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Abstract: The problem of �nding the collineation between two 3-D projective reconstruc-
tions has been proved to be useful for a variety of tasks such as calibration of a stereo rig
and 3-D a�ne and/or Euclidean reconstruction. Moreover such a collineation may well be
viewed as a point transfer method between two image pairs with applications to visually
guided robot control. In spite of this potential, methods for properly estimating such a
projective transformation have received little attention in the past. In this paper we de-
scribe linear, non-linear and robust methods for estimating this transformation. We test
the numerical stability of these methods with respect to image noise and to the number
of matched points. Finally we brie�y describe three applications: stereo image transfer,
Euclidean reconstruction, and self calibration of a stereoscopic camera pair.
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Télécopie : 04 76 61 52 52 - International: +33 4 76 61 52 52



Calcul d'une homographie entre deux reconstructions

projectives

Résumé : Le calcul d'une homographie entre deux reconstructions projectives tri-dimensionnelles
s'est avéré être utile dans un certain nombre de tâches telles que la calibration d'un système
stéréo ainsi que pour al reconstruction a�ne et/ou euclidienne. De plus une telle homo-
graphie peut être utile pour transférer des points entre deux paires d'images. Ce transfert
est utile pour l'asservissement visuel d'un robot. En dépit de ces possibilités, peu de tra-
vaux s'intéressent au calcul d'une telle homographie. Dans cet article nous décrivons des
méthodes linéaire, non-linéaire et robuste pour estimer cette transformation. Nous testons
la stabilité des calculs par rapport au bruit et au nombre de points mis en correspondance
entre les deux paires d'images. En�n, on décrit brièvement trois applications : transfert
d'images, reconstruction euclidienne et auto-calibration d'une tête stéréo.

Mots-clé : reconstruction projective, transformation projective 3-D, transfert d'images,
transformation projective/euclidienne



Finding the Collineation Between two Projective Reconstructions 3

1 Introduction and motivation

Until very recently it was believed that visual tasks require some form of o�-line camera
calibration. For example, a moving calibrated camera provides a sequence of images from
which 3-D Euclidean structure can in principle be recovered. More recently, it has been
shown both theoretically and experimentally that an image sequence taken with an uncali-
brated camera can provide 3-D Euclidean structure as well [9]. The basic paradigm consists
of recovering projective structure �rst and then upgrading it to a�ne structure and then to
Euclidean structure.

Another possibility that is being investigated by a number of researchers is to consider
a sequence of image pairs gathered with a moving uncalibrated stereo rig [1, 14, 2, 6].
With such an uncalibrated image pair, matched points are reconstructed in projective space
[3]. If the stereo pair undergoes a rigid motion, the two projective reconstructions (before
and after the motion) are related by a 3-D projective transformation which is conveniently
represented by a 4�4 regular matrix � a collineation. Therefore methods that attempt to
recover projective, a�ne or Euclidean structure from a moving stereo pair need to estimate
this collineation. Interesting enough, with the exception of [1] which brie�y outlines a
method for estimating this projective transformation, it appears to be no published paper
in the computer vision literature describing and evaluating methods for estimating this
collineation from stereoscopic data.

In this paper we address the problem of estimating such a collineation from two projec-
tive reconstructions obtained from two di�erent image pairs. First, we describe two linear
methods which minimize some algebraic distance de�ned in 3-D projective space and a non-
linear method which minimizes an image-space Euclidean distance. Moreover, we outline a
robust method that can deal with badly matched points between the two image pairs.

Second, we study the behavior of these methods (linear and non-linear) in the presence
of image noise and as a function of the number of matched points. In the light of these
experiments it appears that the non-linear methods performs slightly better than the linear
methods. However for levels of noise below one pixel in magnitude, the linear methods
performs as well as the non-linear ones and hence they should be preferred because they are
less time consuming than the non-linear methods.

Third, we describe three possible applications: (i) stereo image transfer which shows
that for such tasks as visual servoing, projective structure is useful in its own right, (ii)
Euclidean upgrade using 3-D control points and an error function de�ned in 4-D vector
space, and (iii) stereo self-calibration which takes advantage of a special parameterization
of the 3-D projective transformation.

