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Abstract

We describe a new method for camera autocalibration and scaled Eu-
clidean structure and motion, from three or more views taken by a
moving camera with fixed but unknown intrinsic parameters. The
motion constancy of these is used to rectify an initial projective re-
construction. Euclidean scene structure is formulated in terms of the
absolute quadric — the singular dual 3D quadric ( ����� rank 3 ma-
trix) giving the Euclidean dot-product between plane normals. This
is equivalent to the traditional absolute conic but simpler to use. It
encodes both affine and Euclidean structure, and projects very simply
to the dual absolute image conic which encodes camera calibration.
Requiring the projection to be constant gives a bilinear constraint be-
tween the absolute quadric and image conic, from which both can be
recovered nonlinearly from ���	� images, or quasi-linearly from�
��� . Calibration and Euclidean structure follow easily. The non-
linear method is stabler, faster, more accurate and more general than
the quasi-linear one. It is based on a general constrained optimization
technique — sequential quadratic programming — that may well be
useful in other vision problems.

Keywords: autocalibration, absolute quadric, multiple images, Eu-
clidean reconstruction, constrained optimization.

1 Introduction
Camera calibration is traditionally based on explicit 3D scene
or motion measurements, but even for unknown motions in an
unknown scene there are strong rigidity constraints relating the
calibration to the image, scene and motion. Autocalibration is
the recovery of calibration and motion from an unknown scene
using rigidity. Structure follows easily from this.

With arbitrary cameras, structure can only be recovered up
to an overall projectivity. Additional constraints are required
to ‘Euclideanize’ it. We will focus on the traditional case of
a single camera with fixed but unknown intrinsic parameters
moving arbitrarily in the scene [13, 4, 7], but our formalism
easily extends to handle multiple cameras and prior calibra-
tion, motion or scene constraints. Alternative approaches re-
strict the motion to a pure rotation [8] or a plane [1]; handle
zoom modulo an initial pre-calibration [15, 16]; or assume a
rigidly moving stereo head [22]. For practical applications it
is important to exploit any constraints that may be available,
as this both increases stability and allows autocalibration from
more restricted types of motion.

Used on its own, autocalibration has several notable weak-

To appear in CVPR’97. This work was supported by INRIA Rhône-Alpes
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nesses: (i) scene scale can not be recovered — small mo-
tions in a small scene are indistinguishable from large mo-
tions in a large one; (ii) generic motions — independent ro-
tations and some translation — are required for a unique (up
to scale) solution: many common types of motion are degen-
erate cases; (iii) past formulations have tended to be complex
and ill-conditioned, often adding further degeneracies of their
own; (iv) it has been hard to incorporate additional knowledge
except during a final bundle adjustment, exacerbating the de-
generacy and ill-conditioning problems.

This paper focuses on the last two points, contributing a sim-
pler, more direct problem formulation and a well-behaved nu-
merical algorithm that easily handles additional constraints.

2 The Absolute Quadric
We work in homogeneous coordinates, initially Euclidean,
later projective. Finite points and asymptotic directions
(‘points at infinity’) are given by column vectors ���� x ��� �
and ���� v ��� � . A row vector ���� n ��� specifies a plane
with normal n and offset � � . � lies on � iff its signed distance
from it vanishes: �!�" n # x $%�&(' . The plane at infinity�*)+�� 0 ��� contains the infinite points � d ��� and no finite
ones.

Change-of-basis transformations are ,.-/, matrices acting
by left multiplication on points ( ��0213� ) and by right mul-
tiplication by the inverse on planes ( �40 �517698 ) so that
point-plane products are preserved: �!�:(�;�517698<�=�>13�?� . Eu-

clidean transformations take the form @ R
0

tA�B where R is a CD-EC
rotation matrix (RR �F I) and t a translation vector. R be-
comes a rescaled rotation for scaled Euclidean or similarity
transformations, and an arbitrary nonsingular C�-GC matrix for
affine ones. For projective transformations 1 is an arbitrary
nonsingular ,�-&, matrix.

