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Abstract

This paper presents a new method for matching individ-
ual line segments between images. The method uses both
greylevel information and the multiple view geometric rela-
tions between the images. For image pairs epipolar geome-
try facilitates the computation of a cross-correlation based
matching score for putative line correspondences. For im-
age triplets cross-correlation matching scores are used in
conjunction with line transfer based on the trifocal geome-
try. Algorithms are developed for both short and long range
motion. In the case of long range motion the algorithm in-
volves evaluating a one parameter family of plane induced
homographies. The algorithms are robust to deficiencies in
the line segment extraction and partial occlusion.

Experimental results are given for image pairs and
triplets, for varying motions between views, and for differ-
ent scene types. The three view algorithm eliminates all
mismatches.

1. Introduction

The goal of this paper is the automatic matching of line
segments between images of scenes mainly containing pla-
nar surfaces. A typical example is an urban scene. Line
matching is often the first step in the reconstruction of such
scenes.

Line matching is a difficult problem for several reasons.
The first is due to the deficiencies in extracting lines [6] and
their connectivity: although the orientation of a line seg-
ment can be recovered accurately, the end points are not re-
liable, and furthermore the topological connections between
line segments are often lost during segmentation. Some seg-
mentation algorithms are more successful than others [13]
but the problem remains. The second reason is that there
is no strong disambiguating geometric constraint available:
In the case of points (corners), correspondences must sat-
isfy the epipolar constraint. For infinite lines there is no
geometric constraint, whilst for lines of finite length there
is only a weak overlap constraint arising from applying the
epipolar constraint to end points.

Existing approaches to line matching in the literature are
of two types: those that match individual line segments;
and those that match groups of line segments. Individual
line segments are generally matched on their geometric at-
tributes — orientation, length, extent of overlap [1, 12, 20].
Some such as [4, 5, 10] use a nearest line strategy which
is better suited to image tracking where the images and ex-
tracted segments are similar.

The advantage of matching groups of line segments is
that more geometric information is available for disam-
biguation, the disadvantage is the increased complexity. A
number of methods have been developed around the idea of
graph-matching [2, 7, 9, 19]. The graph captures relation-
ships such as left of, right of, cycles, collinear with etc, as
well as topological connectedness. Although such methods
can cope with more significant camera motion, they often
have a high complexity and again they are sensitive to error
in the segmentation process. These methods are comple-
mentary to the approach in this paper which is for matching
individual line segments.

The approach in this paper is built on two novel ideas.
The first is to exploit the intensity neighbourhood of the
line. The use of affinity measures based on cross-correlation
of intensity neighbourhoods has been very successful in dis-
ambiguating corner matches [21]. However, there are two
problems with applying correlation directly to line neigh-
bourhoods: first, the point to point correspondence is un-
known; and second, corresponding neighbourhoods may
well have a very different shape and orientation, and this
is also unknown. For example, suppose a square neigh-
bourhood in one image back-projects to a planar facet on
one side of the line. The image of this region in the sec-
ond image is a quadrilateral, but its shape depends entirely
on the relative positioning of the cameras and plane. Even
a (significant) rotation or scaling will defeat naive cross-
correlation based on square neighbourhoods of the same
orientation. The second novel part of our approach solves
these problems: The epipolar geometry between the images
can be used to provide point to point correspondences along
the line segments. Further, the epipolar geometry, together
with the matched lines, restricts the possible homographies



(projective transformations) between the images to a one-
parameter family, and this family can be used to solve for
the neighbourhood mapping. The algorithm thus delivers a
correlation score between line segments which can be used
to discriminate between correct and false matches. The im-
plementation is robust to the instabilities of the extraction
process, and to partial occlusion.