2 3-D projective collineations

Given a pair of images and the fundamental matrix Fx that describe their epipolar geometry,
there exists a projective basis of the projective space P3 such that the projections from this
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4 Gabriella Csurka and Radu Horaud

space onto the images are represented by1 two 3�4 matrices [4, 10]:

Px =
�
I3 03

�
and P

0

x =
�
G
0
x e0x

�
(1)

were G0
x is a 3�3 regular matrix and the epipole e0x is the projection of the �rst optical

center onto the second image.
It was shown in [3, 8] that we have a four degrees of freedom family of projective bases

in which Px has the form
�
I3 03

�
. However, when we �x P0x, the projective basis is

uniquely determined.
If x;x0 are the images of a 3-dimensional point M , from �xx = PxX, and �0xx

0 = P0xX
results the projective coordinatesX of pointM in the projective basis Bx de�ned by (Px;P

0
x)

[10].
Consider an other pair of images of the same scene and note by Fy the corresponding

fundamental matrix. The new projective matrixes are

Py =
�
I3 03

�
and P

0

y =
�
G
0
y e0y

�
and if y;y0 are the new projections of the point M , its homogeneous representation in the
basis By is Y that veri�es �yy = PyY and �0yy

0 = P0yY .
Assume now, that we have a set of m points, and let X1, X2, : : :, Xm and Y 1, Y 2, : : :,

Y m be their homogeneous representations in the projective basis Bx respectively By. Then,
there exists a 4� 4 collineation matrix H that maps the points Xi to the points Y i:

�iY i =HXi (2)

with �i arbitrary non-null scalars.
H, de�ned up to a scale factor, has 15 degrees of freedom so to determine it, we need

at least �ve point correspondences since each pair (Xi;Y i) gives us 3 constraints after
eliminating �i.

Indeed, �ve points in the projective space generally de�ne a projective basis of P3 such
that the collineation between the standard projective basis and the set of points fXigi=1::5

is given by the matrix:

T1 =
�
�1X1 �2X2 �3X3 �4X4

�
where (�1; �2; �3; �4)

> = (X1;X2;X3;X4)
�1X5. The collineation T2 which maps the

standard reference points to the second set of points fY igi=1::5 can be obtained similarly.
Finally, the collineation between fXigi=1::5 and fY igi=1::5 is then:

H = T2T
�1
1 :

This method is quite simple, but unstable in the presence of noise since we only use the
minimum number of points to compute the collineation matrix H. If we have m > 5 pair of
points, it is better to use all of them and estimate H by some linear or non-linear methods.

1We denote by In the n� n matrix of identity and by 0n the n-vector containing n zeros.
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Finding the Collineation Between two Projective Reconstructions 5

2.1 Linear method 1

The classical way to estimate the entries of H is to eliminate the scale factors �i. A homo-
geneous linear system in the entries of H is thus obtained [12]:

Y
(4)
i V

(1)
i � Y

(1)
i V

(4)
i = 0

Y
(4)
i V

(2)
i � Y

(2)
i V

(4)
i = 0 (3)

Y
(4)
i V

(3)
i � Y

(3)
i V

(4)
i = 0

where we used the notation V i = (V
(1)
i ; V

(2)
i ; V

(3)
i ; V

(4)
i )> for the vector HXi:

V
(j)
i = Hj1X

(1)
i +Hj2X

(2)
i +Hj3X

(3)
i +Hj4X

(4)
i (4)

In the a�ne or Euclidean cases we have Y
(4)
i = 1 which is often at a di�erent magnitude

than Y
(1)
i ; Y

(2)
i ; Y

(3)
i . This explains the choice of these three equations where Y

(4)
i has the

same role. In the projective case, we cannot say the same thing, so if we want that all four
coordinates play the same role, we can add the three other possible equations (which are
not independent from the previous ones):

Y
(2)
i V

(1)
i � Y

(1)
i V

(2)
i = 0

Y
(3)
i V

(1)
i � Y

(1)
i V

(3)
i = 0 (5)

Y
(3)
i V

(2)
i � Y

(2)
i V

(3)
i = 0

This system can be solved when m � 5 point correspondences are available and with an
additional constraint such as

P
H2
ij = 1.