To distinguish their very different transformation laws,
points are called contravariant, and planes covariant. Ma-
trices and higher dimensional arrays (tensors) have a different
transformation law associated with each index. Contraction
(‘projective dot product’ or sum over products of components)
is only meaningful between contravariant-covariant index pairs
(e.g. a point and a plane). Otherwise the result is completely
basis-dependent.

The absolute quadric is the symmetric ,H-3, rank 3 ma-

trix I�J@ I
0

0K B . It is defined to be contravariant (point-like)

in each index, so I�0L1"I"15� under change-of-basis trans-
forms �H0M13� . It follows that I is invariant under Euclidean



transformations, is rescaled under similarities, takes the form@ Q
0

0K B (symmetric C -!C nonsingular Q) under affine ones, and

becomes an arbitrary symmetric , -�, rank 3 matrix under pro-
jective ones.

Being contravariant, I can be contracted against plane vec-
tors. Given a finite plane � , I � � is the point at infin-
ity representing its Euclidean normal direction. The plane at
infinity is I ’s unique null vector: I � �)  �

. The Eu-
clidean dot product of the normals of two finite planes �
and ��� is n # n �5 � I ��� � , and the angle between them is
cos �F �;� I"��� � ����� � � I � � �=�;� � I"� � � � . These formulae
apply in any basis provided the corresponding I is used. SoI is a projective encoding of both scaled Euclidean (angle be-
tween planes) and affine (plane at infinity) structure. Using I ,
it is straightforward to define further Euclidean concepts such
as spheres, angles between lines and lines or planes, relative
distances, and even (fixing a scale) absolute distances.

In contrast to planes, there is no meaningful “Euclidean
dot product” between finite points. However, introducing 3-
component coordinates on the plane at infinity, the dot product
of two direction vectors becomes u # v  u � C v where the CE-�C
symmetric doubly covariant absolute conic matrix C becomes
I in any Euclidean basis. The need for separate coordinates
on �*) is inconvenient. In world coordinates the direction dot
product can be written 	*��
�� , where 
 is any doubly covari-

ant symmetric ,�- , matrix of the form @ I� �� B . However there

is no canonical choice of 
 : it cannot be invariant under trans-
lations. Only the upper C - C submatrix (the restriction of 

to �*) ) is invariant. Such a 
 converts a point at infinity (di-
rection vector) � into some finite plane � ��
 orthogonal to it,
but there is no canonical choice of such a plane.

The absolute quadric is also much simpler to project into im-
ages than the absolute conic. Any doubly contravariant world
matrix  can be projected to a doubly contravariant image
one m according to m ������ � , where � is the usual C -G,
point projection �%0�� � . This applies both to skew Plücker
line matrices � and symmetric dual quadric matrices 
 . In
each case the result represents the actual image of the 3D ob-
ject (skew matrix representation � l ��� of image line l, and dual
image conic q representing the image of the dual quadric 
 ’s
occluding contour). I ’s projection ������I�� � is the dual
absolute image conic — a symmetric C -GC rank 3 image ma-
trix. Using C7-:C RQ decomposition to expand the projection
�  K R � I � � t � into the traditional upper triangular calibra-
tion matrix K, rotation R and translation to the optical centre
t, we find that �  K K� is invariant under rigid motions and
encodes the camera’s intrinsic parameters. K can be recovered
from � by Choleski factorization.

The dual and non-dual absolute image conics � and � 698
encode the 3D angular structure implicit in the image mea-
surements. The 3D angle between the visual planes of im-
age lines l and m is cos �%4� l � m � ��� � � l � l � �=� m � m � � ,
while that between the visual rays of image points � and � is
cos �!(�;� � 698�� �*��� � �;� � 6 8 � � � �!�"� 698 � � � .
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Figure 1: The absolute quadric # is a very flat dual quadric “squashed
onto” the plane at infinity, whose rim is the absolute conic C.

