and infinite points. Under
a projective transformation encoded by an arbitrary nonsingular �>�?�@�9"BAC�D�?�@�9" matrix E , points
and directions (column vectors) transform contravariantly, i.e. by E acting on the left: �GF EH� ,I F E I . To preserve the point-on-plane relation +J�*��� n � x �K-L�2' , hyperplanes (row vectors)
transform covariantly, i.e. by E�� � acting on the right: +,FM+1E�� � .
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Absolute Quadric & Conic: The usual Euclidean dot product between hyperplane normals is
n � � n � � +�� � +:�� where the symmetric, rank � , positive semidefinite matrix

� �
�

I �9��� 0
0 '��

is called the absolute (hyperplane) quadric2.
�

encodes the Euclidean structure in projective co-
ordinates. Under projective transformations it transforms contravariantly (i.e. like a point) in each
of its two indices so that the dot product between plane normals is invariant:

� F E � E � and
+��7F +	� E�� � , so +
� � +:�� � n �6� n � is constant.

�
is invariant under Euclidean transformations,

but in a general projective frame it loses its diagonal form and becomes an arbitrary symmetric
positive semidefinite rank � matrix. In any frame, the Euclidean angle between two hyperplanes
is cos �/� � + � +�� � "�
�� � + � + � " � + � � + � � " , and the plane at infinity is

�
’s unique null vector:

+:4 � ��� . When restricted to coordinates on +54 ,
�

becomes nonsingular and can be dualized
(inverted) to give the � A/� symmetric positive definite absolute (direction) conic

� �
. This mea-

sures dot products between displacement vectors, just as
�

measures them between hyperplane
normals.

�1�
is defined only on direction vectors, not on finite points, and unlike

�
it has no

unique canonical form in terms of the unrestricted coordinates. (Anything of the form � I x
x ����� can

be used, for arbitrary x  �� ).

Direction bases: In Euclidean coordinates,
�

can be decomposed as a sum of outer products of
any orthonormal (in terms of

���
) basis of displacement vectors:

� ��� ������ x � x �� where x � ��� x� �� � � . For example in 2D
� � � I !#"$! 0

0 % � �'&x &x � �(&y &y � where &x � ���  ('  (')" , &y ���D'  !�  (')" , are the usual
unit direction vectors. Gathering the basis vectors into the columns of a �>� ���9" A,� orthonormal
rank � matrix ) we have

� �*)+) � , +:4,) �*� and ) � �1� ) � I �9��� . The columns of ) span
+:4 . All of these relations remain valid in an arbitrary projective frame E and with an arbitrary
choice of representative for

� �
, except that )8F E-) ceases to be orthonormal.) is defined only up to an arbitrary �
A � orthogonal mixing of its columns (redefinition of the

direction basis) ) F ) R �9��� . Even in a projective frame where ) itself is not orthonormal, this
mixing freedom remains orthogonal. In a Euclidean frame )8�	� V% " for some � A<� rotation matrix
V, so the effect of a Euclidean space transformation is ) F � R t

0 � ".)8�,) R � where R � � V � RV is
the conjugate rotation: Euclidean transformations of direction bases (i.e. on the left) are equivalent
to orthogonal re-mixings of them (i.e. on the right). This remains true in an arbitrary projective
frame, even though ) and the transformation no longer look Euclidean. This mixing freedom can
be used to choose a direction basis in which ) is orthonormal up to a diagonal rescaling: simply
take the SVD ) � D V � of ) and discard the mixing rotation V � . Equivalently, the eigenvectors
and square roots of eigenvalues of

�
can be used. Such orthogonal parametrizations of ) make

good numerical sense, and we will use them below.

Circular points: Given any two orthonormal direction vectors �5 0/ , the complex conjugate
vectors ��132 �4 � � �65879/:" satisfy �	1 � � � �1 � ' . Abstractly, these complex directions “lie on the
absolute conic”, and it is easy to check that any complex projective point which does so can be
decomposed into two orthogonal direction vectors, its real and imaginary parts. In the 2D case
there is only one such conjugate pair up to complex phase, and these circular points characterize
the Euclidean structure of the plane. However for numerical purposes, it is usually easier to avoid

2Abstractly, : can be viewed as a cone (degenerate quadric hypersurface) with no real points in complex projective
hyperplane space. But it is usually simpler just to think of it concretely as a symmetric matrix with certain properties.
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complex numbers by using the real and imaginary parts � and / rather than ��1 . The phase freedom
in �	1 corresponds to the �1A/� orthogonal mixing freedom of � and / .

Theoretically, the above parametrizations of Euclidean structure are equivalent. Which is prac-
tically best depends on the problem.

�
is easy to use, except that constrained optimization is

required to handle the rank � constraint ����� � � ' . Direction bases ) eliminate this constraint at
the cost of numerical code to handle their �
A � orthogonal gauge freedom. The absolute conic

� �
has neither constraint nor gauge freedom, but has significantly more complicated image projection
properties and can only be defined once the plane at infinity +74 is known and a projective coor-
dinate system on it has been chosen (e.g. by induction from one of the images). It is also possible
to parametrize Euclidean structure by non-orthogonal Choleski-like decompositions

� ����� �
(i.e. the L part of the LQ decomposition of ) ), but this introduces singularities at maximally non-
Euclidean frames unless pivoting is also used.