If we denote h = (H11; H12; : : : ; H44)
>, the equations (3) and (5) can be written in the

form2:

Bi h = 0;

where Bi is a 6� 16 matrix:

Bi =

0BBBBBBBB@

Y i
4X

>

i 0
>

4 0
>

4 Y
(1)
i X>

i

0
>

4 Y
(4)
i X>

i 0
>

4 Y
(2)
i X>

i

0
>

4 0
>

4 Y
(4)
i X>

i Y
(3)
i X>

i

Y
(2)
i X>

i Y
(1)
i X>

i 0
>

4 0
>

4

Y
(3)
i X>

i 0
>

4 Y
(1)
i X>

i 0
>

4

0
>

4 Y
(3)
i X>

i Y
(2)
i X>

i 0
>

4

1CCCCCCCCA
:

2If we use only three equations one can remove the rows corresponding to the other equations and obtain

Bi as a 3� 16 matrix.

RR n�3468



6 Gabriella Csurka and Radu Horaud

Given m correspondences (X i;Y i), we are looking for h that minimizes the following
error function:

mX
i=1

kBihk
2 = h>

 
mX
i=1

B
>

i Bi

!
h: (6)

The matrix B =
Pn

i=1B
>

i Bi being symmetric semi-de�nite and positive, the solution
for h is the eigenvector of B corresponding to the smallest eigenvalue of B. In practice, this
eigenvector can be computed using the SVD (singular value decomposition) algorithm.

2.2 Linear method 2

An alternative solution is to estimate simultaneously the entries of H and the scale factors
�1; : : : �m. The equation (2) can be decomposed into four distinct linear constraints and,
for example, the �rst of these linear constraints can be written as:

H11X
(1)
i +H12X

(2)
i +H13X

(3)
i +H14X

(4)
i � �iY

(1)
i = 0

Without loss of generality, we �x one of the scale factors: �m = 1. Therefore, we have
16 unknowns for the entries of H and m � 1 unknown scale factors. The m equations
(2) can be written as a linear system Cs = r with s = (H11; : : : ; H44; �1; : : : ; �m�1)

>,

r = (0; : : : ; 0| {z }
4�(m�1)

; Y
(1)
m ; Y

(2)
m ; Y

(3)
m ; Y

(4)
m )>, and:

C =

0BBBBB@
E1 �Y 1 04 : : : 04

E2 04 �Y 2 : : : 04

...
...

Em�1 04 04 : : : �Y m�1

Em 04 04 : : : 04

1CCCCCA
The 4�16 matrices Ei are de�ned by:

Ei =

0BB@
X>

i 0
>

4 0
>

4 0
>

4

0
>

4 X>

i 0
>

4 0
>

4

0
>

4 0
>

4 X>

i 0
>

4

0
>

4 0
>

4 0
>

4 X>

i

1CCA
This linear system consists of 4m equations. Since there are 16+(m�1) = 15+m unknowns,
we must have m �5. This linear system can be solved using the standard pseudo-inverse
technique:

s = (C>C)�1C>r

provided that the 3-D points are not coplanar.
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Finding the Collineation Between two Projective Reconstructions 7

2.3 Non-linear method

One way to assess the quality of the estimated collineation bH is to compare the projections
of bY i = bHXi and of cXi = bH�1Y i with the true image points. Let xi and x

0

i be the true
image points (in the left and right images) from which the 3-D point Xi was reconstructed,
and let Px and P0x be the corresponding projection matrixes (see (1)) The projections ofcXi by Px and P0x are noted by bxi and bx0i. Similarly we de�ne yi, y

0

i, Py and P0y , byi andby0i: bxi = Px
bH�1Y ibx0i = P

0

x
bH�1Y ibyi = Py
bHXiby0i = P

0

y
bHXi

With the notation y> = (y> 1), let d(y; ŷ) denote the Euclidean distance between the
image points y and by. The quality of the collineation is assessed by the following quadratic
error function:

f( bH; bH�1) =
1

4m

mX
i=1

�
d(xi; bxi)2 + d(x0i;

bx0i)2 + d(yi; byi)2 + d(y0i;
by0i)2� (7)

Finally the error function de�ned by eq. (7) can be used to estimate the collineation by
minimizing the following non-linear criteria:

min
H;H0

�
f(H;H0) + �kHH0 � I4k

2
�

(8)

where kHH0� I4k
2 is a penalty function and � is a real positive number. A high numerical

value for � guarantees that H0 = H�1.

