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Abstract
This paper investigates the homography which trans-

forms a set of points in projective space when undergo-
ing a rigid translation, termed aprojective translation. A
representation with seven parameters is proposed. They
represent explicitly the geometric entities constraining and
defining the translation. A practical algebraic method for
extracting these parameters is developed. It allows for
affine calibration of a stereo rig, for characterizing the mo-
tion intrinsics, as well as for composing projective transla-
tions. The practical effectiveness of calibration is evaluated
on synthetic and real image data.

1 Introduction
The recovery of structure and motion is one of the es-

sential problems in machine vision. Difficulties increase
when uncalibrated cameras are considered, since in this
case metric information is missing. Nevertheless, rigid-
ity of motions observed with an uncalibrated stereo cam-
era imposes strong constraints on the transforms describ-
ing them. They allow for an augmented representation
of structure and motion. More precisely, the homogra-
phy which maps a sets of points reconstructed in projec-
tive space from their initial to their final position is alge-
braically similar or “conjugate” to this displacement [11],
[2]. Representation of structure up to scaled-Euclidean is
possible.

The similarity class of projective translations is ana-
lyzed and an intrinsic parameterization is introduced. In
practice, estimates of these matrices always deviate from
the theoretical form due to round-off errors, measurement
noise, and outliers caused by mismatches. To overcome
this, a computational method is proposed that decomposes
into the proposed form, that is numerically stable, that ro-
bustly cumulates several inputs, and that has a number of
important practical applications.

Replacing classical calibrated systems by their uncali-
brated successors is an important issue, since such systems
exhibit higher efficiency, autonomy, and flexibility. These

systems demand just the level of calibration necessary for a
task and perform self-calibration with minimum or without
a-priori knowledge. In our case, self-calibration amounts
to affine stereo calibration from unknown translations.

Translations are an important class of motions, because
they frequently occur in practice, they are easy to imple-
ment, and they highly facilitate correlation based match-
ing and tracking. We demonstrate that even the “uncali-
brated” representation allows to extract the intrinsic prop-
erties of translation: the plane at infinity which ensures
parallel traces, the direction or axis, and covered parallel
distance.

Practical applications exploiting this knowledge are nu-
merous and relevant. Firstly, the plane at infinity allows to
upgrade the rather poor projective representation of struc-
ture to its affine representation. Secondly, the direction al-
lows inter-/extrapolating and superposing translational mo-
tions. Finally, the distance allows to do so uniformly or
to localize on the axis. Potential real-world applications
worth noting in this especial context are vision-based navi-
gation of autonomous robots, visual servoing of robot ma-
nipulators, and a-priori or reactive task planning.

Previous work on affine calibration of a stereo image
pair used constructive methods based on projective invari-
ants [10], [9] or the detection of three image points aris-
ing from points lying in the plane at infinity. These points
can be either three vanishing points associated with trans-
lational motions [4], [9] or three virtual points associated
with ground-plane motions [1]. The advantage of our
method with respect to these methods is that it considers
any number of image points, possibly a large one, aris-
ing from 3-D points lying in general position – they must
not necessarily lie on the plane at infinity. Therefore our
method does not rely on special points which are, some-
times, difficult to observe. The fact that a large number of
points can be used (and not just three points) inforces the
numerical stability of the solution.

This work contributes to the field of uncalibrated vi-
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sion by considering the projective representation of transla-
tional motion, by parameterizing it with the intrinsic vari-
ables, and by developing a stable and robust method for
extracting these. Numerous applications are sketched and
the effectiveness and practicability of affine stereo calibra-
tion is experimentally evaluated on synthetic and real im-
age data.

1.1 Paper organization
Some fundamentals and scope are given in section 2.

The 3. section rigorously characterizes the algebraic struc-
ture of a projective translation. The 4. section proposes
a new parameterization and geometrically interprets it. In
section 5, a computational method for cumulative decom-
position is developed and applications are sketched. Sec-
tion 6 experimentally evaluates affine stereo-calibration.