The above algebra is all we will need to use I , but a geomet-
ric picture may help intuition. Temporarily allow � to be com-
plex. Then a symmetric covariant matrix 
 uniquely defines
a non-empty quadric: a quadratic hypersurface (ellipsoid, hy-
perboloid,. . . ) given by homogeneous equations �*��
��" ' .
The plane � �$
 is called the dual plane of � in 
 . � lies on

 iff it lies in its own dual plane: � � �$
 � �H ' . This happens
iff �?�$
 is tangent to the quadric at � . The dual of 
 is the
quadric �%
G698 �D� �' in the projective space of all planes.
The ‘points’ of 
 698 are exactly the tangent planes of 
 , as is
easily seen by replacing ��&M� �$
 .

For regular 
 the duality relation is symmetric. For singular

 the point quadric ‘stretches out’ to a cone then a plane pair,
while in dual-space the quadric collapses onto a plane then a
line until only its ‘rim’ remains (i.e. it becomes a dual-space
plane conic curve or a point pair). The cone vertex and its dual
space supporting plane correspond to the kernel of 
 .

Dually, a singular dual quadric 
.698 defines a dual-space
cone and a point-space conic curve whose dual-space vertex
or point-space supporting plane is the null space of 
H698 . This
is the case with the absolute quadric I : it is the degenerate
dual-space quadric whose ‘rim’ is the absolute conic C in � )
(see fig. 1). Dual quadric projection 
 0'�(
)� � is also
easy to picture: an image line l is tangent to the image conic iff
the pulled back visual plane l � is tangent to the 3D quadric:
l �*�(
)� �D� l �  � l � �+
 � l � � �/ ' (c.f. fig. 1).

3 Autocalibration
There are essentially three current approaches to autocalibra-
tion, all based on the motion constancy of � . Multilinear
matching constraints exist relating 2–10 images of any dual
quadric, including I . The Kruppa constraint is the two im-
age case, originally used to find epipolar geometry for rela-
tive orientation from known calibration. It essentially says that
since epipolar lines correspond via epipolar planes, the above
angle-between-visual-planes formula must give the same re-
sult for corresponding epipolar lines in either image. A com-
pact derivation applies the closure identity [19] F ,.-/�"-0�

2



� e - , � � � , to either side of I to derive the quadric matching
constraint F , - � F �,.- � � e - , � � � � e - , �;� � . Allowing for symme-
try and rank deficiency, this amounts to C linearly or (cross
multiplying to eliminate the unknown scale)

�
algebraically

independent equations. � has 5 d.o.f. so at least 3 images
are required. Various resolution procedures exist. Maybank,
Faugeras & Luong [13, 4] use algebraic elimination in well-
chosen coordinates, Zeller & Faugeras [21] apply least squares
optimization over many images, and Hartley (reported in [14])
uses a preliminary SVD based simplification.

The second approach stratifies [12, 3] the problem into
affine and Euclidean parts. Affine structure is encoded in � )
or the absolute homography H ) — the inter-image mapping
defined by projecting pixels up onto � ) . For fixed calibration,
H )  K R K 698 is conjugate to a rotation and � turns out to be
invariant: H ) � H �) � � (with equality if det � H )�� �� ).
This gives a linear constraint on the “Kruppa matrix” � , some-
times also (misleadingly) called the Kruppa constraint. Since
H ) fixes the direction d of the rotation axis, � $�� d d� also
satisfies the constraint for any � . So two rotations with differ-
ent axes are needed to solve for � .