1.1. Overview

The paper is organised as follows. Two algorithms are
developed for automatic line matching. The first, described
in section 2, is applicable to “short range motion”. This
is the image motion that arises in image sequences where
simple nearest neighbour tracking would almost work. The
second, described in section 3, is applicable to “long range
motion”. This is the image motion that arises between views
from a stereo rig, where the baseline is significant (com-
pared to the distance to the scene). There may be significant
rotation of the line between the images, and, more impor-
tantly, planar surfaces may have significantly different fore-
shortenings in the two images. The performance of both
algorithms are discussed and examples given using real im-
age pairs.

Section 4 describes the extension of the algorithms when
more than two views are available. With three views there
is a strong geometric constraint available for line match-
ing. The trifocal tensor [8, 16, 17] enables lines matched
in two views to be transferred to a third, and this process
can be used to verify two view matches. An alternative is
to treat the three views symmetrically and match simultane-
ously over the three. Results are given for a triplet of aerial
images which show that all mismatches can be eliminated
for image triplets.

1.2. Implementation details

Line segments are extracted by applying a local im-
plementation of the Canny edge detector with hysteresis.
Edgels are then linked into chains, jumping up to a one pixel
gap. Tangent discontinuities in the chain are located using a
worm, and line segments are then fitted between the discon-
tinuities using orthogonal regression. A very tight threshold
is used for the line fitting so that curves are not piecewise
linear approximated.

The geometric relations between the images required a
priori here are the fundamental matrix for image pairs, and
the trifocal tensor for image triplets. These relations are
either calculated indirectly from known camera projection
matrices for each view, or directly, and automatically, from
point (corner) correspondences [3, 18, 21].

2 Short range motion

In the case of short range motion, line segments can be
compared using (uncorrected) correlation. The basic idea is

to treat each segment as a list of points to which neighbour-
hood correlation is applied as a measure of similarity. Only
the point to point correspondence is required. In the ab-
sence of any other knowledge corresponding points could
be obtained by searching along each line segment with a
winner takes all matching strategy, similar to that used for
matching corners on epipolar lines. However, knowing the
epipolar geometry determines the point correspondences, as
will now be described. Also, the epipolar geometry reduces
the overall search complexity because it restricts which line
segments need to be considered for matching.

2.1.
�

-guided matching

Corresponding image points, represented as homoge-
neous 3-vectors � and ��� , satisfy the epipolar constraint
���
� � ���	� . � is the fundamental matrix, which is a
��


matrix of rank 2. The epipolar line corresponding
to � is ������� � � , and the epipolar line corresponding to ���
is � � � �

� ��� . Note, lines are also represented by homo-
geneous 3-vectors, and � in all cases indicates the second
image.

Suppose two image lines, � and ��� correspond (i.e. have
the same pre-image in 3-space) then the epipolar geometry
generates a point-wise correspondence between the lines.
A point � on � corresponds to the point ��� which is the in-
tersection of ��� and the epipolar line ��� � of � : The point
��������� � ��� � ����� �� � ��� . This construction is valid pro-
vided � is not an epipolar line.

The matching score for a pair of line segments � and ��� is
computed as the average of the individual correlation scores
for the points (pixels) of the line. The only points included
in this average are those that are common to both line seg-
ments, i.e. the correlation is not extended past the ends of
the measured segments.

For each segment in one image, a matching score is
computed for all segments of the second image (within the
search space, see below). The pair of segments with the best
score is retained as the correct match, i.e. a winner takes all
scheme.

The epipolar geometry can also be used to reduce the
search space. The two end-points of a segment generate two
epipolar lines in the other image. These two lines define a
region, called the epipolar “beam”, which necessarily inter-
sects or contains the corresponding segment [20]. Given a
segment in one image, this reduces the complexity of the
search for corresponding segments.

2.2 Experimental results

Results are given for aerial images of an urban scene
and for images of a toy house. At present the ground-truth
matches are assessed by hand. A correlation window of����� �!�

is used, and only lines of length 15 pixels or more
are considered.