1.2 Notations
Matrices and vectors are typeset in boldface. Vectors

are columns and row vectors are written by transposing
a column. Plain types in Roman designate coordinates,
Greek letters designate scale factors. Among 4-by-4 ma-
trices, homographies ofE Euclidean,A affine, andP pro-
jective three-space are written asT , A, andH. Points in
these spaces are represented by vectorsX = [X, Y, Z, 1]T ,
N = [U, V, W, 1]T , M = [U, V, W, T ]T , and ideal points
by X∞ = [X, Y, Z, 0]T or N∞ = [U, V, W, 0]T . Image
points are in pixel coordinatesm = [u, v, 1]T . All coordi-
nates are thought as homogeneous.

2 Fundamentals
A camera of the pinhole model [3] projects scene points

X in the canonicalEuclidean camera frameE onto image
pixelsm = PX, P =

[
K0

]
, whereK holds parameters

of the intrinsic geometry.
A canonicalaffine camera frameA is defined byK,

such that pointsN = [U, V, W, 1]T in A are projected triv-
ially by P I =

[
I 0

]

m = P I N , N =
[
K 0
0T 1

]
X (1)

The inversion is calledaffine-Euclidean upgrade

X = AEAN , AEA =
[
K−1 0
0T 1

]
. (2)

Theextrinsic stereo geometryis given by the transformT
from right to left camera frame,E to E ′

X ′ = TX, T =
[

R t
0T 1

]
. (3)

In connection with the left intrinsic parametersK ′, the
affine stereo geometryis the transformA from right to left
affine camera frame,A toA′,

N ′ = AN , A =
[
K ′RK−1 K ′t

0 1

]
, (4)

wheree′ = K ′t is the left epipole and

H∞ = K ′RK−1 (5)

is theinfinity homographythat maps points at infinity from
right to left.

The corresponding projections into the left camera are

P E =
[
K ′R K′t

]
, PA =

[
H∞ e′] (6)

Theepipolar stereo geometryis represented by the fun-
damental matrixF . FromF alone, a projection matrix is
calculated [5]

PP =
[
H∞ 0

]
+ e′aT , (7)

whereaT is a row vector of 4 arbitrary elements.
Depending on which matrixP is used for triangula-

tion [6], the obtainedreconstructionsare respectivly in the
framesE , A, orP , and are called Euclidean, affine, or pro-
jective [4].

Theprojective-affine upgradefromP to A is by

N = HAP M , HAP =
[
I 0
aT

]
, (8)

sinceP I = P IH
−1
AP , PA = PPH−1

AP .
PointsM∞ in P satisfying

N∞ = HAP M∞, i.e. aT M∞ = 0 (9)

map onto pointsN∞ at infinityN∞, soaT is the equation
of thehyper-plane at infinityπT∞ in theprojective camera
frameP . The one-stepProjective-Euclidean upgradeis

X = HEP M , HEP =
[
K−1 0

aT

]
. (10)

Points at infinityX∞ = [X, Y, Z, 0]T represent direc-
tions. They are thevanishing pointsof translations by
t = [X, Y, Z]T . Henceforth, we suppose that a weakly
calibrated stereo system with constant intrinsic and ex-
trinsic geometry is reconstructing the scene structure at
time instantsi ∈ (0, 1, 2, . . .) in the projective frameP .
Suppose also that inbetweeni and i + 1 the correspond-
ing pointsXi or M i undergo an arbitrary rigid motion
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Xi+1 = T
(i)
RT X(i). Then, there exists a homography

H
(i)
RT of P , such that

H
(i)
RT = γ

[
K−1 0

aT

]−1 [
R(i) t(i)

0T 1

] [
K−1 0

aT

]
, (11)

SinceHRT is similar to a displacement, we will call it a
projective displacement.

In this article we consider projective displacements
which result from pure translational motions.Such a
homographyHT , when estimated from image measure-
ments, contains information about the viewing geometry
as well as about the observed motion. We show what in-
formation is present, where and how it is encoded, what it
means geometrically, and how to extract it efficiently .

