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Abstract: The visual correspondence problem is a major issue in computer vision. Correlation is a
common tool for this problem. Most classical correlation methods fail near the disparity discontinuities,
which occur at the boundaries of objects. In this paper, a partial correlation technique is proposed to
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are made with other techniques and experimental results validate the approach.
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Corr�elation partielle bas�ee sur la localisation robuste

R�esum�e : L'appariement entre deux images est une cl�e de nombreux probl�emes de perception, en
particulier celui de la perception st�er�eoscopique. La corr�elation est la solution la plus commun�ement
adopt�ee. La corr�elation classique comme ZNCC a des di�cult�ees pr�es des discontinuit�es qui se pr�e-
sentent �a la limite des objets occultants. Dans ce rapport, nous proposons une technique baptis�ee
corr�elation partielle pour r�esoudre ce probl�eme. Nous utilisons la localisation robuste pour trouver la
bonne partie des fenêtres �a corr�eler. Nous avons compar�e notre m�ethode avec les m�ethodes standards
et les m�ethodes non param�etriques. Des exp�erimentations valident la m�ethode.

Mots-cl�e : vision, appariement, corr�elation, robustesse, localisation, occultation partielle
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4 Zhong-Dan LAN and Roger MOHR

1 Introduction

The visual correspondence problem is a major task in computer vision [11, 2, 6], as it underlies motion
and stereo matching. Given two images of the same scene, a pixel in one image corresponds to a
pixel in the other if they are projections of the same physical scene element. If they are temporally
consecutive, the correspondence determines motion. If they are spatially separated but simultaneous,
the correspondence determines stereo disparity.

The use of correlation as a similarity measure between two signals is well known. It is commonly
used in stereo vision for the visual correspondence problem and extensive comparisons have been made
evaluating di�erent correlation criteria [1].

As indicated in [5, 7], occlusion plays an important rule in stereo matching. In [7], Intille uses
Ground Control Points (GCP) to construct the best disparity path. This method gives the best results
if GCP are very close to the occlusion boundaries as these are the regions in which all classical methods
fail.

We feel that only the use of robust methods can overcome the matching problems that every
method encounters at the occluding contours. In [9], a partial correlation method is described, based
on robust regression. It provides good matches at occlusion contours.

In this paper, another partial correlation method is developed, based on robust location. It uses
a minimum volume estimator (MVE), and is also called the MVE correlation. It can be treated as a
robusti�cation of the ZNCC correlation (Zero Mean Cross Correlation), in that sense it is the ZNCC
on the good parts of the signals.

This paper is organized as follows: after an introduction to related work, we give a short analysis
of classical ZNCC correlation from the location view point. Then some fundamental location notions
are discussed, followed by a robust location based correlation, which is also called MVE correlation.
At the end, some experimental results are shown, including comparisons with two classical methods
ZNCC and ZSSD (Zero Mean Sum of Squared di�erences), Zabih's rank and census [16], and Lan's
method RZSSDC (Robust ZSSD with Center point constraint) [9].

2 Related work

In this report, we will describe a robust matching algorithm. There are also others papers on matching
problem in which some robust methods are used. For example, in the paper of Odobez and Bouthemy
[13], aM-estimator is used to computer the optical-ow, and in [16] and [3], a non-parametric transform
is used before the correlation. In [9], a partial correlation method is described.

2.1 Correlation and image transforms

The visual correspondence of two vectors is usually de�ned by correlation. There are many di�erent
versions of this (see the Table 1 in [1] for instance). Experimental comparisons are reported in [1] and
[4].

Among existing methods, we have chosen zero mean normalized cross correlation (ZNCC) because
of its good experimental performance with respect of varying lighting conditions:

INRIA
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ZNCC(X;X + dX) =
cov(I1(X); I2(X + dX))

�I1(X)�I2(X+dX)
;

withX = (x; y), dX = (dx; dy) the disparity, cov(I1; I2) =
P

�2W
(I1(X+�)�I1(X))(I2(X+dX+�)�I2(X+dX))

n�1

(the covariance between I1(X) and I2(X + dX)), �I1 =

rP
�2W

(I1(X+�)�I1(X))2

n�1 (the standard de-

viation of I1(X)), �I2 =

rP
�2W

(I2(X+dX+�)�I2(X+dX))2

n�1 (the standard deviation of I2(X + dX)),

� = (u; v) 2 W = f(u; v)j � N � u � N and �M � v � Mg, I1(X) and I2(X + dX) the mean
gray level values of the two image windows I1(X) and I2(X + dX) and n = (2N + 1)(2M + 1) is the
window dimension.