Image Projections: Since the columns of a 3D direction basis matrix ) are bona fide 3D
direction vectors, its image projection is simply P ) , where P is the usual � A	� point projection
matrix. Hence, the projection of

� �'),)G� is the �JA � symmetric positive definite contravari-
ant image matrix � � P

�
P � . Abstractly, this is the image line quadric dual to the image of

the absolute conic. Concretely, given any two image lines l �$ l � , � encodes the 3D dot product
between their 3D visual planes + �5� l � P: +
� � + �� � l � P

�
P � l �� � l � � l �� . With the traditional

Euclidean decomposition K R � I 
�� t " of P into an upper triangular internal calibration matrix
K, a �CA � camera orientation (rotation) R and an optical centre t, � becomes simply K K � .
Since

�
is invariant under Euclidean motions, � is invariant under camera displacements so long

as K remains constant. K can be recovered from � by Choleski decomposition, and similarly the
Euclidean scene structure (in the form of a ‘rectifying’ projective transformation) can be recovered
from

�
. The upper triangular inverse calibration matrix C � K � � converts homogeneous pixel

coordinates to optical ray directions in the Euclidean camera frame. � � � � C � C is the image of
the absolute conic.

Autocalibration: Given several images taken with projection matrices P � � K � R ��� I 

� t � " , and
(in the same Euclidean frame) a orthogonal direction basis ) ��� V

0 " , we find that

C � P � ) � R �� (1)

where C � � K � �� and R �� � R � V is a rotation matrix depending on the camera pose. This is
perhaps the most basic form of the autocalibration constraint. It says that the calibrated images
(i.e. 3D directions in the camera frame) of an orthogonal direction basis must remain orthogonal.
It remains true in arbitrary projective 3D and image frames, as the projective deformations of )
vs. P � and P � vs. C � cancel each other out. However, it is not usually possible to choose the scale
factors of projectively reconstructed projections a priori, in a manner consistent with those of their
unknown Euclidean parents. So in practice this constraint can only be applied up to an unknown
scale factor for each image: C � P � ) � R �� . As always, the direction basis ) is defined only up to
an arbitrary ��A � orthogonal mixing ) F ) R.

2.1 Autocalibration for Non-Planar Scenes

The simplest approaches to autocalibration for non-planar scenes are based on the consistency
equation (1), an intermediate projective reconstruction P � , and some sort of knowledge about the C �
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(e.g. classically that they are all the same: C � � C for some unknown C). Nonlinear optimization or
algebraic elimination are used to estimate the Euclidean structure

�
or ) , and the free parameters

of the C � . Multiplying (1) either on the left or on the right by its transpose to eliminate the unknown
rotation, and optionally moving the C’s to the right hand side, gives several equivalent symmetric
��A � constraints linking

�
or ) to � � , K � or C �) � P �� � � �� P � ) � I � ��� (2)

C � P � � P �� C �� � I � ��� (3)

P � � P �� � � ��� K � K �� (4)

In each case there are 5 independent constraints per image on the 8 non-Euclidean d.o.f. of the
3D projective structure3 and the 5 (or fewer) d.o.f. of the internal calibration. For example, three
images in general position suffice for classical constant-C autocalibration. In each case, the un-
known scale factors can be eliminated by treating the symmetric � A � left and right hand side
matrices as ��� � 
 � � � component vectors, and either (i) projecting (say) the left hand sides or-
thogonally to the right hand ones (hence deleting the proportional components and focusing on the
constraint-violating non-proportional ones), or (ii) cross-multiplying in the usual way:

� � � I � � � � ��� � � I � ��� � ��'� � � � � � � I � � � � � � � � � where � � �; I �; �� � " 2 C � P � ) (5)

� C � P � � P �� C �� "
	�	 ��� C � P � � P �� C �� "
���
� C � P � � P �� C �� " 	�� ��' where ����� � ������� � (6)

� P � � P �� "�	�� � � "����H� � � " 	�� � P � � P �� " ��� where �����  �� ��! � �"����� � (7)

Several recent autocalibration methods for 3D scenes (e.g. [22, 9]) are based implicitly on these
constraints, parametrized by K or � and by something equivalent4 to

�
or ) . All of these methods

seem to work well provided the intrinsic degeneracies of the autocalibration problem [18] are
avoided.

In contrast, methods based on the Kruppa equations [14, 3, 26] can not be recommended for
general use, because they add a serious additional singularity to the already-restrictive ones in-
trinsic to the problem. If any 3D point projects to the same pixel and is viewed from the same
distance in each image, a ‘zoom’ parameter can not be recovered from the Kruppa equations. In
particular, for a camera moving around an origin and fixating it at the image centre, the focal length
can not be recovered5. Sturm [19] gives a geometric argument for this, but it is also easy to see
algebraically. Let x be the fixed image point, F the fundamental matrix between images 1 and 2, e

3These can be counted as follows: 15 for a 3D projective transformation modulo 7 for a scaled Euclidean one; or
12 for a # � 
%$ matrix modulo 1 scale and 3 d.o.f. for a 
 ��
 orthogonal mixing; or #'&)(�* 
�+-,
. d.o.f. for a # �/#
symmetric quadric matrix : modulo 1 scale and 1 d.o.f. for the rank 3 constraint 021�3�:4+5. ; or 3 d.o.f. for 687 and 5
for the 
9&�#�* 
%+5: components of :<; modulo 1 scale.

4If the first camera projection is taken to be = I > 0 ? [5, 9], $ can be chosen to have the form @ IA p BDC K where

6 7FE = p BHG ,�? , whence : EI@KJ A J pA p B J p B J p C and @ C 0
p BML C is a Euclideanizing projectivity.

5For most other autocalibration methods, this case is ambiguous only if the fixed point is at infinity (rotation about
a fixed axis + arbitrary translation).
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the epipole of image 2 in image 1, and � the constant dual absolute image quadric. Choosing ap-
propriate scale factors for e and F, the Kruppa constraint can be written as F � F � �	� e � � � � e � � � .
Since x is fixed, x � F x � ' and by the projective depth recovery relations [20] F x ���
� e � � x
where � is the relative projective depth (projective scale factor) of x in the two images. Hence
F � � ��� x x � " F � � � e � � � � ����� x x � " � e � � � . With these normalizations of e and F, � � � iff
the Euclidean depth of x is the same in each image. If this is the case for all of the images we
see that if � is a solution of the Kruppa equations, so is � ��� x x � for any � . This means that
the calibration can only be recovered up to a zoom centred on x. Numerical experience suggests
that Kruppa-based autocalibration remains ill-conditioned even quite far from this singularity. This
is hardly surprising given that in any case the distinction between zooms and closes depends on
fairly subtle � ��� -order perspective effects, so that the recovery of focal lengths is never simple.
(Conversely, the effects of an inaccurate zoom-close calibration on image measurements or local
object-centred 3D ones are relatively minor).