Figure 1. Upper pair: extracted lines segments superim-
posed on the left/right images; Lower pair: matched seg-
ments using the short range motion algorithm. 97.5% of the
122 matches shown are correct.

Figure 1 (upper) shows the line segments extracted on
the aerial images using the method described in the intro-
duction. 248 and 236 segments are obtained for the left and
right images, respectively. The short range motion algo-
rithm produces the matches displayed in the lower figure.
97.5% of the 122 matches obtained are correct.

For the toy house example, the number of segments ex-
tracted is 120 and 135 for the left and right images. Matches
obtained by the short range algorithm are shown in figure 2.
94.5% of the 73 matches are correct.

As an example of the matching scores, the correct match
between lines � in figure 2 has a correlation score of 0.92,
compared to the incorrect match of � to

�
with a score of

-0.67, i.e. a significant difference. Note also that segments
�

are matched correctly despite their different segmented
lengths in the two images.

On average the epipolar beam reduces the search com-
plexity to about a third, i.e. only a third of the line segments
need be considered. The beam constraint is also used in
the long range motion algorithm described in the following
section.

The examples demonstrate that very good results are ob-
tained in the case of short range motion. Nevertheless, the
method as implemented will fail when the correlation mea-
sure is no longer sufficiently discriminating to distinguish
correct from false matches. Imagine that the motion con-
sists of a small lateral motion (as above) followed by a large
rotation about the optical centre (cyclo-rotation). Such an
image motion will defeat the cross-correlation affinity mea-
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Figure 2. Matched line segments using the short range
motion algorithm. 94.5% of the 73 segments shown are
matched correctly.

sure because it is not invariant to rotations. There are (at
least) two solutions to this: first, the use of a rotationally
invariant correlation measure — such a measure has been
developed by [15] in the case of corner matching; second,
using the orientation of the epipolar lines to determine an
in plane rotation to compensate for the cyclo-rotation. We
have not investigated these solutions yet. However, neither
solution can overcome the failure of cross-correlation when
there are significant foreshortening effects between the two
images, and this is the subject of the long range motion al-
gorithm described next.

3 Long range motion

In the case of large deformation between images, cor-
relation will fail if the correlation patch is not corrected.
This correction is achieved by a projective warping using a
homography computed from the fundamental matrix. The
geometric basis for this is now introduced.

The correspondence of lines between images determines
a one parameter family of homographies which map the
line in one image to the line in the other image, and which
are also consistent with the epipolar geometry i.e. are ho-
mographies that could have arisen from images of planes
in 3-space: Given the fundamental matrix between two
views, 3D structure can be determined from image corre-
spondences up to a projective ambiguity of 3-space. The
correspondence of two image lines determines a line in 3-
space, and a line in 3-space lies on a one parameter family
(a pencil) of planes, see figure 3. This pencil of planes in-
duces a pencil of homographies between the two images
which map the corresponding lines to each other.

The assumptions underpinning the use of homographies
here is that the scene is approximated locally by a plane or
junctions of planes. This approximation is generally valid
and in the case of images of rooms or aerial images the ho-
mography is often exact.

3.1 Computing the planar homography

Luong and Vieville [11] show that the homography (pla-
nar projective transformation) between two images induced
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Figure 3. Image lines � and ��� determine a line � in 3-
space. The line � is contained in a one parameter family of
planes �����	� . This family of planes induces a one parameter
family of homographies between the images.

by a world plane 
 is given by� �� ����� � ����� ��� � � � � (1)

such that the images of points on 
 are related by ��� � � � ;
� indicates equality up to scale;

�
is the


 � 

homogeneous

matrix representing the homography; � � is the epipole in the
second view (

� � � � ��� ); � � � ��� is the skew

 � 


matrix
representing the vector product (i.e. � � � ��� � ��� � � � ); and�

is a 3-vector which parameterises the 3-parameter family
of planes in 3-space.