The ZSSD correlation function has also been used:

ZSSD(X;X + dX) = �I1(X)�I2(X+dX)

with (I1 � I2)(�) = I1(X + �) � I2(X + dX + �), and �I1(X)�I2(X+dX) the standard deviation of
I1(X)� I2(X + dX).

Notice that with ZSSD, we minimize the correlation function while with ZNCC, we maximize it.

Alternative approaches have been proposed based on transformed versions of the original signal. A
common standard transformation is the Laplacian of the image. This has a similar e�ect to normalizing
the image as in the ZSSD method.

All of these methods are very sensitive to outliers, e.g. strong noise or the presence of partial
occlusions. In order to reduce such e�ects, some authors limit the inuence of the numerical values by
only taking into account the sign of the Laplacian [17, 12], or the orientation of the gradient [15]. In
these cases, the perturbations of the correlation are in direct ratio to the size of the perturbed area.
A similar idea is exploited in the rank and census transform [16] presented in section 2.2. Section 2.3
presents another idea to perform partial correlation after having rejected the occlusion part [9].

2.2 Rank and census transform

Zabih [16] has developed an approach that relies on local transforms based on non-parametric measures,
designed to tolerate partial occlusion, which he called factionalism. Non-parametric statistics [10] is
distinguished by the use of ordering information among data, rather than the data values themselves.

Two local non-parametric transforms were introduced. The rank transform is a non-parametric
measure of local intensity, while the second one, the census transform, is a non-parametric summary
of local spatial structure.

Let P be a pixel, I(P ) its intensity, and N(P ) the set of pixels in its neighborhood. All non-
parametric transforms depend on the comparison of I(P ) and the intensity of the pixels in N(P ).
De�ne �(P; P 0) to be 1 if I(P 0) < I(P ) and 0 otherwise. Non-parametric local transforms depend
solely on the set of pixel comparisons, which is the set of ordered pairs :

� =
[

P 02N(P )

(P 0; �(P; P 0)):

RR n�3186



6 Zhong-Dan LAN and Roger MOHR

The rank transform is de�ned as the number of pixels in the local region whose intensity is less
than the intensity of the center pixel. Formally, the rank transform R(P ) is

R(P ) = card(fP 0 2 N(P )jI(P 0) < I(P )g):

For the rank transform, L1 correlation (minimization of the sum of absolute values of di�erences)
of the transformed image is used in order to preserve a response that depends linearly on the number
of outliers.

The census transform R� (P ) is a mapping from the local neighborhood of a pixel P to a bit string
representing the set of neighboring pixels whose intensity is interior to that of P . Let N(P ) = P�D
where � is the Minkowski sum and D is a set of displacements, and let 
 denote concatenation. The
census transform can then be speci�ed as:

R� (P ) =
O

[i;j]2D
�(P; P + [i; j]):

Pixels of census transformed images are compared for similarity using the Hamming distance (the
number of bits that di�er) between the two bit strings. The algorithm computes the correspondence
by minimizing the Hamming distance after applying the census transform.

2.3 Robust regression based partial correlation

Consider the two windows of Figure 1. They match except for the up-right corners. We want to
recover this corrupted part. We assume that locally the signal obeys an a�ne transformation from
one image to the other (see Figure 2):

I2(s; t) = kI1(s+ dx; t+ dy) + l + �

where (dx; dy) is the disparity of the point (x; y), s = x+ u; t = y + v and s 2 fx�N : : : x+Ng; t 2
fy�M : : : y+Mg, 2N+1 and 2M+1 are the width and the height of the template window respectively
and � is a Gaussian image noise.

Figure 1: Occlusion.Left: I1, right: I2

Such an a�ne relation is true in the window except for the occluded parts.