2.2 Autocalibration from Planar Scenes

Now consider autocalibration from planar scenes. Everything above remains valid, except that
no intermediate 3D projective reconstruction is available from which to bootstrap the process.
However we will see that by using the inter-image homographies, autocalibration is still possible.

The Euclidean structure of the scene plane is given by any one of (i) a �JA	� rank 2 absolute
line quadric Q; (ii) a 3 component line at infinity l � and its associated � AH� absolute (direction)
conic matrix; (iii) a � A@� direction basis matrix U � � x y " ; (iv) two complex conjugate circular
points x 1 � �4 � � x 5 7 y " which are also the two roots of the absolute conic on l � and the factors
of the absolute line quadric Q � x x � � y y � � x � x � 	 � x 	 x �� . In each case the structure is
the natural restriction of the corresponding 3D one, re-expressed in the planar coordinate system.
In each case it projects isomorphically into each image, either by the usual � A � 3D projection
matrix (using 3D coordinates), or by the corresponding � A � world-plane to image homography H
(using scene plane coordinates). Hence, each image inherits a pair of circular points H � x 1 and the
corresponding direction basis H � � x y " , line at infinity l � H � �� and �?A � rank 2 absolute line quadric
H � Q H �� . As the columns of the planar U matrix represent bona fide 3D direction vectors (albeit
expressed in the planar coordinate system), their images still satisfy the autocalibration constraints
(1):

C � H � U � R � � � (8)

where R � � � contains the first two columns of a �JA � rotation matrix. Multiplying on the left by
the transpose to eliminate the unknown rotation coefficients gives (c.f. (2)):

U � H �� � � �� H � U � I � � � (9)

Splitting this into components gives the form of the constraints used by our planar autocalibration
algorithm:

�
u � � � � � v � � �  � u � � v � � ' where � u �; v � " 2 C � H �.� x  y " (10)

These constraints say that any two orthonormal direction vectors in the world plane project under
the calibrated world-plane to image homography C � H � to two orthonormal vectors in the camera
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frame. Equivalently, the (calibrated) images of the circular points x 1C� �4 � � x 5 7 y " lie on the image
of the (calibrated) absolute conic:

� H � x 1 " � � � � � H � x 1 " � � u � 1 � � �M' where u ��1 2 C � H � x 1 (11)

All of the above constraints are valid in arbitrary projective image and world-plane frames, except
that � x  y " are no longer orthonormal. As always, � x  y " are defined only up to a ��A,� orthogonal
mixing, and we can use this gauge freedom to require that x � y ��' .

Our planar autocalibration method is based on direct numerical minimization of the residual
error in the constraints (10) from several images, over the unknown direction basis � x  y " and any
combination of the five intrinsic calibration parameters � , � , � , � % and � % . The input data is the set
of world plane to image homographies H � for the images, expressed with respect to an arbitrary
projective frame for the world plane. In particular, if the plane is coordinatized by its projection
into some key image (say image 1), the inter-image homographies H � � can be used as input.

Four independent parameters are required to specify the Euclidean structure of a projective
plane: the 6 components of � x  y " modulo scale and the single d.o.f. of a � A � rotation; or the
� � � 
 �<� � components of a ��A � absolute line quadric Q modulo scale and the rank 2 constraint
��� � Q ��' ; or the 2 d.o.f. of the plane’s line at infinity, plus the 2 d.o.f. of two circular points on it.
Since equations (9), (10) or (11) give two independent constraints for each image, � ������ � images
are required to estimate the Euclidean structure of the plane and 
 intrinsic calibration parameters.
Two images suffice to recover the structure if the calibration is known, three are required if the
focal length is also estimated, four for the perspective �  �� %  �� % model, and five if all 5 intrinsic
parameters are unknown.

2.3 Camera Parametrization

We have not yet made the camera parametrization explicit, beyond saying that it is given by the
upper triangular matrices K or C � K � � . For autocalibration methods which fix some parameters
while varying others, it makes a difference which parametrization is used. I prefer the following
form motivated by a zoom lens followed by an affine image-plane coordinatization:

K �
�� � ��� � %
' ��� � %
' ' �

	

C � K � � � ����

�� � ��� �
� % ����� %
' � ��� %
' ' ���

	


Here, if standard pixel coordinates are used, � ����� is the focal length in � -pixels, �&� � ����� � skew

is the dimensionless geometric skew, �1�����$
 ���
��� �"! � skew " is the dimensionless �$#%� aspect ratio,
and ��� %  �� % " are the pixel coordinates of the principal point. However pixel coordinates are not
used in the optimization routine below. Instead, a nominal calibration is used to standardize the
parameters to nominal values � �&�,� � , � �'� % �&� % �8' , and all subsequent fitting is done
using the above model with respect to these values.