If there is negligible translation compared to a visible ‘back-
ground’, H ) is an observable inter-image homography so au-
tocalibration is straightforward (but not structure!) [8]. H )
can also be found from known vanishing points or 3D par-
allelism [3]. But for pure autocalibration on finite points,
the only constraints on � ) and H ) are their relations toI , � , and K. Given a plane � n � � and an image pro-
jection �+ A � I �9� t � , the image-to-plane homography is@ � n � t �	��
 I � t n� n

B A 6 8 . Specializing to coordinates ��2� I � 0 �
and projecting into another image A � � I � � t � � gives a homog-
raphy H  A � � � I $ t � n � . If � n � � represents � ) in some
projective frame, applying this to � � H ) � H �) gives equa-
tions relating the unknowns � n � � and � . These can be solved
iteratively given a reasonable initial guess for � ) or K.

Hartley pioneered this sort of approach using bounds on � )
[7]. Most other authors start from an approximate prior cali-
bration [12, 10]. Heyden & Åström’s formulation [10] also
partially (but independently) foreshadows ours given below.
The modulus constraint [12, 15] — that H )  K R K 698
being conjugate to a rotation matrix must have the same unit
modulus eigenvalues — focuses on � n � � by implicitly elim-
inating � or K. Armstrong et. al. [1] take a more eclectic
approach, restricting attention to planar motion and using both
parallelism to constrain H ) and the motion constancy of the
circular points (the 1D analogue of � ).

The Kruppa (epipolar constraint) approach avoids the need
to deduce H ) indirectly from the constraints, but it can not
distinguish I from any other quadric with constant image: pla-
narity (rank I  C ) is not directly enforced.

3.1 Absolute Quadric Method

This paper introduces a third approach to autocalibration,
which explicitly locates the absolute quadric in an initial pro-

jective reconstruction and uses it to ‘straighten’ the projective
structure. I is recovered using the motion constancy of its
projection � � �� I�� � , where ��$� K R �� I � � t >� 156 8 for
fixed unknown C -:C and , -H, transformations K and 1 and
normalized rotations R  . If we knew the correct relative scal-
ing for the projections, �  �� I � � would be linear in the
unknowns � and I and could be solved trivially. Instead, we
eliminate the unknown scale by taking ratios of components
and cross-multiplying, in much the same way as the point pro-
jection x � �/� can be rewritten as x �/�*�/�?�  � :

� ��� �*�� I�� � � �	� � � ��� �*�� I�� � � ���  �
This absolute quadric projection constraint is the basis of
our autocalibration method. The antisymmetrization inter-
changes both indices ��� and ��� of the C - C symmetric ma-
trices � and �� I � � . Viewing these as abstract 6D vectors,
we will write this symbolically as

��� �*�� I � � �  �
For each image, this amounts to ���,! "�$# bilinear equations
( # linearly independent) in the � ' $&%!'�(% independent com-
ponents of I and � , with coefficients quadratic in the image’s
reconstructed projection matrix. It can also be written as 9 bi-
linear equations in I and �!698 (8 linearly independent):

� 698 �� I�� �  -) trace �*� 698 �� I�� � �D# I
The constraint says that angles between visual planes mea-
sured using I must agree with those measured from the corre-
sponding image lines using � . Roughly speaking, the Kruppa
constraint is the projection of the restriction of this to epipolar
planes, while the homography constraint ��� � H ) � H �) �  �
is the projection of the rotational part of it. At least C im-
ages are required for a unique solution. For maximum sta-
bility it is advisable to include further images, and to enforce
rank � I � (C (i.e. det �>I �  ' ) and any known scene or cali-
bration constraints.

We will describe two methods of resolving the absolute
quadric projection constraints. Both use all �$#+* equations
from * images and solve the system in algebraic least squares.
The nonlinear method uses constrained numerical optimiza-
tion on *-,�C images, while the quasi-linear method uses
SVD based factorization on * , , . Only the nonlinear
method directly enforces det �>I�� 	' . It requires a (very ap-
proximate) initialization, but turns out to be more accurate, sta-
bler, faster and simpler than the quasi-linear method.