A simpler model would allow just a shift in intensity, i.e. the scale factor k is set to 1:

I2(s; t) = I1(s+ dx; t+ dy) + l + �:

If the center of the window with coordinates (x; y) is not occluded, an additional constraint can
be stated, which will be called the \center point constraint" below. It just states that the center of
the window has to satisfy the previous a�ne or translational constraint:

INRIA
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Figure 2: A�ne relation between I1 and I2, the small circles represent outliers, i.e: pairs of grey levels
of pixels mismatched.

I2(x; y) = kI1(x+ dx; y + dy) + l (a�ne case),

I2(x; y) = I1(x+ dx; y + dy) + l (translation case):

The occluded parts are found using robust statistics. Having found these occluded parts, correlation
is restricted to the remaining parts of the two windows. We call this technique partial correlation.
In fact partial correlation is a special case of weighted correlation, as we leave !(u; v) = 1 (inlier) or
!(u; v) = 0 (outliers).

For example, de�ning DX(�) = I1(X + �) � I2(X + dX + �), and DX =

P
�2W

D(�)!(�)P
�2W

!(�)
, the

weighted ZSSD can be expressed as follows:

ZSSDw(X; dX) =

sP
�2W (DX(�)�DX)2!(�)P

�2W !(�)� 1
:

3 Analysis of ZNCC: location view point

The function ZNCC of two n�dimensional lists X = (xi)
n
i=1 and Y = (yi)

n
i=1, is de�ned as:

Pn
i=1

(xi� �X)(yi� �Y )
n�1qPn

i=1
(xi� �X)2

n�1
Pn

i=1
(yi� �Y )2

n�1

which can also be expressed as the radio of the covariance cov(X;Y ) between X and Y and the
geometrical mean of their variances �2x and �2y .

If we create a list of two-dimensional points P = (Pi)
n
i=1 = ((xi; yi)

t)ni=1, then its center is given

by �P = ( �X; �Y )t = (

Pn

i=1
xi

n
;

Pn

i=1
yi

n
)t, its dispersion in terms of the covariance matrix is given by:

C =

Pn
i=1 (Pi �

�P )(Pi � �P )t

n� 1
=

 
�2x cov(x; y)

cov(x; y) �2y

!

RR n�3186



8 Zhong-Dan LAN and Roger MOHR

with �x =

rPn

i=1
(xi� �X)2

n�1 , �y =

rPn

i=1
(yi� �Y )2

n�1 , cov(x; y) =

Pn

i=1
(xi� �X)(yi� �Y )

n�1 , and ZNCC(X;Y ) =

cov(x;y)
�x�y

= C12p
C11C22

, where Cij is the element of C in the ith row and the jth column.

We see that the ZNCC function of X = (xi) and Y = (yi) can be computed from the dispersion of
P = (Pi) = (xi; yi)

t.

This procedure is composed of three steps:

1. Estimation of the data center.

2. Estimation of the covariance matrix.

3. Estimation of the correlation coe�cient by computing the ratio of the two variable covariance
and the geometrical mean of their variances.

In the partial occlusion case, there are some outliers. The estimation of the center and the cova-
riance matrix should be robust so that the estimation of the correlation coe�cient is reliable. In the
next section, we discuss the robust estimation of location and dispersion.

4 Robust estimation of location and dispersion

In this section, we introduce the notion of a location estimator, consider properties as translation
invariance, permutation invariance and a�ne invariance, and discuss the notion of breakdown point.
At the end, we introduce some robust estimators, and give more details of MVE, which is a�ne
invariant. This estimator is applied to deduce a correlation function, which is robust to partial
occlusions (section 5).

4.1 Estimation of location and dispersion

We discuss the estimation of the \center" of a set of points, where all variables are treated in the
same way. We are also interested in the data dispersion around the center, which is expressed by the
covariance matrix of this set of points.

Suppose that we have a set of data:

X = fx1; : : : ;xng

= f(x11;x12; : : : ;x1p)
t; : : : ; (xn1;xn2; : : : ;xnp)

tg;

of n p-dimensional points. We have to estimate its center, and also its dispersion around the center,
expressed by a covariance matrix C.

More exactly, we are looking for an estimator T, such that ei = xi �T(X) follows a hypothesized
distribution and has some useful properties. If some outliers among the ei do not perturb the result,
the estimator is said to be robust.

4.2 Some de�nitions and an example

We introduce some properties of robust estimators, including the notions of invariance and breakdown
point.