3 Algebraic vs. Statistical Error

Many vision problems reduce to minimizing the residual violation of some vector of nonlinear
constraints ( � �5 �) "+* � over parameters ) , given fixed noisy measurements � with known covari-
ance ,.- . Often, heuristic error metrics such as the algebraic error

� ( � �5 �) " � � are taken as the
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target for minimization. However, such approaches are statistically sub-optimal and if used uncrit-
ically can lead to (i) very significant bias in the results and (ii) severe constriction of the domain of
convergence of the optimization method. Appropriate balancing or preconditioning (numerical
scaling of the variables and constraints, e.g. as advocated in [7, 8] or any numerical optimization
text) is the first step towards eliminating such problems, but it is not the whole story. In any case it
begs the question of what is “balanced”. It is not always appropriate to scale all variables to �J���#" .
In fact, in the context of parameter estimation, “balanced” simply means “close to the underlying
statistical error measure”6

� �� * ( � , � �� ( where , � * � �� - ,.-�� �� - � is the covariance of (
Ideally one would like to optimize the statistical cost (i.e. log likelihood). Unfortunately, this
is often rather complicated owing to the matrix products and (pseudo-)inverse, and simplifying
assumptions are often in order. I feel that this pragmatic approach is the only acceptable way
to introduce algebraic error measures — as explicit, controlled approximations to the underlying
statistical metric. Given that the extra computation required for a suitable approximation is usually
minimal, while the results can be substantially more accurate, it makes little sense to iteratively
minimize an algebraic error without such a validation step.

One very useful simplification is to ignore the dependence of , � �� on ) in cost function deriva-
tives. This gives self-consistent or iterative re-weighting schemes (e.g. [12]), where , � is treated
as a constant within each optimization step, but updated at the end of it. One can show that the
missing terms effectively displace the cost derivative evaluation point from the measured � to a first
order estimate of the true underlying value � % [21]. For the most part this makes little difference
unless the constraints are strongly curved on the scale of , - .

For our autocalibration method, the statistical error splits into independent terms for each im-
age7. For want of a more specific error model, we assume that the components of the data � (here,
the H � in nominally calibrated coordinates) are i.i.d.: ���	� H 	� � H ��


 *�� � � 	 � �
� � where � is a

noise level8. From here it is straightforward to find and invert the constraint covariance. For the
planar autocalibration constraint (10), and assuming that we have enforced the gauge constraint
x � y �2' , the constraint covariance is

�
�6�
�

x
�

a
�� � y

�
b
�� � x � � y

� " a � � b �
� x � � y

� " a � � b � x
�

b
�� � y

�
a
�� � where � a �; b � " 2 C �� � u �  v � "C� � � �� H �.� x  y "

In this case, numerical experience indicates that the off-diagonal term is seldom more than a few
percent of the diagonal ones, which themselves are approximately equal for each image, but differ

6 � is a random variable through its dependence on � . Assuming that the uncertainty is small enough to allow
linearization and that � is centred on some underlying ��� satisfying � =���� G�� � ? +�. for some parameter value � � ,� =�� G�� � ? has mean � and the above covariance. It follows that � B�� � �� � is approximately a ���rank � ��� variable near � � ,
which can be minimized to find a maximum likelihood estimate of � .

7We (perhaps unwisely) ignore the fact that the H � are correlated through their mutual dependence on the base
image. The base image is treated just like any other in the sum.

8This model is undoubtedly over-simplistic. Balancing should make their variances similar, but in reality the
components are most unlikely to be independent. We should at very least subtract a diagonal term H  ! H "# *%$ H  ! $&� ,
as variations proportional to H make no projective difference. However this makes no difference here, as when
contracted with ' � ’s it just gives back � =�� � ? ’s which vanish. This had to happen: correctly weighted error terms
must be insensitive to projective scale factors, and hence have total homogeneity 0 in their projective-homogeneous
variables.
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by as much as a factor of 2–3 between images9. Hence, we drop the off-diagonal term to give an
autocalibration method based on self-consistent optimization of the diagonal cost function

�� �����
� � � u � � � � � v � � � " � 
��

x
� �

C �� u � � � � y
� �

C �� v � � � � � u � � v � " �
x
� �

C �� v � � � � y
� �

C �� u � � � � where � u �; v � "�2 C � H � � x  y "
(12)

In our synthetic experiments, this statistically motivated cost function uniformly reduced the ground-
truth standard deviation of the final estimates by about 10% as compared to the best carefully
normalized algebraic error measures. This is a modest but useful improvement, obtained without
any measurable increase in run time. The improvement would have been much larger if the error
model had been less uniform in the standardized coordinates. Perhaps most importantly, the statis-
tical cost is almost completely immune to mis-scaling of the variables, which is certainly not true
of the algebraic ones which deteriorated very rapidly for mis-scaling factors greater than about 3.

4 Planar Autocalibration Algorithm

Numerical Method: Our planar autocalibration algorithm is based on direct numerical minimiza-
tion of the � -image cost function (12), with respect to the direction basis � x  y � and any subset
of the 5 internal calibration parameters focal length � , aspect ratio � , skew � , and principal point
��� %  �� % " . There are 4 d.o.f. in � x  y � — 6 components defined up to an overall mutual rescaling and
a � AC� orthogonal mixing — so the optimization is over 5–9 parameters in all. Numerically, the 6
component � x  y " vector is locally projected onto the subspace orthogonal to its current scaling and
mixing d.o.f. by Householder reduction (i.e. effectively a mini QR decomposition). As mentioned
in section 2, the mixing freedom allows us to enforce the gauge condition x � y � ' . Although
not essential, this costs very little (one Jacobi rotation) and we do it at each iteration as an aid to
numerical stability.

A fairly conventional nonlinear least squares optimization method is used: Gauss-Newton iter-
ation based on Choleski decomposition of the normal equations. As always, forming the normal
equations gives a fast, relatively simple method but effectively squares the condition number of the
constraint Jacobian. This is not a problem so long as intermediate results are stored at sufficiently
high precision: double precision has proved more than adequate for this application.

As with any numerical method, care is needed to ensure stability should the numerical condi-
tioning become poor. Our parametrization of the problem guarantees that all variables are of �J���9"
and fairly well decoupled, so preconditioning is not necessary. The Choleski routine uses diagonal
pivoting and Gill & Murray’s [4] minimum-diagonal-value regularization to provide local stability.
The regularizer is also manipulated in much the same way as a Levenberg-Marquardt parameter
to ensure that each step actually reduces the cost function. We also limit the maximum step size
for each variable, relatively for the positive, multiplicative parameters � and � and absolutely for
the others. Both the regularizer and the step size limits are activated fairly often in practice, the
regularizer at any time, and the step limit usually only during the first 1–2 iterations. The method

9This was to be expected, since we chose everything to be well-scaled except that the H normalizations may differ
somewhat from their ‘correct’ Euclidean ones, and our noise model is uniform in an approximately calibrated frame.
If any of these conditions were violated the differences would be much greater.
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terminates when the step size converges to zero, with additional heuristics to detect thrashing.
Convergence within 5–10 iterations is typical.