If the

 ���

camera projection matrix for the first view
has the canonical form � ��� � �!� � , i.e. the world coordinate
frame is aligned with the first camera, then the world plane
is represented by the four vector 
 � � �"� ��# � � .

Given the correspondence of image lines, � , � � , the homo-
graphies induced by planes containing the line in 3-space
are reduced from a 3-parameter to a one-parameter family.
Under a homography a line transforms as ��� � � ��� . Im-
posing this relation on the homographies of equation (1) we
obtain, after a short calculation [14],� �%$ � ��� � ��� � ��� $ � � � � (2)

where
$

is the single scalar parameter of the pencil.
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Figure 4. As � varies, a point & , which is not on the line� , is mapped by '(���)� to a point &*����)� which moves along
the epipolar line �%+,&)� corresponding to & . However, the
point - , which lies on � , is mapped to a fixed point - � for
all values of � .

The behaviour of
� �%$ � as

$
varies is illustrated in fig-

ure 4. Since
� �$ � is compatible with the epipolar ge-

ometry, all members of the family map the epipoles to
each other, i.e. � � � � �%$ �.� ) and corresponding epipolar
lines are mapped to each other i.e. if � and ��� are cor-
responding points — not necessarily lying on the plane
 �%$ � — and � � � # � � their corresponding epipolar lines, then
� � � � � �$ � ��� � .

Points on � and � � are mapped to a point on the line in
the other image under the one dimensional homography in-
duced by the epipolar lines, i.e. / � � � �%$ �0/ � ��� � � � /�� .
Points which are not on � and ��� are mapped to points on
their corresponding epipolar lines as illustrated in figure 4.

Once the value of the parameter
$

is known, a matching
score can be computed using pixel based cross-correlation
with the point correspondences provided by

� �%$ � .
3.2

�
-correlation score

Given a putative line match the aim is to compute a cross-
correlation score using

� �$ � . A single score is obtained by
computing the value

$21
, with corresponding homography� 1

, for which the cross-correlation is highest over all
$

. In
the following we first describe the computation of the

�
-

correlation score, and then the estimation of
$,1

.
As straight line segments often occur at the junction of

planar facets, the homographies are in general different for
the two sides of the line. It is therefore necessary to process
the two sides separately. The maximum of the two correla-
tion scores is used as the matching score for the line.

The cross-correlation is evaluated for a rectangular strip
on one side of the line segment by using

� �$ � to associate
corresponding points. The length of the strip is the common
overlap of the lines determined by the epipolar geometry.
The area of the strip must be sufficient to include neigh-
bouring texture, otherwise the cross-correlation will not be
discriminating. In the implementation a strip of width 14
pixels was found to be sufficient. The computation is car-
ried out to sub-pixel resolution using bilinear interpolation.

The homography
� 1

which maximizes the cross-
correlation must then be estimated. This involves estimat-
ing

$31
. However

$
is a projective parameter and is not di-

rectly measurable or meaningful in the image. Instead of
$

the homography is parametrized by the mapping of a single
point (which in turn determines

$
). The corner of the rect-

angular correlation strip is ideal for this purpose. The set of
possible correspondences in the other image � � �$ � lie on the
epipolar line of � (cf. figure 4). The value

$,1
is obtained by

searching the epipolar line for the � � �$ 1 � which maximizes
the cross-correlation. Consider the point ��� which has the
same distance to the line ��� as � has to � . This corresponds
to a scale/foreshortening factor of one between the images.
To restrict the search we limit the possible scale factors to
the range 1/3 to 3. This range defines an interval on the
epipolar line in the second image. The correlation score is
then evaluated at 10 equi-spaced points on this interval, and



the best score determines
$21

.

3.3 Experimental results

Figure 5 shows experimental results using the long range
motion algorithm. For this pair of aerial images there is
a significant rotation between the images. 93% of the 55
matches obtained are correct. In the second example, there

Figure 5. Matched line segments using the long range
motion algorithm. There is a significant rotation between
the images. 93% of the 55 matches shown are correct.

are significant foreshortening effects between the two im-
ages. Figure 6 displays the 53 matches obtained. 77% of
them are correctly matched.