INRIA
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De�nition 1 A location estimator T is called translation invariant, if and only if for any vector b,

T(x1 + b; : : : ;xn + b) = T(x1; : : : ;xn) + b:

De�nition 2 A location estimator T is called permutation invariant if for each permutation � on

f1; 2; : : : ; ng,
T(x�(1); : : : ;x�(1)) = T(x1; : : : ;xn):

The sample mean X = 1
n

Pn
i=1 xi, has these properties and also minimizes

Pn
i=1 jjxi �Tjj2, where

jj: : :jj is the Euclidean norm. However, it is not robust, as a single bad point can totally corrupt the
result.

Now consider the notion of robustness for a location estimator. Suppose the sample is corrupted
by replacing some m data points with arbitrary values, and de�ne the maximal bias:

bias(m;T;X) = sup
X0

����T(X0)�T(X)
����

and the breakdown point

�?n(T;X) = min fm=n; bias(m;T;X) is in�nityg:

This is the minimal outlier percentage that can arbitrarily damage T.

The sample mean has its breakdown point at 1
n
. We often consider the breakdown point for

n!1, so it has an asymptotic breakdown point of 0%.

It is clear that a translation invariant estimator can not have a breakdown point greater than 50%:
if the outliers happened to correspond to a translation of good data, a good choice of T would be
impossible.

The estimators with a breakdown point at 50% fall into two families: those which are a�ne
invariant and those which are not. In many situations, we hope to have an estimator which commutes
with a�ne transformations. T is said to be a�ne invariant if and only if:

T(x1A+ b; : : : ;xnA+ b) = T(x1; : : : ;xn)A+ b

for any vector b and any regular matrix A. For example, the sample mean is such an estimator.
Note that all translations and permutations are a�ne, so a�ne invariance implies translation and
permutation invariance.

4.3 MVE

Rousseeuw [14] has introduced an a�ne invariant robust estimator, which has the theoretically maxi-
mal breakdown point, de�ned as: the \center of the ellipse of minimal volume containing at least h
points of X" denoted as MVE.

Here h can be taken as [n2 ] + 1. This is called Minimal Volume Ellipse or MVE. The ellipse itself
gives an estimate of the covariance matrix, multiplied by a suitable scale factor.

RR n�3186



10 Zhong-Dan LAN and Roger MOHR

The a�ne invariance of this estimator follows from the fact that the image of an ellipse by an
a�ne transformation x ! Ax + b is still an ellipse, with the volume scaled by jdetAj. Since jdetAj
is constant when the data change, the relative dimension of the ellipse does not change under a�ne
transformations.

It is not practical to consider all possible subdivisions of data and compute the volume of the
smallest ellipse around them. As the LMedS estimator, we use a random sampling technique to
implement the estimator.

We choose a set of p+ 1 di�erent observations, indexed by J = fi1; : : : ; ip+1g. For this subset, we
determine the mean and the corresponding covariance matrix by:

XJ =
1

p+ 1

X
i2J

xi

and

CJ =
1

p

X
i2J

(xi � xJ)(xi � xJ)
t

where CJ is regular if xi1 ; : : : ;xip+1 are in general position. By the de�nition of median, the ellipse

containing half the data corresponds to the matrix m2
J
CJ, with m2

J
= med

i

(xi �XJ)
tC�1

J
(xi �XJ).

It su�ces to see that half of the xi verify: (xi �XJ)
t(m2

J
CJ)

�1(xi �XJ) =
(xi�XJ)

t
C
�1

J
(xi�XJ)

m2
J

� 1.

The volume of the ellipse is proportional to:q
det(m2

J
CJ) =

q
det(CJ)m

p
J
: (1)

We repeat this process for several J and we take the J which gives the minimal volume in equation
(1).

Then we compute:

T(X) = XJ and C(X) = (�2p;0:5)
�1m2

JCJ

where �2p;0:5 is the median of a chi-square distribution with p degrees of freedom.

The estimated MVE can be used as an initial solution in re�nement. Similarly to the case of
weighted least squares estimation, we give a weight to each observation by the rule:

!i =

�
1 if (xi �T(X))

t
C(X)�1(xi �T(X)) � c

0 else

where C can take the value �2p;0:975 which means that we reject a point when we have 97:5% con�dence
that it is an outlier.