Prior over Calibrations: We also allow for a simple user-defined prior distribution on the
calibration parameters. Even if there is no very strong prior knowledge, it is often advisable to
include a weak prior in statistical estimation problems as a form of regularization. If there are
unobservable parameter combinations (i.e. that make little or no difference to the fit), optimal,
unbiased estimates of these are almost always extremely sensitive to noise. Adding a weak prior
makes little difference to strong estimates, but significantly reduces the variability of weak ones
by biasing them towards reasonable default values. A desire to “keep the results unbiased” is
understandable, but limiting the impact of large fluctuations on the rest of the system may be more
important in practice.

Default priors are also useful to ensure that parameters retain physically meaningful values. For
example, we use heuristic priors of the form ����
�� % ��� % 
�� " � for � and � , to ensure that they stay
within their physically meaningful range � '  �� " . This is particularly important for autocalibration
problems, where degenerate motions occur frequently. In such cases the calibration can not be
recovered uniquely. Instead there is a one or more parameter family of possible solutions, usually
including physically unrealizable ones. A numerical method (if it converges at all) will converge to
an arbitrary one of these solutions, and for sanity it pays to ensure that this is a physically feasible
one not too far from the plausible range of values. A weak default prior is an effective means of
achieving this, and seems no more unprincipled than any other method. This is not to say that such
degeneracies should be left unflagged, but simply that whatever cleaning up needs to be done will
be easier if it starts from reasonable default values.

Initialization: The domain of convergence of the numerical optimization is reasonably large
and for many applications it will probably be sufficient to initialize it from fixed default values. The
most critical parameters are the focal length � and the number and angular spread of the views.
For example, if � can only be guessed within a factor of 2 and all 5 parameters �  ��  �  �� %  �� %
are left free, about 9–10 images spread by more than about 10

�
seem to be required for reliable

convergence to the true solution. Indeed, with 5 free parameters and the theoretical minimum of
only 5–6 images, even an exact initialization is not always sufficient to eliminate false solutions
(i.e. with slightly smaller residuals than the true one).

These figures assume that the direction basis x  y is completely unknown. Information about
this is potentially very valuable and should be used if available. Knowledge of the world-plane’s
horizon (line at infinity) removes 2 d.o.f. from x  y and hence reduces the number of images re-
quired by one, and knowledge of its Euclidean structure (but not the positions of points on it)
eliminates another image. Even if not directly visible, horizons can be recovered from known 3D
parallelism or texture gradients, or bounded by the fact that visible points on the plane must lie
inside them. We will not consider these types of constraints further here.

If a default initialization is insufficient to guarantee convergence, several strategies are possible.
One quite effective technique is simply to use a preliminary optimization over x  y or x  y  �� to
initialize a full one over all parameters. More generally, some sort of initialization search over� , x and y is required. Perhaps the easiest way to approach this is to fix nominal values for all
the calibration parameters except � , and to recover estimates for x  y as a function of � from a
single pair of images as � varies. These values can then be substituted into the autocalibration
constraints for the other images, and the overall most consistent set of values chosen to initialize
the optimization routine. The estimation of x � � "  y � � " reduces to the classical photogrammetric
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problem of the relative orientation of two calibrated cameras from a planar scene, as the Euclidean
structure is easily recovered once the camera poses are known. In theory this problem could be
solved in closed form (the most difficult step being a � A � eigendecomposition) and optimized
over � analytically. But in practice this would be rather messy and I have preferred to implement
a coarse numerical search over � . The search uses a new SVD-based planar relative orientation
method (see appendix 1) related to Wunderlich’s eigendecomposition approach [25]. The camera
pose and planar structure are recovered directly from the SVD of the inter-image homography.
As always with planar relative orientation, there is a two-fold ambiguity in the solution, so both
solutions are tested. In the implemented routine, the solutions for each image against the first one,
and for each � in a geometric progression, are substituted into the constraints from all the other
images, and the most consistent overall values are chosen.

If the full 5 parameter camera model is to be fitted, Hartley’s ‘rotating camera’ method [6]
can also be used for initialization. It works well provided (i) the camera translations are smaller
than or comparable to the distance to the plane; (ii) no point on the plane is nearly fixated from a
constant distance. (For such a point x, ��� � xx � is an approximate solution of Hartley’s equation
H � H � ��� for any � , i.e. � can not be estimated uniquely, even for small translations).

5 Experiments

Synthetic data: The method has been implemented in C and tested on both real and synthetic
images. For the synthetic experiments, the camera roughly fixates a point on the plane from a
constant distance, from randomly generated orientations varying by (by default) 5 � ' � in each of
the three axes. The camera calibration varies randomly about a nominal focal length of 1024 pixels
and unit aspect ratio, by 5 � ' �

in focal length � , 51�#' �
in aspect ratio � , 5<'�� ' � in dimensionless

skew � , and 5 � ' pixels in principal point � � %  � % " . (These values are standard deviations of log-
normal distributions for � , � and normal ones for � , � % , � % ). The scene plane contains by default
�)' visible points, projected into the �.�9��A � �9� images with a Gaussian noise of 5�� pixel. Before
the homographies are estimated and the method is run, the pixel coordinates are centred and scaled
to a nominal focal length of � : ���  �� "�F ��� ��� � �  �� ��� � � "0
 �#' ��� . The output is classed as a
‘success’ or ‘failure’ according to fixed thresholds on the size of its deviation from the true value.
Only successes count towards the accuracy estimates. The usual mode of failure is convergence to
a false solution with extremely short focal length (say ��� ' pixels). However when the angular
spread of the views is small or there are only a few images, random fluctuations sometimes take
a “correct” but highly variable solution outside the (generously set) thresholds. Conversely, there
is occasionally convergence to a false solution within the threshold. Thus, when the failure rate is
high, neither it nor the corresponding error measure (nor, for that matter, the results!) are accurate.
The optimization typically converges within 5–10 iterations, although more may be needed for
degenerate problems. The run time is negligible: on a Pentium 133, about 0.5 milliseconds per
image if the default initialization is used, or 2.0 with a fairly fine initialization search over � .