3 Algebraic Characterization
The following subsections completely characterize the

structure of a projective translation in terms of algebraic
similarity. Its structure is canonically described by the Jor-
dan matrix [8]. The Jordan decompositions are given in
their most general form. Finally, the fix entities of the
transform are identified with those of the decomposition.
3.1 Projective Translation

The similarity class formed by the homographies ofP
which are conjugate to a rigid translationT T up to scale is
calledprojective translations. Similarity is for instance by
the matrix of the Euclidean upgrade

HT = γ H−1
EP T T HEP , T T =

[
I t
0T 1

]
, (12)

whereγ is an unknown scale factor. Traces and determi-
nants are invariant under similarity, so the scaleγ follows
from

4γ = trace HT , or γ4 = det HT , (13)

Henceforth, we normalizeHT such thatγ = 1.
3.2 Jordan normal form

Another similarity invariant is the characteristic poly-
nomial p(λ) and hence the eigenvaluesλi. Thusp(λ) is
(1 − λ)4 = 0 and the quadruple eigenvalueλ = 1 is com-
mon to bothT T andHT . Sincerank(T T − I) = 3 and
rank(T T −I)2 = 0, the common Jordan matrixJT of T T

andHT has one Jordan block of order twoJ2 =
�
1 1
0 1

�
,

and two of order one.
In summary, a projective translation always decomposes

into itsJordan normal form

HT = H−1
J JT HJ , JT =




1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1


 , (14)

(we will assume that theJ2 block has been permuted into
rows 3 and 4, as here).
3.3 Jordan decomposition

The similarity transformHJ in contrast is defined only
up to premultiplication by any matrixJC commuting with
JT HT =

(
J−1

C H−1
J

)
JT (HJJC), now by the similar-

ity H ′
J = (HJJC). Explicitly, the commuting class is

any non-singular

JC = µ




j11 j12 0 j14
j21 j22 0 j24
j31 j32 1 j34
0 0 0 1


. (15)

Interestingly, the third column ofHJ and the fourth row
of H−1

J rest invariant under the application ofJC , up to
scalesµ and1/µ. Their geometric interpretation is given
in section 4.1.
3.4 Eigen analysis

It is sufficient to consider the Jordan matrix, since
the Eigen-spacesEH of HT and EJ of JT are re-
lated by a similarity EH = HJEJ . EJ ={
[x, y, z, 0]T | x, y, z ∈ IR

}
spans a hyper-planeπ point-

wise and its orthogonal complementeT
J EJ = 0 defines

homogeneous coordinates of this plane:eJ = [0, 0, 0, 1]T .
Conversely the dual̂HT = H−T

T of a projective trans-
lation is the plane transformation

ĤT = HT
J ĴT H−T

J , ĴT =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 1


. (16)

Its Jordan matrix has the eigenspaceÊJ = [x, y, 0, t]T .
These planes intersects in the point∆, which is the or-
thogonal complement̂eT

J ÊJ = 0 with coordinateŝeJ =
[0, 0, 1, 0]T .

We finally express the fixed entitiesπ and∆ in the orig-
inal frame whereHT is represented in. It is in our case the
camera frameP . Write the columns ofH−1

J and the rows
HJ as

HT =


c1 c2 c3 c4


JT




r
T
1

r
T
2

r
T
3

r
T
4




whererT
i cj = δij . (17)

EH = {c1, c2, c3} spans again pointwise the hyper-plane
π and the orthogonal complement(17)eH = r4 yields
the new coordinates ofπ . Similarily, the left eigenspace
ÊH = {r1, r2, r4} intersects in∆ = c3, the orthogonal
completent of̂eH (17).
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4 New Parameterization
We write the Jordan matrix as the 4-by-4 sum of the

identityI plus the residualE34 = [134] (see (14)).