We use the weighted mean estimator :

T1(X) =

Pn
i=1 !ixiPn
i=1 !i

and

INRIA
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C1(X) =

Pn
i=1 !i(xi �T1(X))(xi �T1(X))tPn

i=1 !i � 1

which means simply that the classical computation is performed on the observations whose weights
are 1.

4.4 Application of MVE estimator

The MVE estimator has been already used in vision, as a classi�cation method. For example, in [8],
it is used for thresholding, for analysis of Hough space, and for image segmentation. We will use it
for the image matching problem in this paper (section 5).

5 Robust location based partial correlation

We begin with a discussion of correlation and location, deduce the procedure for partial correlation,
and �nally, we introduce the main points constraint which can be used in the matching of two images.

5.1 Analysis of correlation and location

Suppose we have a list of n p-dimensional points: X = (xi)
n
i=1, where xi = (xi1; : : : xip)

t. We look for
an estimator T = T(X), such that:

xi = T+ ei (2)

where ei = (ei1 : : : eip) are some vectorial random variables.

The location problem is the search for such an estimator. Under the assumption that the ei have
an identical distribution, the correlation coe�cient between eij and eik depends only on j and k. It
can be computed by the aid of ei's covariance matrix, as the ratio of the covariance between eij and
eik and the geometrical mean of eij and eik's variances.

In image matching problem, p = 2, xi = (I1i; I2i) represents a pair of corresponding intensities,
T represents the \center" of (xi)

n
i=1 and it can be estimated as the gravity of points xi representing

matched pixels, ei = xi � T represents the \joined" texture of I1 and I2. The correlation coe�cient
between ei1 and ei2 reexes the association between I1 and I2, and it can be estimated by estimating
the covariance matrix of ei.

5.2 Dealing with the partial occlusion problem

Most correlation techniques have di�culties near disparity discontinuities, or in places where highlights
occur, as the window under consideration is locally partially but severely corrupted which occurs at
the boundaries of objects (Figure 1).

The pixels in such a region represent scene elements from two distinct intensity populations. Some
of the pixels correspond to the template under consideration and some to other parts of the scene.

RR n�3186



12 Zhong-Dan LAN and Roger MOHR

As we already mentioned, this leads to a problem for many correlation techniques, since the standard
correlation techniques are usually based on standard statistics methods, which are best suited to a
single population. We shall call this phenomenon partial occlusion even though it might have other
physical causes as highlights, and we propose the partial correlation idea to overcome it.

5.3 Procedure of partial correlation

When partial occlusions occur, relation (2) holds only for the non-occluded part. So we should compute
the correlation measure only on this part.

We propose the partial correlation procedure as follows:

1. Estimate robustly T and the associated covariance matrix C.

2. Find the occluded part according to a statistical test.

3. Compute the correlation measure on the non occluded part.

We explain these steps in detail by some examples:

1. We can take T as the median of each coordinate estimator or a more sophisticated estimator
such as MVE.

2. Estimate the distribution of the errors, and decide if the errors follow this distribution accor-
ding to a statistical test. If an error does not follow this distribution, the associated datum is
considered to be an outlier.

Example: In the MVE estimator, (xi �T)tC�1(xi �T) is a �2 random variable with p degrees
of freedom, if all the ei are centered Gaussian. If the value of this expression exceeds a certain
threshold (�2p;0:975 for example), the datum xi is declared to be an outlier.

3. Partial correlation can be achieved by binary weighted correlation. For example, if we leave
!i = 1 for good data and !i = 0 for bad data, partial ZNCC can be expressed in terms of
weighted correlation as follows:

ZNCCp(X;Y ) =

Pn

i=1
(xi��x)(yi��y)!iPn

i=1
!i�1rPn

i=1
(xi��x)2!iPn

i=1
!i�1

rPn

i=1
(yi��y)2!iPn

i=1
!i�1

where �x (respectively �y) is the !-weighted means of xi (respectively �y).

5.4 Main point constraint

As in the implementation of the LMedS estimator, let p + 1 = 3 be the parameter number and �
be the outlier percentage. Then, to have a con�dence Q that at least one random sample contains
only inliers, logQ

log(1�(1��)p+1) samples su�ce [14]. If we put � = 0:5, (the maximum value allowed) and

Q = 0:01, then we have logQ
log(1�(1��)p+1) = 34:49. So the sample number is 35.