Figure 1 gives some illustrative accuracy and reliability results, concentrating on the estimation
of focal length � . First consider the plots where all 5 calibration parameters are estimated. The
error scales roughly linearly with noise and inversely with the angular spread of the views. It drops
rapidly as the first few images are added, but levels off after about 10 images. The failure rate
increases rapidly for more than about 2–3 pixels noise, and is also unacceptably high for near-
minimal numbers of images (within 1–2 of the minimum) and small angular spreads (less than
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Figure 1: Error in estimated focal length � and failure rate vs. image noise, number of images and angular
spread of cameras. Each value is the average of 1000 trials. The aspect ratio � , skew � , and principal point��� %��	� %�
 are either fixed at their nominal values, or allowed to vary freely, as indicated. The method is
initialized from the nominal calibration, except that in the failure vs. images plot we also show the results
for initialization by numerical search over � , and by a preliminary fit over � alone (‘2-phase’).

about 10
�
). however, it decreases rapidly as each of these variables is increased. It seems to be

difficult to get much below about 1% failure rate with the current setup. Some of these failures
are probably the result of degeneracies in the randomly generated problems, but most of them are
caused by convergence to a false solution with implausible parameters, either very small � (less
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Figure 2: Several images from our calibration sequence.

than about 50) or � far from 1. The initialization method has little impact on the reliability. In fact,
in these experiments the default initialization proved more reliable than either numerical search
over � , or an initial optimization over � alone. The reason is simply that we do not assume prior
knowledge of any of the calibration parameters. An initialization search over � must fix �  �  �� %  �� %
at their inaccurate nominal values, and this is sometimes enough to make it miss the true solution
entirely. This also explains the poor performance of the methods which hold �  �  �� %  �� % fixed and
estimate � alone. As the graphs of error vs. noise and number of images show, errors in �  �  �� %  �� %
lead to a significant bias in � , but most of this can be eliminated by estimating � as well as � .
The initialization search over � also becomes much more reliable (e.g. 0.05% failure rate for 10
images, 30

�
spread and 1 pixel noise) if � and � are accurate to within a few percent. Here and

elsewhere, it is only worthwhile to fix parameters if they are reliably known to an accuracy better
than their measured variabilities, e.g. here for 1 pixel noise and 10 images, to about '�� ' ' � for �  �
or � ' pixels for � %  �� % .

For conventional calibration, � is often said the most difficult parameter to estimate, and also
the least likely to be known a priori. In contrast, � and � are said to be estimated quite accurately,
while � % and � % — although variable — are felt to have little effect on the overall results. A
more critical, quantitative view is to compare the relative accuracy 
 � � 
"� 
 to the dimensionless
quantities 
 � � 
 , 
 � � 
 , 
 � � % 
 � 
 and 
 � � % 
"� 
 . Errors in these contribute about equally to the overall
geometric accuracy (e.g. reconstruction errors of 3D visual ray directions). Conversely, other
things being equal, geometric constraints such as the autocalibration ones typically constrain each
of these quantities to about the same extent. Hence a good rule of thumb is that for autocalibration
(and many other types of calibration) 
 � � % 
 � 
 and 
 � � % 
 � 
 are of the same order of magnitude
as 
 � � 
"� 
 , while 
 � � 
 and 
 � ��
 are usually somewhat smaller if there is cyclotorsion or other
aspect ratio constraints, but larger if there are none (e.g. if the rotation axis direction is almost
constant). These rules are well borne out in all the experiments reported here: we always find

 � � % 
 * 
 � � % 
 * 
 � � 
 , while 
 � � 
 and 
 � ��
 are respectively about one fifth, one half, and
one tenth of 
 � � 
 � 
 for the synthetic experiments, the real experiments below, and the Faugeras-
Toscani calibration used in the real experiments.

Real data: We have run the method on several non-overlapping segments of a sequence of
about 40 real images of a calibration grid (see fig. 2). Only the 49 (at most) points on the base
plane of the grid are used. (It would be straightforward to extend the algorithm to handle several
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planes, but there seems little point as a non-planar autocalibration method could be used in this
case). The motion was intended to be general within the limits of the 5 d.o.f. robot used to
produce it, but is fairly uniform within each subsequence. Visibility considerations limited the total
angular displacement to about �)' � , and significantly less within each subsequence. The sample
means and standard deviations over a few non-overlapping subsequences for (i) � alone, and (ii) all
� parameters, are as follows (the errors are observed sample scatters, not estimates of absolute
accuracy):

� only � � � � % � %
calibration - � � � � 5 � '������ ��� 5 '�� ' ' ')� - ��� � 5 � � � � 5 �
6 images � � � � 5 � � � ��� � 5 � � '������ � � 5 ' � ' ' � � '�� ' ' ' 5 '�� ' ' � � ��� 52�#' ��� � 5 � �
8 images � � ��� 5 � � � � � � 5 �)� '���� � � ' 5 ' � ' ' � � � '�� ' ' � 5 '�� ' ' � � � � 5 � �)� ' 5 � �
10 images � � �9� 5���� � � � � 5 � � � � ' � �	� 5 '�� ' � � � � '�� ' ' � 5 '�� ' ' � ��� � 5 � � � � 5 ���

The ‘calibrated’ values are the averaged results of several single-image Faugeras-Toscani calibra-
tions using all visible points on the grid. Looking at the table, the results of the autocalibration
method seem usable but not quite as good as I would have expected on the basis of the synthetic
experiments. This may just be the effect of the small angular range within each subsequence,
but the estimates of � seem suspiciously high and it may be that some small systematic error has
occurred during the processing. Further work is required to check this. Note that in this case,
fixing �  �  �� %  � % appears to have the desired effect of decreasing the variability of the estimated �
without perturbing its value very much.