HT = [c1, c2, c3, c4] (E34 + I) [r1, r2, r3, r4]T

= Ht + I, Ht = c3 rT
4 , (18)

and realize that everyHT is the sum ofI plus the outer
product of two vectorsc3 andr4, whereHt has rank 1,
trace 0, and is nilpotent with order 2:

H2
t = c3 rT

4 c3 rT
4 = c3 δ34 r4 = 0 (19)

Defining the scale factorα = ||c3||||r4|| and the unit
vectors̄c3 = c3/||c3|| andr̄4 = r4/||r4||, we have

HT = αHt,α + I, Ht,α = c̄3 r̄T
4 . (20)

Formally,c3 andr4 have eight parameters and obey one
constraint (17). The seven degrees of freedom are rear-
ranged into one scalar parameterα plus two 3 dof unit vec-
tors c̄3 andr̄4, in order to normally represent the underly-
ing geometric object. We will show, thatr4 is common to
all projective translations observed by the same stereo sys-
tem; thatc3 is common to all projective translations with
the same direction observed by a static stereo rig; and that
α corresponds to relative distance covered in this direction.

4.1 Geometric Interpretation
Now we (12) to give a geometric interpretation of these

algebraic entities. Trivially, there is an affine similarityAt

dependent ont = [tx, ty, tz]T , which transformsT T into
JT . In consequence,JT is a translation in the affineJor-
dan frameJ induced byAt. Due to the ambiguity, there
are many possible Jordan frames, however all of them are
affine, sinceJC is affine, too. Hence, coordinates have
their standard interpretation, soπ = πT

∞ is theplane at
infinity and∆ = ∆t is thevanishing point(Figure 1).

More rigorously, one can take

At =



−1/tx 0 1/tz 0

0 −1/ty 1/tz 0
0 0 1/tz 0
0 0 0 1


, A−1

t =



−tx 0 tx 0
0 −ty tx 0
0 0 tz 0
0 0 0 1


,

HT = H−1
EP A−1

t JT At HEP (21)

(c.f. (12)). Thenc3 andrT
4 become

c3 =
[
K 0
· · ·

] 


tx
ty
tz
0


 , rT

4 = aT , (22)

Also remember thatc3, r4 they are constant up to scale for
all decompositions (section 3.3).

This shows thatr4 defines the plane at infinityπT
∞ in

P . It is independent of the particular translation and en-
codes the affine stereo geometry. Analogouslyc3 defines
the vanishing point∆t in P . Its first three componentsc′3
are the the non-trivial coordinates of∆t in A, which is in
fact the motion epipole in the right image.c3 depends on
the translation, the intrinsic geometry, and the affine stereo
geometry, butc′3 depends only on the translation. The pa-
rameterα is the relative distance covers along the transla-
tion axis, as shown in greater detail in section 5.2.

πt

πyz

πxz

∆

∆x

y

∆t
π 8

t

Figure 1: The point-translation’s eigenspace spans the plane at
infinity �

T
∞, e.g. by the vanishing points∆x, ∆y , ∆t. The

plane-translation’s eigenspace is spanned by�
T
∞ and two planes

parallel to the translation, e.g.�T
∞, �yz, �xz. There. They inter-

sect in its vanishing point∆t.

5 Computational Decomposition
We aim to determinec3 andr4 from a number of con-

sistent estimatesH(i)
T . “Consistent” means that they need

a common plane at infinity to cumulatively determiner4,
and a common vanishing point to cumulatively extractc3 .

The eight parameters ofc3 andr4 obey 16 bilinear con-
straints from (18) and one from (17). Algebraic solutions
are straight-forward, e.g.

r4 ' [
HT21

HT24
,
HT12

HT14
,
HT13

HT14
, 1]T (23)

c3 ' [
HT12

HT42
,
HT21

HT41
,
HT31

HT41
, 1]T , (24)

but do not fully take redundancy into account and are nu-
merically very unstable.

The analytical Jordan decomposition (14) incorporates
all of the constraints andr4 andc3 follow immediately (see
section 3.3). However, the numerical detection of the locus
of J2 is very unstable, as it requires the eigenvalues to be
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numerically equal. In both approaches, the accumulation
of severalH(i)

T remains a problem.

5.1 Algorithm
We propose a two-step solution based on the trace and

singular value decomposition(SVD), which is numerically
stable and naturally allows the inputs to be accumulated.