Once I and � are known, the camera calibration K is eas-
ily found by Choleski decomposition of �  K K � . Simi-
larly, a Euclideanizing homography ��0 1 698�� , � 0 �31
can be found from the eigen-decomposition .0/1. � of I �1 @ I

0
0K B 1 � by setting 1 �2.3/ -54�, (with the ' eigenvalue

in / replaced by � ). The columns of 1 are an absolute Eu-
clidean basis in projective coordinates (i.e. 3 orthogonal direc-
tions and an origin). If required, the rotational part of each
rectified projection K698 �� 1�� R �� I � � t  � can be perturbed
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to be precisely orthonormal (e.g. using quaternions and SVD
[11]). As always, a final, close-lying-outlier-insensitive bun-
dle adjustment over all parameters is recommended for precise
work.

3.2 Degeneracy

Autocalibration has some intrinsic limitations that apply uni-
formly to all algorithms. In particular, if the axes of all the
camera rotations are parallel (say, vertical), the horizontal-to-
vertical aspect ratio of neither the camera nor the scene can be
recovered. Intuitively, a narrow scene taken with a wide aspect
ratio lens is indistinguishable from a wide scene taken with a
narrow lens. This is unfortunate as many real image sequences
do preserve a vertical. To avoid this problem, one must either
include images with 3 substantially different tilts or cyclotor-
sions, or rely on prior scene, motion or camera knowledge (e.g.
aspect ratios). � '�� rotations provide the maximum stability, but
feature extraction and matching limitations mean that these are
usually only possible with pure cyclotorsion.

Formally, if �  � d ��� � is the 3D direction (common point
at infinity) of the rotation axes and �� �� K R  d  K d (in-
dependent of � ) is the corresponding image point, adding any
multiple of � �D� to I and the same multiple of �*� �D�=� � �D� � to
� maintains both � ����I � � and det �>I �  ' , so it gives an-
other feasible solution. This corresponds to a vertical stretch-
ing of both K and the scene.

Pure translation is an even more degenerate case as it fixes
all points at infinity: affine structure follows easily, but I
is essentially arbitrary so autocalibration is impossible. Var-
ious other types of motion lead to further degeneracies: Sturm
[17] gives a detailed catalog. Such ambiguities must typically
be handled by imposing further constraints (known skew, as-
pect ratio, motion. . . ). This can be difficult with algebraic ap-
proaches, but is very easy in our numerical formalism below.

Euclidean structure and motion follow directly from auto-
calibration, provided only that there is sufficient translation to
give a stereo baseline. Translation-neutral internal calibration
methods would be useful: Hartley’s method [8] requires zero
translation, while reconstruction based methods require fairly
substantial ones and nonplanar scenes.

3.3 Nonlinear Solution

Now consider how to solve the quadric projection constraints
� �"� �  I � � �  �

for I and � , with det � I � 	' . By far
the most effective approach turns out to be direct constrained
numerical optimization. Numerical approaches are sometimes
undervalued in the vision community. Empirically, algebraic
elimination on coordinate expressions provides valuable the-
oretical insight but almost inevitably leads to poor numerical
conditioning, while numerical resolution based directly on the
original, physically meaningful variables tends to be signifi-
cantly more stable in practical applications, but too ‘opaque’ to
provide much theoretical insight. At present it is hard to relate
the two approaches, but progress in tensorial and Grassmann-
Cayley-like formalisms [19, 5] and computational nonlinear

algebra (e.g. [2]) may soon make this much easier.
Many constrained optimization schemes exist [6]. I will give

a brief outline of the simple one used here, as I think that it
has considerable potential for other constrained problems in
vision. Sequential Quadratic Programming [6] is a gen-
eral numerical scheme for optimizing smooth non-linear cost
functions under smooth non-linear constraints. It is Newton-
like in that it requires second derivatives of the cost function
and potentially provides quadratic convergence. The version
presented below is trivial to implement and adequate for our
needs. More elaborate versions provide inequality constraints,
stabilization and step control schemes.