6 Summary

In summary, we have shown how autocalibration problems can be approached using a projective
representation of orthogonal 3D direction frames, and used this to derive a practical numerical
algorithm for the autocalibration of a moving projective camera viewing a planar scene. The
method is based on the ‘rectification’ of inter-image homographies. It requires a minimum of 3
images if only the focal length is estimated, or 5 for all five internal parameters. Adding further
images significantly increases both the reliability and the accuracy, up to a total of about 9–10. An
angular spread between the cameras of at least 10–20

�
is recommended.

The priorities for future work are the initialization problem and the detection of false solutions
(or possibly the production of multiple ones). Although the current numerical method is stable
even for degenerate motions (and hence gives a possible solution), it does not attempt to detect
and flag the degeneracy. This could be done, e.g. by extracting the null space of the estimated
covariance matrix. It would also be useful to have autocalibration methods that could estimate lens
distortion. This should be relatively simple in the planar case, as distortion can be handled during
homography estimation.

Appendix 1: Relative Orientation from Planar Scenes

This appendix describes a simple method for the relative orientation of two calibrated cameras
from an unknown but planar scene (e.g. 4 or more coplanar 3D points), used to initialize our planar

15



autocalibration method by a numerical search over focal length � with the remaining calibration
parameters fixed at their nominal values. The procedure is similar to Wunderlich’s method [25],
but is based on Singular Value Decomposition (SVD) of the inter-image homography H rather than
eigen-decomposition of H � H. This makes it more direct and a little stabler. As with any plane
based method, even if ‘twisted pair’ solutions are eliminated, there are always two possible solu-
tions for the orientation and 3D structure. Both are visible, internally self-consistent and have small
epipolar residual, although extra information such as the horizon line may help to disambiguate
them.

We use homogeneous, calibrated, lens-distortion-corrected image coordinates, so H � K � �� H � K �
where H � is uncalibrated homography and K � are the two camera calibration matrices. The sign of
H should be chosen so that x � � Hx ��� ' for corresponding image points x �  x � . Let H � ) SV �
be the SVD of H, where ) and V are � A � rotation matrices and S � diag � � �$ � �  ��2�(" is positive
decreasing diagonal � � � � � � ��� � ' . Denote the associated columns of ) and V by u �  u �  u �
and v �  v �  v � .

In the coordinate frame of the first camera, let the 3D plane be n � x � � 
�� , where n is the
outward (away from camera) normal. �/� � 
���� ' is the inverse distance to the plane. In this
frame the first camera has � A � projection matrix P �
� � I � ��� 
 0 " . Let the matrix of the second
camera be P � � R � I � ��� 
 � t " where t is the inter-camera translation (i.e. the second camera’s
optical centre) and R the inter-camera rotation. Then the homography from image 1 to image 2
is H � RH � where H � � I � ��� ��� t n � . (For a 3D point x on the plane Hx � R � x ��� t n � x "��
R � x � t " � P � x, since � n � x � � there. Treating x as a point in image 1 changes only the overall
scale factor). Only the product � t n � is recoverable, so we normalize to

�
t
� � � n � � � (i.e. the

plane distance � 
�� is measured in units of the baseline
�
t
�
) and use visibility tests to work out the

allowable signs.
The SVD’s of H � ) SV and H � � ) � SV are identical up to a factor of R: ) � R ) � .

H � leaves the cross-product vector t � n invariant. If the singular values are distinct, t � n must
correspond to a singular vector. It turns out to be the middle one v � , so the ‘correct’ normalization
for H is H # � H 
"� � , S # � S 
"� � . Replace � ���$ �� �  ���$" by � � �0
"� �  !�  ��� 
 � � " .

Given that t � n corresponds to v � in the image 1 frame, the � t  n � subspace must be spanned
by � v �$ v � � , say n � � v � � � v � , n � � t � n " � � v � �	� v � for some � � �	� � � � . Any
direction orthogonal to n — in particular n �H� t � n " — has norm unchanged by H or H � , whence
� � � �*" � � �
� �2�(" � � � � ��� � or � �7 ��:" �=� 5 � � � � ��  5 � � � � � �9" . Had we taken t � n to correspond
to v � or v � above, there would have been no real solution here, so v � is the only possibility.

Exactly the same argument on the left shows that R t � �L�
� u � ��� u � " . As t is an eigenvector of
H � with eigenvalue � ��� n � t, we have H t � ��� ��� n � t " R t, whence t � H � � � R t " �
� 
"� � v � � � 
"��� v �
and (after simplification) ��� ��� � ��� . The left singular vectors of H � (columns u � �  u � �  u � � of ) � )
can be recovered by noting that u � � � v � and requiring that t be an eigenvector of H � , whence
u � � ��� v � � �

v �# u � � � �
v � ��� v � with (simplifying) ���B � " �=���7� ��� ���! 5 ��� " and hence

R �+),) � � � ) ��
� ' �
' � '
� � ' �

	