Step 1) Ht(i) from H
(i)
T , i ∈ {1, . . . , n}

• NormalizeH
(i)
T by the trace (13) and computeH(i)

t

by (18).

Normalizing by the determinant or by directly calculted
eigenvalues turns out to much less stable.

Step 2a) πT
∞ and∆t from a singleHt:

• Compute the SVD, withσ1 ≥ σ2 ≥ σ3 ≥ σ4:

Ht = U diag(σ1, σ2, σ3, σ4) V , (25)

To reject outliers, check that the conditioningρ =
σ1/σ2 is large, i.e. thatHt has numerical rank 1.

H̃t = U diag(σ1, 0, 0, 0) V = σ1 U•1 V 1•

is the matrix of rank 1 closest toHt with respect to
matrix norms|| · ||2 and|| · ||F .

• Take the first columnU•1=c3 as∆t and the first row
V 1• = r4 asπT

∞, and obtain (18).

• Compute the unit vectors andα (20).

In contrast, algebraic solutions similar to (24) forc3 and
r4 from Ht performed badly. A component-wise me-
dian filter failed completely, but the application of such
robust estimators was not explored in greater depth.

Step 2b) Estimate πT∞ from accumulatedH
(i)
T , i ∈

{1, . . . , n}

• Stack all nH(i)
t to

H4n×4 =




H
(1)
t

H
(2)
t

. . .

H
(n)
t


 (26)

• Compute the SVDH4n×4 = UDV

• TakeπT
∞ asr4 = V 1•

Step 2c) Cumulative∆t from H
(i)
T , i ∈ {1, . . . , n}

• Transpose and stack all nH(i)
t

T to

H4n×4 =




H
(1)
t

T

H
(2)
t

T

. . .

H
(n)
t

T


 (27)

• Compute the SVDH4n×4 = UDV

• Take∆t asc3 = V 1•

5.2 Applications
The existance of a reliable method to estimate the mo-

tion parameters allows us to further exploit (18) or (20) in
a number of applications related to translational motion.
Nil-potency (19) is used often in the derivations.

• uniform, discrete extrapolation:

Hn
T =

n∑
k=0

(
n

k

)
αkHk

t In−k = nαHt + I (28)

From one uncalibrated observation of a translation,
any integral multiple of the motion can be synthe-
sized, and applied to a set of points ...

• exponential representation:

exp(Ht) =
∞∑

k=0

Hk
t

k!
= Ht + I = HT (29)

This relationship is useful in more elaborate represen-
tation theory.

• continuous inter-/extrapolation:

Hα
T = exp(αHt) = αHt + I (30)

From one uncalibrated observation of a translation,
any fractional translation in this direction can be syn-
thesized, either forwards or backwards ...

• composition:

HTAHTB = (Hta + I) (Htb + I)
= ∆taπT∞ + ∆tbπ

T∞ + ∆taπT∞∆tbπ
T∞ + I

= (∆ta + ∆tb) πT
∞ + I

From uncalibrated observations of two translations in
different directionsA andB, the resulting direction of
their concatenation can be found. In fact, any linear
combination of the both translations can be synthe-
sized. Extension ton directions and resulting com-
plete decomposition of projective translations are now
straight-forward.
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• affine stereo calibration

OnceπT
∞ is known, projection matrices and recon-

structions in the projective frameP can be upgraded
a-posteriorito affine ones(8). The practical effectiv-
ness of this method is evaluation in section 6.