The goal is to extremize a scalar cost function �D� �?� subject
to a vector of constraints ���;�?�  �

. Lagrange multipliers �
give an implicit solution:� � $�� # � �5 � with ���;� �  �
Resolve this iteratively starting from some initial guess �
	 .
Approximate the cost to second order and the constraint to first
order at ��	 , giving a quadratic optimization subproblem with
linear constraints:������� � � � #�� � $ �� � � � # � , � #�� ��������� ��� � � �����! 
This subproblem has an exact linear solution:� � , � � � �� � � � � � �� �  �

� � �� �
Solve for � � , update ��	 to � -  ��	 $"� � , re-estimate deriva-
tives, and iterate to convergence.

In the current application, � contains the � 'F$ % 
�(% components of I and � . The cost function is the
sum of squared violations of the projection constraints# %$ �&�3�*�  I � � � $ , . The constraint vector � enforces rank-
3-ness det �>I �. ' and normalization $ � $ ,  $ I $ ,  C .
Further knowledge or constraints are easily added (e.g. known
skew, aspect ratio, principal point,. . . ). A Gauss-Newton ap-
proximation (ignoring second derivatives of the quadric pro-
jection constraints) was used for the Hessian

� , � .
Initial guesses I&	 and �'	 are required. Using �(	 ��*��I&	 � �D�� � , I)	 can be estimated in linear least squares

from an approximate calibration �(	  K 	 K �	 , or �*	 by pro-
jecting an estimated I�	 derived from approximate scene con-
straints. In fact, for * ,F, images and reasonably well placed
cameras (i.e. several independent rotations and translations),
spurious solutions seem to be rare and any initialization will

do. The choices �+	  I and I)	 -, or @ I
0

0K B often suffice,

although for C images, long focal lengths or highly constrained
motions they can sometimes lead to local minima.

Convergence is rapid (4–10 iterations) unless the problem is
degenerate, and even then failure to converge to some feasible
solution is rare. It is worth using a fairly accurate (e.g. nonlin-
ear least squares) projective reconstruction, especially in the
unstable C image case. Omitting the det �>I �G ' constraint
significantly reduces both accuracy and stability.
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Figure 2: Mean 3D reconstruction error vs. image noise, number of images and angular spread of cameras for quasi-linear Euclidean, nonlinear
Euclidean and projective reconstructions of point clouds.

3.4 Quasi-Linear Approach

It is also possible to solve the quadric projection constraints
using a “quasi-linear” approach. No initialization is required,
but at least , images are needed and the method is slower, less
stable and less accurate than SQP.

The basic idea is to write the independent components of I
and � as vectors and work with the � '�-3%7'% ' components
of their outer product matrix. The absolute quadric projection
constraints are linear and have rank 15 in these variables, so the
matrix can be recovered linearly from * ,������- �

� �, images.
A � ' - % SVD projects the result to rank 1 and factorizes it into
vectors I and � . Finally, I (rewritten as a matrix) is projected
to rank 3 by annulling its smallest eigenvalue, and the method
proceeds with I and � as above.

Since it only enforces the rank 1 and det � I � 2' con-
straints indirectly, the quasi-linear method introduces degen-
eracies that are not intrinsic to the underlying problem. In par-
ticular, it fails whenever any point — even a finite one — is
fixed in all images (e.g. a fixating camera).

4 Algorithm
The full algorithm for autocalibration and scaled Euclidean re-
construction is as follows:
1) Standardize all image coordinates.
2) Find the projections �� by projective reconstruction.
3) Find the absolute quadric I and image conic � by solving
�$#+* bilinear quadric projection constraints �1�.� �  I � � � �

(nonlinear and quasi-linear methods).
4) Recover the camera calibration K by Choleski decomposi-
tion of �  K K � .
5) Find a ,%- , Euclideanizing homography 1 by eigen-
decomposition of I .
6) Perturb K 698 �� 156 8 � R  � I � � t  � to be exactly Euclidean.
7) Recover Euclidean structure by � 0 1�� or back-
projecting with the corrected projections.
8) Optional bundle adjustment.