Figure 6. Matched line segments using the long range
motion algorithm. There is significantly different foreshort-
ening between the planes of the house in the two images.
77% of the 53 lines shown are correctly matched.

4 Three view matching

The trifocal geometry provides a geometric constraint
for corresponding lines over three views. Lines ��� , ��� and
��� in three views are corresponding if they are the image
of the same line in 3-space. Given the trifocal tensor and
corresponding lines in two images, the corresponding line
in the third image is determined. This constraint provides
a method for verifying the two image matches determined
by the short or long range algorithms. This “two plus one”
method proceeds as follows: The putative two view matches
predict a line in the third image (via the trifocal tensor).
There are then two stages of verification. First, a geomet-
ric verification, a line segment should be detected at the
predicted position in the third image. Second, an inten-
sity neighbourhood verification, the pairwise correlation al-

gorithms should support this match. In practice these two
stages of verification eliminate all mismatches.

An alternative matching procedure is to compute
matches simultaneously over three views and then verify.
This procedure is outlined in the following section. It is
demonstrated in [14] that this procedure generates more
correct matches than the two plus one approach, without
adding any mismatches.

4.1 Matching over three images simultaneously

All line triplet combinations are considered (subject to
the epipolar beam constraint). There are then three stages of
verification. First it is verified that the (infinite) lines satisfy
the trifocal constraint. If this geometric constraint is satis-
fied, then the trifocal tensor (or equivalently, the three pair-
wise fundamental matrices) determines the common parts
of the three segments. The second stage examines this com-
mon segment. If there is no common part then the match is
rejected. Otherwise, we have now verified that the match
is geometrically correct for the finite segments. The third
stage is to compute line correlation scores as described in
sections 2 and 3 between line pairs ��� � ��� and ��� � ��� . If these
two score are sufficiently large then the triplet is a potential
match. Cases where there are multiple matches possible for
a particular line segment are resolved by a winner takes all
scheme.

It might be thought that the three view method would
have a significantly higher complexity, but this cost can be
largely avoided by an initial correlation based pre-filter on
view pairs to remove ridiculous matches and thus restrict
putative matches for each line to a small number. Details
are given in [14].

The reason that the three view matching method includes
more matches than the two plus one method is that in the
latter method a winner takes all scheme is applied after only
two view matching. This earlier application of winner takes
all may eliminate some correct matches which could have
been verified in the third view.

4.2 Experimental Results

The result for three aerial images using matching over
three views with short range motion correlation is given
in figure 7. All of the 89 matches obtained are correct.
Figure 8 shows the 3D reconstruction obtained using these
matches. The position of the line in 3D is determined us-
ing a bundle adjustment which minimises the re-projection
error over the three images.

5 Conclusion and Extensions

We have demonstrated two algorithmic approaches
which significantly improve on the state of the art for line
matching across two or more images. The algorithms cover
the cases of both short and long range motion. The long



Figure 7. Matching across three views using both line transfer and a short range matching correlation score. All of the 89 matches
obtained are correct.

Figure 8. Two views of the 3D reconstruction of the line
matches from figure 7.

range algorithm will work equally well in the short range
case, of course, but is more expensive. Although we have
not investigated the choice, it is likely that the process that
generates the fundamental and trifocal tensors will have suf-
ficient information to choose which of the short or long
range algorithms is appropriate.

Finally, we mention three extensions which we are cur-
rently investigating. The first is the use of vanishing points
to reduce matching complexity. The second is to use

$
as a

line grouping constraint — since coplanar lines lie on planes
with the same value of

$
. The third extension is to apply the

same ideas (intensity neighbourhoods and local homogra-
phies) to curve matching, both for plane curves and space
curves.
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