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Abstract systems demand just the level of calibration necessary for a
This paper investigates the homography which trans- task and perform self-calibration with minimum or without

forms a set of points in projective space when undergo- a-priori knowledge. In our case, self-calibration amounts
ing a rigid translation, termed rojective translation A to affine stereo calibration from unknown translations.
representation with seven parameters is proposed. They Translations are an important class of motions, because
represent explicitly the geometric entities constraining and they frequently occur in practice, they are easy to imple-
defining the translation. A practical algebraic method for ment, and they highly facilitate correlation based match-
extracting these parameters is developed. It allows for ing and tracking. We demonstrate that even the “uncali-
affine calibration of a stereo rig, for characterizing the mo- brated” representation allows to extract the intrinsic prop-
tion intrinsics, as well as for composing projective transla- erties of translation: the plane at infinity which ensures
tions. The practical effectiveness of calibration is evaluated parallel traces, the direction or axis, and covered parallel
on synthetic and real image data. distance.

1 Introduction Practical applications exploiting this knowledge are nu-
The recovery of structure and motion is one of the es- Merous and relevant. Firstly, the plane at infinity allows to
sential problems in machine vision. Difficulties increase UP9rade the rather poor projective representation of struc-
when uncalibrated cameras are considered, since in thisture to its affine representation. Secondly, the direction al-
case metric information is missing. Nevertheless, rigid- |OWS intér-/extrapolating and superposing translational mo-
ity of motions observed with an uncalibrated stereo cam- tions. Finally, the distance allows to do so uniformly or
era imposes strong constraints on the transforms describ 0 localize on the axis. Potential real-world applications
ing them. They allow for an augmented representation Worth noting in this especial context are V|§|on—based navi-
of structure and motion. More precisely, the homogra- ggtlon of autonomoys_robots, v_|sual servoing of robot ma-
phy which maps a sets of points reconstructed in projec- NiPulators, and a-priori or reactive task planning.
tive space from their initial to their final position is alge- Previous work on affine calibration of a stereo image
braically similar or “conjugate” to this displacement [11], Pair used constructive methods based on projective invari-
[2]. Representation of structure up to scaled-Euclidean is ants [10], [9] or the detection of three image points aris-
possible. ing from points lying in the plane at infinity. These points
The similarity class of projective translations is ana- can be either three vanishing points associated with trans-
lyzed and an intrinsic parameterization is introduced. In lational motions [4], [9] or three virtual points associated
practice, estimates of these matrices always deviate fromwith ground-plane motions [1]. The advantage of our
the theoretical form due to round-off errors, measurement method with respect to these methods is that it considers
noise, and outliers caused by mismatches. To overcomeany number of image points, possibly a large one, aris-
this, a computational method is proposed that decomposedngd from 3-D points lying in general position — they must
into the proposed form, that is numerically stable, that ro- not necessarily lie on the plane at infinity. Therefore our
bustly cumulates several inputs, and that has a number ofmethod does not rely on special points which are, some-
important practical applications. times, difficult to observe. The fact that a large number of
Replacing classical calibrated systems by their uncali- Points can be used (and not just three points) inforces the
brated successors is an important issue, since such systemdumerical stability of the solution.
exhibit higher efficiency, autonomy, and flexibility. These This work contributes to the field of uncalibrated vi-



sion by considering the projective representation of transla- In connection with the left intrinsic parametef§’, the
tional motion, by parameterizing it with the intrinsic vari- affine stereo geometig the transformA from right to left
ables, and by developing a stable and robust method foraffine camera frame4 to A’,

extracting these. Numerous applications are sketched and
the effectiveness and practicability of affine stereo calibra-
tion is experimentally evaluated on synthetic and real im-
age data.

1.1 Paper organization

Some fundamentals and scope are given in section 2. (5)
The 3. section rigorously characterizes the algebraic struc-
ture of a projective translation. The 4. section proposes is theinfinity homographyhat maps points at infinity from
a new parameterization and geometrically interprets it. In right to left.
section 5, a computational method for cumulative decom- ~ The corresponding projections into the left camera are
position is developed and applications are sketched. Sec- ©)

tion 6 experimentally evaluates affine stereo-calibration.
Theepipolar stereo geometiyg represented by the fun-
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wheree’ = K't is the left epipole and

H., =K RK!