Standardization rescales image pixel coordinates to lie in the
unit box � ����� � �9- � ����� � � . It is absolutely indispensable. Oth-

erwise, different equations of $ ���/�*�  I�� � � $ ,
	 ' have
a difference in scale of (say)

� # % � 	 � ' -�� . Their numerical
conditioning is terrible and severe floating point truncation er-
ror leads to further loss of precision. This is perhaps the ma-
jor reason for the observed instability of some previous auto-
calibration approaches. Standardization (‘preconditioning’) is
essential whenever there is an implicit least squares trade-off
(as here), particularly with equations of high degree. It is dis-
cussed in every text on numerical methods, but does not seem
to have been widely known in vision before Hartley made the
point for fundamental matrix estimation [9].

5 Experiments
To give a rough idea of the performance of the algorithm, we
briefly report on numerical experiments with synthetic data.
Images of random point clouds were taken with identical wide-
angle cameras placed randomly within a fixed cone of view-
ing angles, approximately on a sphere surrounding the scene.
Several other configurations have also been tried with success.
Uniform random noise was added to the image points. The
initial projective reconstruction was projective factorization
[18, 20] followed by projective bundle adjustment (not indis-
pensable). The nonlinear method was initialized with a calibra-
tion wrong by about # '� . Mean 3D reconstruction error over
10 trials was estimated by projective least squares alignment
for projective reconstructions and scaled Euclidean alignment
for Euclidean ones. There was no final Euclidean bundle ad-
justment, although this is recommended for real applications.
Default values were � � pixel noise, 6 views, 50 points, with a
wide ( � C '�� ) range of viewing directions and cyclotorsions.

Figure 2(a) shows that all errors scale linearly with noise,
and that the un-adjusted nonlinear Euclidean reconstruction
(with CE$ C $ � �� free parameters) is very nearly as good as
the underlying projective one (with �$# ). Figure 2(b) suggests
that this applies for any number of images, while the quasi-
linear method is somewhat less stable. Figure 2(c) shows that
the error scales smoothly as the viewing angles are decreased.

In an informal test on real images of a calibration grid, we
compared un-bundle-adjusted autocalibration with the scatter
of results from conventional calibration using known 3D point
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positions. It was within: 0.1% ( '�� C � ) on ��� and ��� ; 0.01%
( ��� # � ) on ���+�	�
� ; and 5 pixels ( � 1–2 � ) on ��	 and � 	 (the �

estimates here are very imprecise).

6 Discussion & Conclusions
We have described a new method for autocalibrating a moving
camera with fixed but unknown intrinsic parameters, moving
arbitrarily in an unknown scene. An initial projective recon-
struction is rectified to give calibration and scaled Euclidean
structure and motion. The method is based on a new projective
encoding of metric structure: the absolute quadric. This is
equivalent to the absolute conic, but considerably easier to use.
It projects very simply to the dual absolute image conic which
encodes camera calibration. The absolute quadric and conic
are recovered simultaneously using an efficient constrained
nonlinear optimization technique (sequential quadratic pro-
gramming) or a quasi-linear method. The results are stable
and accurate for generic camera motions, and the formalism
clarifies the reasons for autocalibration’s intrinsic degenera-
cies. A major practical advantage of the nonlinear approach is
the ease with which it incorporates any further constraints that
may be available, potentially significantly reducing the prob-
lems of degeneracy.

Future work will examine several topics. In the one cam-
era case, priorities are techniques to detect and handle degen-
eracy, and a study of the advantages of incorporating various
additional constraints. Problems with several cameras (i.e. sev-
eral � ’s) are easily handled, as are rigidly moving stereo heads
( � is replaced by a ‘local’ I in the head frame, invariant un-
der motion induced ,�-G, homographies). Non-reconstruction
based autocalibration techniques that work whether or not the
translations are zero would be useful. Finally, SQP is being
successfully applied to several other constrained statistical fit-
ting problems in vision.
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