An alternative method is to minimize only the distances between byi; by0i and the true
image measurements yi;y

0

i in the second pair of images. In this case we need no additional
constraints during the minimization:

min
H

f1(H) = min
H

1

2m

mX
i=1

�
d(yi; byi)2 + d(y0i;

by0i)2� (9)

2.4 Experimental comparison with simulated data

We implemented the methods described above to estimate H and we carried out a large
number of experiments in order to compare the quality of the results. The algorithms have
been tested on synthetic images (41 points). Gaussian noise with varying standard deviation
(from 0 to 2 pixels) was added to the image point locations. The back-projected errors given
by (7) were considered for comparison.

Figure 1 shows the median error over 100 trials as a function of image noise. The following
notations are used:

RR n�3468



8 Gabriella Csurka and Radu Horaud

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

noise level

m
ed

ia
n 

er
ro

r 
ov

er
 1

00
 tr

ia
ls

Backprojected errors

L1,L2
N1  
N2  

Figure 1: Comparison of di�erent methods computing the projective collineation.

L1 - linear method 1;

L2 - linear method 2;

N1 - non-linear method, minimizing the back-projections in the two image pairs, and

N2 - non-linear method, minimizing the back-projections in the second image pair.

Note �rst, that the quality of the collineation linearly degrades in the presence of image
noise. Moreover, the behavior of the four methods are very similar. The non-linear method
(N1 and N2) slightly outperforms the linear methods which, in turn, have an identical
behavior.

In the above experiments we used all the points (m = 41) in order to estimate the
collineation. To study the sensitivity due to the number of points we applied each method
to di�erent subsets of reconstructed points. In Figure 2 we show the results obtained by the
non linear method N2 using di�erent number of points to estimate the collineation. The
experiment was performed for three noise levels: � = 0:1; 0:5 and 1.

We can deduce from Figure 2 that we need at least 15 points to compute the collineation
H in order to have a stable back-projection of the points in the images.

INRIA



Finding the Collineation Between two Projective Reconstructions 9

Figure 2: Testing the sensitivity due to the number of points used to estimate the projective
collineation.

3 Robust method to compute H

The methods presented above work well if no mismatched points are present in the data.
However, in practice mismatches or outliers may be present:

� The error in localization of most detected points of interest is small; however a few
points may be inaccurately localized (over three pixels away from the correct location)
and can therefore severely degrade the quality of the estimation;

� False matches may occur when points from the left image are matched against points
from the right image, and

� False matches may occur when point matches from one image pair (x and x0) are
matched against point matches from the second image pair (y and y0).

These outliers can severely a�ect the quality of the estimation of the collineation matrix
when we apply least-squares techniques. Therefore, in this case, it is necessary to apply a
robust technique.

A robust estimation method consists in the following steps (see [13] for a similar ap-
proach):

� For each i, 1 � i � m, reconstruct Xi from xi, x
0

i, Px and P0x and Y i from yi, y
0

i,
Py and P0y [10].

RR n�3468



10 Gabriella Csurka and Radu Horaud

� Consider n subsets of 3-D point correspondencesXi $ Y i, each such subset containing
k correspondences among the m available correspondences. The points associated with
such a subset must be evenly distributed in the data. Such an even distribution can
be achieved using a classical bucketing technique.

� For each such subset j, 1 � j � k a linear method to estimate a collineation Hj is
used and a residual is determined for each trial j:

r2j =
1

m

mX
i=1

r2i (10)

=
1

m

mX
i=1

1

4

�
d(xi; bxi)2 + d(x0i;

bx0i)2 + d(yi; byi)2 + d(y0i;
by0i)2�

� Finally, retain the collineation bH associated with the least residual.