V �

In summary, the following OCTAVE/MATLAB routine generates the two possible orientation so-
lutions given homography H (unitize() scales two variables so that their sum of squares is
1):
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function [R1,t1,n1, R2,t2,n2, zeta] = homog_to_Rt(H)
[U,S,V] = svd(H);
s1 = S(1,1)/S(2,2);
s3 = S(3,3)/S(2,2);
zeta = s1-s3;
a1 = sqrt(1-s3ˆ2);
b1 = sqrt(s1ˆ2-1);
[a,b] = unitize(a1,b1);
[c,d] = unitize( 1+s1*s3, a1*b1 );
[e,f] = unitize( -b/s1, -a/s3 );
v1 = V(:,1); v3 = V(:,3);
n1 = b*v1-a*v3;
n2 = b*v1+a*v3;
R1 = U*[c,0,d; 0,1,0; -d,0,c]*V’;
R2 = U*[c,0,-d; 0,1,0; d,0,c]*V’;
t1 = e*v1+f*v3;
t2 = e*v1-f*v3;
if (n1(3)<0) t1 = -t1; n1 = -n1; end;
if (n2(3)<0) t2 = -t2; n2 = -n2; end;

end;

Although the above derivation uses t � n and friends, provided that '�� � � � � � ����� �

(i.e. the plane is not too far away compared to the baseline t, and the cameras stay on one side
of it), the given routine is stable even if t is: (i) parallel to n (t � n F 0, � ��� � � � ��� ��� ,
� �6 � " �M���  (' " , t � n � v � , and v � and v � can not be clearly separated); (ii) anti-parallel to n
(similar, with ��� � � � �&����� � ); or (iii) orthogonal to n ( ��� � � � � ����� � , � �6 � " � �D'  �9" ,
n � v � , Rt � u � , but v �  v � and u �  u � can not be separated). For a distant plane ��F ' , S F I � ���
and � , � , n, and t become unreliable but R should still be accurate. Of course, if the points used to
estimate H are not well spread in the images, H and everything else can become inaccurate.

For our autocalibration purposes, we only need the two orthogonal directions v � �=� t � n " and� v � 5 � v � � n �@� t � n " , so the routine is even simpler.

Appendix 2: Homography Factorization

Our planar autocalibration approach is based on scene plane to image homographies H � . In practice
we can not estimate these directly, only the inter-image homographies H � �
� H � H � �� induced by
them. In theory this is not a problem as the formalism is invariant to projective deformations of
the input frame, so we can choose scene plane coordinates derived from a key image (say image
1) and use the H � � in place of the H � (i.e. the unknown direction vectors x  y are parametrized by
their coordinates in the key image). This works reasonably well in practice, but there is a risk that
inaccurate measurements or poor conditioning in the key image will have an undue influence on the
overall numerical accuracy or stability of the method, since they potentially contribute coherently
to all the H’s. It would be useful to find a homography representation that does not single out a
specific key image, but instead averages the uncertainty over all of them. This can be achieved by
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a factorization method analogous to factorization-based projective structure and motion [20, 22]10.
This appendix describes the homography factorization algorithm. However note that it is not

used in the final planar autocalibration routine as it turns out to give slightly worse results in
practice. I am not sure why this happens. It may be that the scaling required for the homographies
induces less than ideal error averaging, or that the resulting frame is in some way less well adapted
to the calibration problem. In any case, it suggests that the use of a key image does not introduce
too much bias in the calibration. Despite this, I have included a description of the factorization
method here as I still think it is potentially useful for other applications.

Suppose we have estimated inter-image homographies H � � between each pair of � images of
a plane. In terms of some coordinate system on the plane which induces plane to image homogra-
phies H � we have � � � H � � * H � H � �� � noise, where the � � � are unknown scale factors. Write this as
a big � � � " A@� � � " rank 3 matrix equation�

���
� � �#� H �#� � � � H � � �#�#� � � � H � �
� � � H � � � � � H � � �#�#� � � � H � �

...
...

. . .
...

� � � H � � � � � H � � �#�#� � � � H � �

	
���


 *
�
���
� H �

H �
...

H �

	
���


 � H � �� H � �� �#�#� H � �� � � noise

As in the projective structure case, if we can recover a self-consistent set of scale factors � � � ,
the left hand side can be factorized to rank 3 using (e.g.) SVD or a fixed-rank power iteration
method: � � � ��� � �+) � � ����, � ��� � . Any such rank 3 factorization has the required noise-averaging
properties and represents some ‘numerically reasonable’ choice of projective coordinates on the
plane. For our purposes we need not insist that the � A � submatrices of ) are exactly the inverses
of those of , , although — given that H � �&� I — the inverse property is always approximately
satisfied up to scale.

A suitable set of scale factors � � � can be found very simply by choosing a key image 1 and
noting that up to scale H � � * H � � H � � . Resolving this approximate matrix proportionality by
projecting it along H � � , we find that the quantities

� � � 2 Trace �$� H � � H � � ":� H �� � �
Trace � H � �7� H �� � "

are an approximately self-consistent set of scale factors. As in the projective structure case, the
matrix of scale factors ��� � is only defined up to independent overall rescalings of each row and
each column. Numerically, it is highly advisable to balance the matrix so that all its elements are
of order �J���9" before applying it to the H � � ’s and factorizing. Our balancing algorithm proceeds
by alternate row and column normalizations as in the projective structure case [20], and converges
within 2-3 iterations.

It may seem that using a key image to find the scale factors is likely to spoil the noise aver-
aging properties of the factorization, but this is not so. Perturbations of the scales of H � � and H � �
introduce no inconsistency, while other perturbations of order � � �(" introduce errors only at � � � � "
in the projection of H � � H � � along H � � — and hence in the scale factors — as these matrices are
proportional up to noise. At normal noise levels � � �� , these errors are swamped by the � � �("
ones arising from the explicit H � � and H � � terms in the factorization, so each image has roughly the

10Analogous methods also exist for 3D homographies (projective structure alignment, rank=4) and, more interest-
ingly, for finding coherent sets of fundamental matrices or line projections (rank=6).
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same total influence on the result (provided the � � � have been balanced appropriately). The same
phenomenon is observed in the projective structure method: errors in the fundamental matrices
and epipoles used to estimate the scales have very little effect.
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