P:=[K'R K't], Po=[H, €]

1.2 Notations

Matrices and vectors are typeset in boldface. Vectors damental matrixF’. From F' alone, a projection matrix is
are columns and row vectors are written by transposing calculated [5]
a column. Plain types in Roman designate coordinates,

Greek letters designate scale factors. Among 4-by-4 ma- ‘a”

Pp=[H 0] +¢€a’, ()

trices, homographies ¢f Euclidean,A affine, andP pro-
jective three-space are written @ A, and H. Points in
these spaces are represented by vecXoes [ X, Y, Z,1]7,
N =[U,V,W, 1", M = [U,V,W,T]T, and ideal points
by Xo = [X,Y,Z,0]T or N, = [U,V,W,0]". Image
points are in pixel coordinates = [u, v, 1]7. All coordi-
nates are thought as homogeneous.

2 Fundamentals

A camera of the pinhole model [3] projects scene points
X in the canonicaEuclidean camera framé& onto image
pixelsm = PX, P = [KO0], whereK holds parameters
of theintrinsic geometry

A canonicalaffine camera framed is defined byK,
such that point&V = [U, V, W, 1]T in A are projected triv-
ially by P; = [I 0]

m=P; N, N—Lfi‘j]x 1)
The inversion is calledffine-Euclidean upgrade
K'o

Theextrinsic stereo geometig given by the transforrl”
from right to left camera frame; to &’

3)

X' =TX, T= [R t}

o’ 1

wherea is a row vector of 4 arbitrary elements.
Depending on which matri¥P is used for triangula-
tion [6], the obtainedeconstructiongre respectivly in the
framesE, A, orP, and are called Euclidean, affine, or pro-
jective [4].
Theprojective-affine upgradiEom P to A is by

(8)

N = HapM, Hup = [I 0] ,

al

sinceP; = P;H ;p, Pa=PpH .
PointsM ., in P satisfying
No =HpM,ie a” M, =0 9)
map onto pointgV ., at infinity V., soa” is the equation
of the hyper-plane at infinityr’ in the projective camera
frameP. The one-steprojective-Euclidean upgrade

(10)
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X=HgspM, Hep= [K O] .
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Points at infinity X .. = [X,Y, Z,0]T represent direc-
tions. They are thevanishing pointsof translations by

t = [X,Y,Z]T. Henceforth, we suppose that a weakly
calibrated stereo system with constant intrinsic and ex-
trinsic geometry is reconstructing the scene structure at
time instants € (0,1,2,...) in the projective framéP.
Suppose also that inbetweémndi + 1 the correspond-
ing points X; or M; undergo an arbitrary rigid motion



x = 1) X Then, there exists a homography
RO O

H%)T of P, such that
-1

Since H rr is similar to a displacement, we will call it a
projective displacement

In this article we consider projective displacements
which result from pure translational motionsSuch a
homographyH -, when estimated from image measure-
ments, contains information about the viewing geometry
as well as about the observed motion. We show what in-
formation is present, where and how it is encoded, what it
means geometrically, and how to extract it efficiently .

3 Algebraic Characterization

The following subsections completely characterize the
structure of a projective translation in terms of algebraic
similarity. Its structure is canonically described by the Jor-
dan matrix [8]. The Jordan decompositions are given in
their most general form. Finally, the fix entities of the
transform are identified with those of the decomposition.
3.1 Projective Translation

The similarity class formed by the homographiesrof
which are conjugate to a rigid translati@y up to scale is
calledprojective translationsSimilarity is for instance by
the matrix of the Euclidean upgrade

K'o
CLT

K'o
CLT

ori| @

where~ is an unknown scale factor. Traces and determi-
nants are invariant under similarity, so the scal®llows
from

Hy=yH Ty Hep, Tp= [

4~ = trace Hp, ory* = det Hrp, (13)

Henceforth, we normaliz&f - such thaty = 1.
3.2 Jordan normal form

Another similarity invariant is the characteristic poly-
nomial p(\) and hence the eigenvalugs Thusp()) is
(1 — X\)* = 0 and the quadruple eigenvalde= 1 is com-
mon to bothT'r and H . Sincerank(Tr — I) = 3 and
rank(T7—1I)% = 0, the common Jordan matrik of T'r

and Hr has one Jordan block of order tw = [1 1],

01
and two of order one.
In summary, a projective translation always decomposes
into its Jordan normal form

1000
0100
0011
0001

Hr=H;'"Jr H;, Jr= (14)

)

(we will assume that thd'» block has been permuted into
rows 3 and 4, as here).
3.3 Jordan decomposition