This method can be used to reject the mismatched points (outliers) as follows. Consider

the retained bH and compute the back-projected error ri for each point. Compute the mean
(or median) error r� and the standard deviation � of the set frigi=1::n. Reject each matches
(xi;x

0

i;yi;y
0

i), for which

j ri � r� j� t�

where t is a given threshold.

4 Applications

4.1 Stereo image transfer

A number of visual tasks may be carried out without using any Euclidean information about
the 3-D layout. Among these tasks, visual servoing is a prominent example. Visual servoing
is the task of controlling the motion of a robot manipulator using visual measurements. A
sensor (either a single camera or a stereo rig) measures the error between a current robot
position and a goal robot position. The robot is allowed to move until this error vanishes.
The success of visual servoing depends primarily on the correctness with which the goal
position has been predicted.

Consider for example the task of piling a cube on top of two other objects using a robot
manipulator and a stereo image pair. The visual servoing algorithm must be given the �nal
cube position in a representation that is invariant with respect to intrinsic and extrinsic
camera calibration parameters. One such a representation is a 3-D projective reconstruction
[7].

Figure 3 (a) and (b) shows an image pair of the cube as it should �nally lie on top
of two other objects. This image pair is used to build a projective reconstruction of the

INRIA
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(a) (b)

(c) (d)

Figure 3: A stereo pair showing a cube which lies on top of two objects (a) and (b). The
projective representation of the cube was �transferred� to another image pair (c) and (d).

cube in a projective basis that is attached to two other objects, the L-shaped object and
the Z-shaped one � say the two �legs". This projective reconstruction consists of 24 leg
points and 17 cube points. Figure 3 (c) and (d) shows an image pair of the two legs from
a di�erent viewpoint. The 24 leg points are reconstructed again and based on these points
a collineation is computed between the projective reconstruction associated with the �rst
image pair and the projective reconstruction associated with the second image pair. Based
on this collineation the 17 cube points are �transferred" from the �rst image pair to the
second image pair.

The advantage of using such a projective transfer from one image pair (learning) to
another (execution) is that the two tasks (learning and execution) can be performed with
two di�erent stereo systems and that the object representation that is actually stored at

RR n�3468
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x
P

X

Px’

Y

H

Projective
Euclidean

Figure 4: We are looking for H, that map projective reconstruction to a Euclidean one.

learning time is independent of camera calibration and of the relative position of the stereo
image pair with respect to the scene.

4.2 From projective to Euclidean reconstruction

Given a projective reconstruction of a set of 3-D points, an important task is to upgrade
it to Euclidean structure. In this case the collineation H maps the 3-D projective space
onto its 3-D Euclidean subspace, Figure 4. It is assumed that the Euclidean coordinates

Y i = (Y
(1)
i ; Y

(2)
i ; Y

(3)
i )> of a few �control" points are known in some Euclidean basis BE .

Let X i represent the 3-D projective coordinates of point i. Xi is a homogeneous 4-vector.
Provided that there are at least 5 such control points in general position, one can compute the

collineation H that maps Xi onto Y i = (Y
>

i 1)>. The latter represents the homogeneous
coordinates associated with the Euclidean coordinates of a control point i. Applying H to
the other points of the projective reconstruction upgrades the whole projective structure to
Euclidean structure.

Notice that this case is slightly di�erent than the situation previously described because
only one image pair is available. To estimate H, one possibility is to apply one of the two
linear methods as described above. However, these linear methods minimize an algebraic
distance. Here we would like to take full advantage of the known Euclidean structure
associated with the control points and devise a linear method which minimizes an Euclidean
rather than an algebraic error function.

Consider the 4-D vector space corresponding to the projective sub-space generated by
the Euclidean basis BE [11]. In this sub-space the hyper-plane X(4) = 1 corresponds to
the 3-D Euclidean space. One way to estimate H is to minimize the sum of squares of the

INRIA
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Y

H X

d

i

i

i

Figure 5: The Euclidean distance between vectors Yi and HXi in 4-D vector space can be
approximated by di.