In our experiments, we divide the 3 � 3 window around the pixel to be matched into four parts,
as follows:

INRIA



Robust Location based Partial Correlation 13

3 4 4

3 c 1

2 2 1

Numbers in this board indicate di�erent regions and c denotes the pixel to be matched. We suppose
that the pixel to be matched is not occluded, and the two pixels in at least one region are not occluded
neither.

This is called the main point constraint. The points around are called main points.

Using this constraint, it su�ces to take c with four groups of pixels in the sampling procedure,
and the number of samples is reduced from 35 to 4.

The advantages of this constraint are 1)it reduces the sample number and hence the computation
time; 2)it incorporates the fact that adjacent neighbors of the pixel to be matched are either both
likely to be occluded or both escape occlusion. Its shortcoming is that the location estimation is more
dependent on the main points.

5.5 Estimating correlation between two image windows

In case of image matching, we take xi = (I1i; I2i)
t, where I1i (I2i) are intensities of the i

th point of the
�rst (second) image window respectively.

Let C1(X) be the covariance matrix of xi estimated by the MVE. De�ning

C1(X) =

 
�21 cov(I1; I2)

cov(I1; I2) �22

!
;

we estimate the correlation coe�cient between I1 and I2 as
cov(I1;I2)
�1�2

. This estimate is the generalization
of the classical correlation coe�cient if C1(X) is replaced by the classical covariance matrix, which is
computed as:

0
@

Pn

i=1
(I1i�I1)2
n�1

Pn

i=1
(I1i�I1)(I2i�I2)

n�1Pn

i=1
(I1i�I1)(I2i�I2)

n�1

Pn

i=1
(I2i�I2)2
n�1

1
A

with I1 =

Pn

i=1
I1i

n
and I2 =

Pn

i=1
I2i

n
are the grey level means of the two windows. The classical

correlation coe�cient, often called ZNCC, is a frequently used correlation function in vision for the
matching problem.

A real example is shown in Figure 3, where each point represents a pair of corresponding pixel
grey levels (I1i; I2i). The ellipse is similar to the uncertainty ellipse of the data set.
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I2
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100
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200

250

50 100 150 200 250

Figure 3: Robust location by MVE estimator of (I1, I2). The points outside the ellipse represent pairs
of points that are not matched.

6 Experimental results

6.1 Constraints used

Select a template of �xed size in the �rst image. Suppose that there are several candidate matches of
the same size. Below we use the region of interest constraint and the epipolar constraint to reduce the
number of the candidates [1].

Roughly say, the region of interest constraint is that the match of each pixel in an image should be
contained in the region of interest (ROI), which is de�ned as f(x0; y0)jx+ dxmin � x0 � x+ dxmax; y+
dymin � y0 � y + dymaxg, (x; y) is the pixel chosen in the �rst image and dxmin; dxmax; dymin; dymax

are the limits of disparities in the two directions x and y. The epipolar constraint is that the match
of each pixel in an image should be on its epipolar line in another image.

These two constraints are displayed in the Figure 4: the window candidate has to be centered on
the corresponding epipolar line and stay within the region of interest.

x

y

ROI, S(x,y)

template

epipolar line

I (x,y)

the second image

I (x’, y’)
2 1

2ulen+1

2vlen+1

Figure 4: Epipolar constraint and region of interest constraint.
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6.2 Statistical results

For comparison with ground truth, experiments were conducted on planar patches. In such cases
the exact match can be computed by estimating the homography mapping from the matched targets
between two images. We have tested the MVE correlation, and compared it with the ZNCC method,
the partial regression based method using the translation relation and the center point constraint
(RZSSDC) [9], which stands for Robust ZSSD with Center point constraint, the standard ZSSD, the
rank and the census methods [16]. All the methods ZNCC, ZSSD, rank, census, RZSSDC have been
discussed in section 2.

The results for two pair of images called Benetton (Figure 5) and World (Figure 6) are displayed
in this report.

(a) (b)

Figure 5: Stereo pair 1: Benetton

(a) (b)

Figure 6: Stereo pair 2: World

Both images have a planar background but the background textures are di�erent. Two tests on
points near occlusion contours were designed for each pair. Figure 7 and 8 displays respectively two
sets of points for the Benetton (Figure 5 (a)) and World (Figure 6 (a)) background for which the
corresponding points were sought.
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(a) (b)

Figure 7: Background Benetton. Points selected (in black) in Figure 5 (a). (a): example corresponding
to Table 1; (b): example corresponding to Table 2.