The similarity transformH ; in contrast is defined only
up to premultiplication by any matrif - commuting with
Jr Hr = (JG'H;") Jr (H ;J ¢), now by the similar-
ity H, = (H;Jc). Explicitly, the commuting class is
any non-singular

J11 J12 0 J1a
J21 J22 0 joa
J31 732 1 jsa
0 001

Jc =W (15)

Interestingly, the third column off ; and the fourth row
of H}l rest invariant under the application df;, up to
scalesy and1/u. Their geometric interpretation is given
in section 4.1.
3.4 Eigen analysis

It is sufficient to consider the Jordan matrix, since
the Eigen-spaced’y of Hp and E; of Jr are re-
lated by a similarity Ey H;FE;. Ejy
{[z,y,2,0]" | z,y,z € R} spans a hyper-plane point-
wise and its orthogonal complemestt E; = 0 defines
homogeneous coordinates of this plaag:= [0,0,0, 1]7.

Conversely the duaflr = H," of a projective trans-
lation is the plane transformation

Hy=HY jr H;", Jr = (16)

S O O
o o= O
—_ =0 o
o oo

Its Jordan matrix has the eigenspdée = [x,y,0,]T.
These planes intersects in the poilt which is the or-
thogonal complemeré’ £; = 0 with coordinates: ; =
[0,0,1,0]T.

We finally express the fixed entitiesand A in the orig-
inal frame whereH 1 is represented in. Itis in our case the
camera framé. Write the columns off ;' and the rows
H;as

Hp = Jr

C1 C2 C3 Ca

Where";TCj = 5” (17)

En = {c1, ¢z, c3} spans again pointwise the hyper-plane
7« and the orthogonal complement(1€), = r4 yields
the new coordinates of . Similarily, the left eigenspace
Ey = {r1, 72,74} intersects iNA = ¢3, the orthogonal
completent o&y (17).



4 New Parameterization

We write the Jordan matrix as the 4-by-4 sum of the
identity I plus the residuaE’s, = [134] (see (14)).

Hrp = [c1,¢,¢3,¢4) (Eza + I) [Py, 72,73, 74]"
=H;+I, H=c3r], (18)
and realize that everfi{ - is the sum ofT plus the outer
product of two vectorgs andr,, where H; has rank 1,
trace 0, and is nilpotent with order 2:
H} =c3ricsr] =c363174=0 (19)

Defining the scale factar = ||cs]|||r4]| and the unit

vectorsés = c3/||cs|| and7y = r4/||r4]], we have

=T

HTzaHtﬁ—l—I, Ht70(2637'4. (20)

Formally, c; andr, have eight parameters and obey one

constraint (17). The seven degrees of freedom are rear-

ranged into one scalar parametgulus two 3 dof unit vec-
torses and7y, in order to normally represent the underly-
ing geometric object. We will show, that, is common to

Also remember thats, r4 they are constant up to scale for
all decompositions (section 3.3).

This shows that, defines the plane at infinity L in
‘P. It is independent of the particular translation and en-
codes the affine stereo geometry. Analogouslylefines
the vanishing poinA; in P. Its first three components
are the the non-trivial coordinates &f; in A, which is in
fact the motion epipole in the right image; depends on
the translation, the intrinsic geometry, and the affine stereo
geometry, but}, depends only on the translation. The pa-
rameterx is the relative distance covers along the transla-
tion axis, as shown in greater detail in section 5.2.

all projective translations observed by the same stereo sys-

tem; thatcs is common to all projective translations with

the same direction observed by a static stereo rig; and that

« corresponds to relative distance covered in this direction.

4.1 Geometric Interpretation

Now we (12) to give a geometric interpretation of these
algebraic entities. Trivially, there is an affine similarity
dependent ot = [tx,ty,tZ]T, which transformd’'r into
Jr. In consequencel r is a translation in the affingor-
dan frame7 induced byA;. Due to the ambiguity, there

are many possible Jordan frames, however all of them are

affine, sinceJ ¢ is affine, too. Hence, coordinates have
their standard interpretation, so= = is theplane at
infinity andA = A, is thevanishing poin{Figure 1).

More rigorously, one can take

~1/t, 0 1/t. 0 —t; 0 t, 0

0 =1ty 1/t 0 41 | 0 —t,t: 0
Av=1 0 1/tzO’At 10 0 t.O0|

0 0 0 1 0 0 01
Hr=H.}; A" Jr A, Hep (21)

(c.f. (12)). Thencz andr] become
28

c3 = |:K O:| l;‘: s 1"3; = CLT, (22)

Figure 1: The point-translation’s eigenspace spans the plane at
infinity w2, e.g. by the vanishing point&,, A,, A;. The

plane-translation’s eigenspace is spanneefyand two planes
parallel to the translation, e.g-.;fo, Tz, Tz2. 1here. They inter-

sect in its vanishing poinf\;.