Euclidean distances between the 3-vectors Y i and V i with:

V i =

�
(HXi)

(1)

(HXi)(4)
;
(HXi)

(2)

(HXi)(4)
;
(HXi)

(3)

(HXi)(4)

�>
Hence, the error function to be minimized is:

min
H

nX
i=1

"2i

with:

"2i =

�
(HXi)

(1)

(HXi)(4)
� Y

(1)
i

�2

+

�
(HXi)

(2)

(HXi)(4)
� Y

(2)
i

�2

+

�
(HXi)

(3)

(HXi)(4)
� Y

(3)
i

�2

which is a non-linear function in the entries of H. To minimize this function, non-linear
optimization methods are necessary.

Alternatively, it is possible to de�ne an Euclidean distance in the 4-D vector space
associated with the Euclidean space when the latter is a sub-space of the projective space.
One way to de�ne an Euclidean distance between Yi and HXi is to arbitrarily �x the scale
factor associated with the homogeneous vectorHXi and to compute the distance di between
this vector and its projection onto the direction of Yi (see Figure 5):

d2i = (HX i)
>(HXi)�

(Y >

i HXi)
2

Y >

i Y i

= X>

i H
>
I4 HXi �

�
1

Y >

i Y i

�
X>

i H
>Y iY

>

i HXi

= X>

i H
>

�
I4 �

Y iY
>

i

Y >

i Y i| {z }
Ai

�
HXi

= X>

i H
>
AiHXi
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It is straightforward to check that matrix Ai is symmetric and since its eigenvalues are
(1; 1; 1; 0) it is semi-de�nite and positive. With the notations already used in sections 2.1
and 2.2:

HXi =

0BB@
X>

i 0
>

4 0
>

4 0
>

4

0
>

4 X>

i 0
>

4 0
>

4

0
>

4 0
>

4 X>

i 0
>

4

0
>

4 0
>

4 0
>

4 X>

i

1CCA
0B@ H11

...
H44

1CA = Eih

we obtain the following error function:

d2 =
X
i

d2i = h>
X
i

�
E
>

i AiEi

�
h = h>Ah (11)

The solution that minimizes this error function is the eigenvector corresponding to the
smallest eigenvalue of the positive semi-de�nite symmetric matrix A.

Figure 6: A pair of real images (left) and the Euclidean reconstruction of the scene (right).

To test this method on real data, consider the pair of images of Figure 6. Point corres-
pondences were obtained interactively, and the fundamental matrix was estimated using the

INRIA
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Figure 7: Rigid motion of a stereo rig.

method described in [13]. Euclidean 3-D coordinates of 26 points were provided with the
data and we used them to compute the collineation H. Finally, this collineation was applied
to all the projectively reconstructed points. Figure 6 shows the Euclidean reconstruction
thus obtained.

4.3 Self-calibration and Euclidean reconstruction

We consider now an uncalibrated stereo rig that observes an unknown 3-D scene while it
performs a set of rigid motions. 3-D Euclidean coordinates of the scene points are desired. In
the general case, 3-D structure can be recovered only up to a 3-D projective transformation.
However, if the stereo rig undergoes rigid motion and for unchanging intrinsic camera para-
meters, the projective ambiguity can be reduced to a�ne or to Euclidean [14, 2, 6]. These
methods make use of some of the algebraic properties of the collineation matrix H between
two projective reconstructions. Indeed, as outlined below, the projection transformation is
conjugated, in this special case, to a rigid transformation.

Indeed, if the two pairs of images were obtained by the same stereo rig which was
moved rigidly, the fundamental matrixes Fx and Fy, and hence P0x = P

0
y are the same.

Therefore, (Px;P
0
x) and (Py;P

0
y) de�ne the same the projective basis BP . Assume that BE

RR n�3468



16 Gabriella Csurka and Radu Horaud

is the Euclidean basis associated with the stereo rig before the motion and let HPE be the
collineation between the bases BP and BE (see Figure 7).