(a) (b)

Figure 8: Background World. Points selected in Figure 6 (a). (a): example corresponding to Table 3;
(b): example corresponding to Table 4.
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The di�erent methods were run on these four tests. The candidates were constrained to stay on
the epipolar line and to have a disparity of less than 200. For each method, we compare the results
found with the exact value provided by the homography.

The results are reported in the Tables 1, 2. 3 and 4. For each method (i.e: rank, census, RZSSDC,
ZSSD, MVE and ZNCC) are indicated:
- the number of accurate matches: up to one pixel error (good match),
- the number of matches in a distance between one and two pixels error (near miss),
- the number of matches at a distance of two to three pixels (bad matches),
- the matches which lie more than three pixels away from their exact position (false matches).

0{1 1{2 2{3 3{1

rank 246 96 0 57

census 305 63 0 31

RZSSDC 316 63 0 20

ZSSD 188 37 0 174

MVE 270 79 0 50

ZNCC 183 37 0 179

Table 1: First example on image Benetton (see
text).

0{1 1{2 2{3 3{1

rank 713 98 0 89

census 773 83 0 44

RZSSDC 796 74 0 30

ZSSD 658 38 3 201

MVE 730 108 0 56

ZNCC 656 38 1 205

Table 2: Second example on image Benetton (see
text).

0{1 1{2 2{3 3{1

rank 77 14 0 49

census 89 12 0 39

RZSSDC 118 10 0 12

ZSSD 56 0 0 84

MVE 94 10 1 35

ZNCC 56 0 0 84

Table 3: First example on image World (see
text).

0{1 1{2 2{3 3{1

rank 129 15 0 122

census 185 6 0 75

RZSSDC 234 29 2 1

ZSSD 71 1 0 194

MVE 173 49 7 37

ZNCC 78 0 0 188

Table 4: Second example on image World (see
text).

From these examples, we see that the MVE correlation performs better than the ZNCC correlation
for points near occlusion contours.

The results on general points are displayed below, which show that a compromise between similarity
and completeness is needed [9]. For the image pair Benetton, MVE correlation gives less false matches
than ZNCC correlation. Comparing to RZSSDC, we see that MVE gives less good results for points
near occlusion contours, but better results for general points.

7 Conclusion and future work

Occlusions carry important information in the visual correspondence problem, because they indicate
disparity discontinuities and produce useful cues for the shape and location of objects. However,
occlusions show the limitations of most of standard correlation methods.

In this paper, we discussed the occlusion problem and proposed a new robust approach called partial
correlation to overcome it. We compared our method with the standard correlation methods ZNCC
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0{1 1{2 2{3 3{1

rank 12500 2053 3 214

census 12885 1745 0 140

RZSSDC 12585 1930 4 251

ZSSD 12615 1580 0 575

MVE 12378 2183 40 169

ZNCC 12771 1550 0 449

Table 5: An example for the general case on
image Benetton (see text).

0{1 1{2 2{3 3{1

rank 11946 2512 299 968

census 12960 2237 105 423

RZSSDC 11845 1985 193 1702

ZSSD 13140 1941 116 528

MVE 11102 2512 414 1697

ZNCC 13216 1970 80 459

Table 6: An example for the general case on
image World (see text).

and ZSSD, Zabih's correlation method rank and census and Lan's Method RZSSDC. Experiments show
that our method works better than classical correlation methods when occlusions arise. However, when
no occlusions are present, our method performs less well.

We think that the partial correlation represents only the beginning of the solution to the problem.
The fundamental limitation of this technique is the necessity for a tradeo� between the similarity and
the completeness criteria : Given a template, and several candidates, which one is the most similar to

the template ?

The most similar candidate may have few active pixels hence not be very complete. The straight-
forward solution could be to take the one which is more similar when occlusions occur and the one
which is more complete otherwise. This is an important issue not only in the problem of stereo mat-
ching by correlation, but also in the more general template matching problems like the recognition.
A possible perspective is the application of partial correlation technique to the recognition problem,
where partial occlusion often occurs.
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