5 Computational Decomposition

We aim to determines andr, from a number of con-
sistent estimateHéf). “Consistent” means that they need
a common plane at infinity to cumulatively determing
and a common vanishing point to cumulatively extragct

The eight parameters ef andr, obey 16 bilinear con-
straints from (18) and one from (17). Algebraic solutions
are straight-forward, e.g.

Hpyy Hria Hris
Hypoy Hra Hrpig'
Hris Hry Hrs
Hypg Hrpgy Hrpg

T4 17 (23)

C3 1]T7 (24)
but do not fully take redundancy into account and are nu-
merically very unstable.

The analytical Jordan decomposition (14) incorporates
all of the constraints anel, andcs follow immediately (see
section 3.3). However, the numerical detection of the locus
of J4 is very unstable, as it requires the eigenvalues to be



numerically equal. In both approaches, the accumulation e Transpose and stack aIlIfIE“T to
of severaIH(T” remains a problem.

H(l)T
5.1 Algorithm (27
. H4n><4 — Ht (27)
We propose a two-step solution based on the trace and o
singular value decompositid®VD), which is numerically HMT
t

stable and naturally allows the inputs to be accumulated.

e Compute the SVIH'"** = UDV

Step 1) H, (i) from HY i e {1,....n
P1) H:(0) T { } o TakeA; ascs = V.

e Normalize " by the trace (13) and compufé.” L
by (18). ’ ‘ 5.2 Applications

o ] ) The existance of a reliable method to estimate the mo-
N_ormahzmg by the determinant or by directly calculted jg parameters allows us to further exploit (18) or (20) in
eigenvalues turns out to much less stable. a number of applications related to translational motion.

Step 2a) #Z. andA, from a singleH;: Nil-potency (19) is used often in the derivations.

. uniform, discrete extrapolation:
e Compute the SVD, withr, > oy > 03 > o4 ¢ P

n
n _
H, =U diag(01,02,03,04) V,  (25) Hip =Y (k) o"H{I" % =naH,+1 (28)
k=0
To reject outliers, check that the conditionipg=

X . ; From one uncalibrated observation of a translation,
o1/o9 is large, i.e. tha#, has numerical rank 1.

any integral multiple of the motion can be synthe-

H,-U diag(91,0,0,0)V = o1 Uat Ve sized, and applied to a set of points ...

e exponential representation:
is the matrix of rank 1 closest t&l, with respect to

matrix norms| - ||z and|| - || .

e Take the first columi/ .1 =c3 asA; and the first row
Vie = r4aswl , and obtain (18).

e Compute the unit vectors and(20).

00 k
H

e(L‘p(Ht): —klt :Hf+I:HT (29)
k=0

This relationship is useful in more elaborate represen-
tation theory.

r4 from H, performed badly. A component-wise me-
dian filter failed completely, but the application of such Hf =exp(aH;)=aH;+1 (30)

robust estimators was not explored in greater depth. _ _ _
From one uncalibrated observation of a translation,

Step 2b) Estimate 77, from accumulatedHYy i & any fractional translation in this direction can be syn-
{1,...,n} thesized, either forwards or backwards ...
e Stack allnH\” to e composition:
H(l) HTAHTB:(Hta+I)(th+I)
722) = Ataﬂ-go + Atbﬂ-go =+ Ataﬂ-aAtbﬂ-a + I
H4n><4 Ht (26) - (Ata + Atb) 7'1'21o + I
Ij'[.(r'z) From uncalibrated observations of two translations in
t

different directionsd andB, the resulting direction of
their concatenation can be found. In fact, any linear

4dn x4
e Compute the SVIH™"" = UDV combination of the both translations can be synthe-

o Takewl asry = Vi, sized. Extension ta directions and resulting com-
, plete decomposition of projective translations are now
Step 2c) CumulativeA; from Hg),z’ e{l,....,n} straight-forward.



o affine stereo calibration

OncenZ is known, projection matrices and recon-
structions in the projective franté can be upgraded
a-posteriorito affine oneg8). The practical effectiv-
ness of this method is evaluation in section 6.