In this case, the collineation that maps the reconstructed points before the motion Xi

to the reconstructed points after the motion Y i is given by

H 'H�1
PEDHPE (12)

where D is the displacement of the stereo rig and HPE is the collineation which update the
projective points Xi (or equivalently Y i) to a Euclidean representation. It has been shown
in [6] that

HPE =

�
K
�1

03

a> �

�
(13)

where K is the matrix of intrinsic parameters of the left camera and
�
a> �

�
is the

equation of the plane at in�nity in the projective basis BP .
Expanding (12), after a normalization of H such that det(H) = 1 and trace(H) > 0,

gives

H =

�
K 03

� 1
�
a>K 1

�

��
R t

0
>

3 1

��
K
�1

03

a> �

�
=

�
KRK

�1 +Kta> �Kt
1
�
(�a>KRK�1 � a>Kta> + a>) �a>Kt+ 1

�
(14)

It was shown in [6], that if D is a general displacement, one can compute (a>; �)> up to a
scale from:

H
>

�
a

�

�
= 04

Furthermore, from (14) results

G1 = KRK�1 = H33 �
1

�
h1a

where the following notation was considered

H =

�
H33 h1

h
>

2 h44

�
Note that G1 is the in�nite homography between the images of the left camera, before

and after the rigid motion. Using the orthogonality of rotation matrices one can easily
obtain the following relationship:

G
>

1K
�>
KG1 = K�>

K
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Figure 8: A pair of images of the calibration grid (up) and the Euclidean reconstruction of
the scene (down).

The matrixK�>
K is known as the image of the absolute conic. Therefore, one can compute

the image of the absolute conic, and hence the camera intrinsic parameters, if matrix G1

is known [5].
From G1 and K results R = K

�1
G1K and from h1 = �Kt the translation up to a

scale is given by:

t =
1

�
K
�1h1

To summarize, the collineationH allows us to estimate the plane at in�nity and the inter-
nal camera parameters and hence, to convert projective structure to a�ne and to Euclidean
structure.

To give an example of the usefulness of H in this case (one can �nd further experimental
results in [14, 2, 6]) we gathered two image pairs of the calibration grid (Figure 8) with

RR n�3468



18 Gabriella Csurka and Radu Horaud

the same stereo rig and we computed the collineation H. From H we obtained the plane at
in�nity

�
a> �

�
and the intrinsic parametersK. Furthermore, we updated the projective

points Xi using HPE and thus obtaining a Euclidean reconstruction. Two di�erent views
of the 3-D sets of points thus obtained are shown on Figure 8.

5 Conclusion

In this paper we described various methods to estimate the collineation between two projec-
tive reconstructions. We described two linear methods which minimize an algebraic distance
in 3-D projective space, two non-linear methods which minimize a metric distance in 2-D
image space, and a robust method which combines any of the linear methods with an out-
lier rejection strategy. Moreover, for the special case where Euclidean coordinates of a few
control points are available, we devised a linear method based on a metric distance in the
4-D vector space associated with homogeneous coordinates.

In order to evaluate these methods and assess their respective merits, we carried out a
large number of experiments with both synthetic and real data. The synthetic data allowed
us to add Gaussian noise to image data and to study the numerical stability of the various
implemented methods. In the light of these experiments it appears that all the methods have
an almost identical behavior and that the non-linear methods outperform the linear ones.
However for levels of noise below one pixel in magnitude it is not possible to distinguish
between the performances of the four methods. Another set of experiments allowed us to
test the performance as a function of the number of points being considered. The conclusion
of this set of experiments is, not surprisingly, that (i) the more point matches are available
the better it is and (ii) below 15 to 20 point matches one should expect unreliable results.

For the special case where projective coordinates of a few control points are matched
against Euclidean coordinates, we have been able to devise a linear method which is based
on a metric distance in 4-D space � the vector space associated with homogeneous coordinates
of the 3-D projective space and its Euclidean sub-space. Such a linear error function could
probably be extended to other estimation problems such camera calibration and bundle
adjustment.

One interesting application associated with the computation of such a 3-D projective
transformation is the transfer of 2-D points from one stereo image pair to another stereo
image pair. This transfer technique is useful whenever a set of 3-D points is observed with
one stereo pair and one wants to display the same 3-D set as it would be observed by another
stereo pair. This stereo transfer technique has been applied to a visual grasping method
developed elsewhere [7].

Finally we described the relationship between the 3-D projective transformation and the
self-calibration of a stereo rig. This is probably one of the most promising outcome because
it allows the upgrading of a 3-D projective reconstruction to a�ne and to Euclidean based
on linear algebra.
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