6 Experiments
Three different scenarios were evaluated experimen-

tally. First, 12 translations of 18 markers on a gripper in
various orientations were simulated at a distance of90cm
from a stereo rig with20cm baseline. Second, two image
sequences were taken with a standard stereo rig, which was
translated along three axes. At 7 equi-distant stops per axis,
stereo images of either the calibration grid or the “house-
scene” were grabbed (Figure 4). A projective reconstruc-
tion was upgraded to affine using the estimatedπT∞ (8). To
compare this with the known Euclidean scene structure, we
used two error measures:

eQ = |
(

(N 2 − N 0)
(N 1 − N 0)

− (X2 − X0)
(X1 − X0)

)
(X1 − X0)|

eD = ||X − AfitN ||, (31)

where(X2, X1, X0) are collinear. Afit is the affinity
which best fits structure inA to E in terms of Euclidean
least-squares. The direct affine erroreQ scales the differ-
ence of all length-ratios to metric units. The indirect Eu-
clidean erroreD measures how close affine structure is to
the affine ground-truth that results fromAfit. Both mea-
sures give qualitatively consistent results (Figure 2).
6.1 Gripper motion

The gripper sequence was used to study the accuracy
and degeneracy of our method at increasing levels of ad-
ditive Gaussian noise withσ in px(pixel). Figure 2 shows
that 4 motions suffice to achieve stability. Atσ < 1px, the
erroreD is acceptable after only one motion and decreases
below0.2mm. With 1 ≤ σ ≤ 2, eD is still below0.5mm,
but for σ ≈ 3 if HT is estimated just linearly, the error
increased rapidly.
6.2 Calibration grid

The grid sequence considers the scenario of off-line
self-calibration. The image points are precise (0.05px),
and about100 are matched. Figure 3 shows that the results
from real data are consistent with the simulations. The sec-
tions [1:5], [6:11], and [12:17] correspond to the three mo-
tion axes. The accuracy is lower when the translation is
aligned with the optical axis [6:11]. The cumulative esti-
mate is robust against derogate appositions and gains even
from minor conductive appositions. The absolute error of
0.2− 0.3mm compares favorably with the usual precision
in structure from stereo.
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Figure 2:Accuracy at increasing noise levels quantified byeD

for non-linearHT and byeQ for linearHT

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

number of translations (mire)

Eu
cl

ea
n 

er
ro

r [
m

m
]

current vs cumulative plane at infinity

a(i:i) linear       
a(1:i) linear       
a(i:i) non−linear   
a(1:i) non−linear   

Figure 3:Comparison of single and cumulative estimates from
linear and non-linearHT .

6.3 House scene
The ”house sequence” considers the scenario of on-line

self-calibration. The precision of matched points of inter-
est is1px and there are 1-2 false matches among a total of
30-80. The affine calibration from the house is used to up-
grade a perspective reconstruction of the calibration grid
(see Figure4) and is evaluated as in section 6.2. Qualita-
tively, stability and robustness are similar. Quantitatively,
the erroreD is slightly higher but below1mm as soon as
HT is estimated non-linearly.

For a scenario of visual navigation, the intrinsic parame-
ters of motion were extracted.HT was estimated for all 36
possible translations between 6 eqi-distant stops along one
axis and decomposed following section 5.1 into (20). The
error inα is roughly0.15%, which corresponds to0.3mm
in space. The direction when estimated from a single mo-
tion deviates by up to5◦ from its cumulative estimate. A
comparison of the pair-wise angles between the three es-
timated axes with Euclidean ground-truth gave an error of
1◦ (Figure 5).

7 Summary and Conclusions
In this paper we have described a new method for the

affine calibration of a stereo pair from one or more trans-
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lational motions. The method is based on an in-depth al-
gebraic analysis of the 4×4 homography linking two pro-
jective reconstructions computed with the stereo rig before
and after a translational motion. This analysis allows a
simple parameterization of the homography, thus defining
a projective translationwith 7 parameters. This formula-
tion leads to a straightforward numerical implementation
within which several motions with different directions of
translation can be accumulated to improve numerical sta-
bility.

The method has been applied to synthetic, calibrated
and real data. In all of these cases, the method tolerated
image noise with a standard deviation of up to 2 pixels pro-
vided that at least 4 motions were performed.

Recently it has been shown that, when projective struc-
ture is upgraded to affine and then to Euclidean, the affine
upgrade stage is the most difficult one from a practical
point of view and the final accuracy of the Euclidean re-
construction depends heavily on its accuracy [7]. There-
fore we believe that the method suggested in this paper is
an important contribution to the problem of self calibration

of a stereo rig.
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