6 Experiments

Three different scenarios were evaluated experimen-
tally. First, 12 translations of 18 markers on a gripper in
various orientations were simulated at a distancg0ofn
from a stereo rig witi20cm baseline. Second, two image  Figure 2: Accuracy at increasing noise levels quantifiedebpy
sequences were taken with a standard stereo rig, which wasor non-linearH r-and bye, for linear Hr
translated along three axes. At 7 equi-distant stops per axis,
stereo images of either the calibration grid or the “house-

0 o [ ) 1 2 0 o |
‘‘‘‘‘ oer o ransiaios (on-near) number of ansiaions (inea)

scene” were grabbed (Figure 4). A projective reconstruc-
tion was upgraded to affine using the estimatéd (8). To
compare this with the known Euclidean scene structure, we _
used two error measures: ; I

(N2 —Njp) (X2— X)) W
o = 1((vovg ~ oexg) XX .
ep = [[X—ApN|, (31)

where (X2, X1, X)) are collinear. Ay, is the affinity

which best fits structure il to € in terms of Euclidean Figure 3: Comparison of single and cumulative estimates from
least-squares. The direct affine eregr scales the differ-  linearand non-lineat r.

ence of all length-ratios to metric units. The indirect Eu-

clidean errorep measures how close affine structure is to 6.3 House scene

the affine ground-truth that results frod;;. Both mea- The "house sequence” considers the scenario of on-line

sures give qualitatively consistent results (Figure 2). self-calibration. The precision of matched points of inter-

6.1 G“Pper motion est islpz and there are 1-2 false matches among a total of
The gripper sequence was used to study the accuracyz_gg The affine calibration from the house is used to up-

and degeneracy of our method at increasing levels of ad-graqe 5 perspective reconstruction of the calibration grid
ditive Gaussian noise with in pz(pixel). Figure 2 shows (see Figure4) and is evaluated as in section 6.2. Qualita-
that 4 motions suffice to achieve stability. &< 1pz, the  yely, stability and robustness are similar. Quantitatively,
errorep is acceptable after only one motion and decreasespq errorep is slightly higher but belowimm as soon as
below0.2mm. With 1 < ¢ < 2, ep is still below0.5mm, H is estimated non-linearly.

butforo ~ 3 if Hr is estimated just linearly, the error For a scenario of visual navigation, the intrinsic parame-
increased rapidly. ters of motion were extracted  was estimated for all 36

6.2 Cal?bration grid _ _ ~ possible translations between 6 egj-distant stops along one
The grid sequence considers the scenario of off-line axis and decomposed following section 5.1 into (20). The
self-calibration. The image points are precisedgpz), error ina is roughly0.15%, which corresponds t.3mm

and about 00 are matched. Figure 3 shows that the results jn space. The direction when estimated from a single mo-
fromreal data are consistent with the simulations. The sec-tjon deviates by up t6° from its cumulative estimate. A

tions [1:5], [6:11], and [12:17] correspond to the three mo- comparison of the pair-wise angles between the three es-

tion axes. The accuracy is lower when the translation is timated axes with Euclidean ground-truth gave an error of
aligned with the optical axis [6:11]. The cumulative esti- 1° (Figure 5).

mate is robust against derogate appositions and gains even

from minor conductive appositions. The absolute error of 7 Summary and Conclusions

0.2 — 0.3mm compares favorably with the usual precision In this paper we have described a new method for the
in structure from stereo. affine calibration of a stereo pair from one or more trans-



Figure 4: Motion field in house-scene and the resulting affine
upgrade applied to grid.
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Figure 5:Distance and direction of all 36 translations.

lational motions. The method is based on an in-depth al-
gebraic analysis of thexd4 homography linking two pro-
jective reconstructions computed with the stereo rig before
and after a translational motion. This analysis allows a
simple parameterization of the homography, thus defining
a projective translatiorwith 7 parameters. This formula-

tion leads to a straightforward numerical implementation [1

within which several motions with different directions of
translation can be accumulated to improve numerical sta-
bility.

The method has been applied to synthetic, calibrated
and real data. In all of these cases, the method tolerated
image noise with a standard deviation of up to 2 pixels pro-
vided that at least 4 motions were performed.

Recently it has been shown that, when projective struc-
ture is upgraded to affine and then to Euclidean, the affine
upgrade stage is the most difficult one from a practical
point of view and the final accuracy of the Euclidean re-
construction depends heavily on its accuracy [7]. There-
fore we believe that the method suggested in this paper is
an important contribution to the problem of self calibration

of a stereo rig.
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