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point of the common perpendicular to the two rays (the
midpoint method). Perhaps a better choice would be toIn this paper, we consider the problem of finding the position

of a point in space given its position in two images taken with divide the common perpendicular in proportion to the
cameras with known calibration and pose. This process requires distance from the two camera centers, since this would
the intersection of two known rays in space and is commonly more closely equalize the angular error. Nevertheless, this
known as triangulation. In the absence of noise, this problem method will not give optimal results, because of various
is trivial. When noise is present, the two rays will not generally approximations (for instance, the angles will not be pre-
meet, in which case it is necessary to find the best point of cisely equal in the two cases). In the case of projective
intersection. This problem is especially critical in affine and

reconstruction, or affine reconstruction, however, the cam-projective reconstruction in which there is no meaningful metric
era matrices will be known in a projective frame of refer-information about the object space. It is desirable to find a
ence, in which concepts such as common perpendicular ortriangulation method that is invariant to projective transforma-
midpoint (in the projective case) have no sense. In thistions of space. This paper solves that problem by assuming a
case, the simple midpoint method here will not work.Gaussian noise model for perturbation of the image coordinates.

The importance of a good method for triangulation isThe triangulation problem may then be formulated as a least-
squares minimization problem. In this paper a noniterative clearly shown by Beardsley et al. who demonstrate that
solution is given that finds the global minimum. It is shown the midpoint method gives bad results. In [2, 3] they suggest
that in certain configurations, local minima occur, which are an alternative method based on ‘‘quasi-Euclidean’’ recon-
avoided by the new method. Extensive comparisons of the new struction. In this method, an approximation to the correct
method with several other methods show that it consistently Euclidean frame is selected and the midpoint method is
gives superior results.  1997 Academic Press carried out in this frame. The disadvantage of this method

is that an approximate calibration of the camera is needed.
It is also clearly suboptimal.1. THE TRIANGULATION PROBLEM

This paper is an extended version of [9] which describes
a new algorithm that gives an optimal global solution toWe suppose that a point x in R3 is visible in two images.
the triangulation problem, equally valid in both the affineThe two camera matrices P and P9 corresponding to the
and the projective reconstruction cases. The solution reliestwo images are supposed known. Let u and u9 be projec-
on the concepts of epipolar correspondence and the funda-tions of the point x in the two images. From these data,
mental matrix [4]. The algorithm is noniterative and simplethe two rays in space corresponding to the two image points
in concept, relying on techniques of elementary calculusmay easily be computed. The triangulation problem is to
to minimimze the chosen cost function. It is also moderatefind the intersection of the two lines in space. At first sight
in computation requirements. In a series of experiments,this is a trivial problem, since intersecting two lines in space
the algorithm is extensively tested against many otherdoes not present significant difficulties. Unfortunately, in
methods of triangulation and found to give consistent supe-the presence of noise these rays cannot be guaranteed to
rior performance. No knowledge of camera calibration iscross, and we need to find the best solution under some
needed.assumed noise model.

A commonly suggested method [2] is to choose the mid- The triangulation problem is a small cog in the machin-
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ery of computer vision, but in many applications of scene 3. THE MINIMIZATION CRITERION
reconstruction it is a critical one, on which ultimate accu-

We assume that the camera matrices, and hence theracy depends [2].
fundamental matrix, are known exactly, or at least with
great accuracy compared with a pair of matching points2. TRANSFORMATIONAL INVARIANCE
in the two images. A formula is given in [6] for computing
the fundamental matrix given a pair of camera matrices.In the past few years, there has been considerable inter-
The two rays corresponding to a matching pair of pointsest in the subject of affine or projective reconstruction [4,
u ←→ u9 will meet in space if and only if the points satisfy8, 10, 12, 13, 15, 16]. In such reconstruction methods, a 3D
the familiar [11] relationshipscene is to be reconstructed up to an unknown transforma-

tion from the given class. Normally, in such a situation,
u9ÁFu 5 0. (1)instead of knowing the correct pair of camera matrices P

and P9, one has a pair PH21 and P9H21 where H is an
It is clear, particularly for projective reconstruction, thatunknown transformation of the considered class.
it is inappropriate to minimize errors in the 3D projectiveFor instance, in the method of projective reconstruction
space, P 3. For instance, the method that finds the midpointgiven in [8] one starts with a set of image point correspon-
of the common perpendicular to the two rays in space isdences ui ←→ u9i . From these correspondences, one can com-
not suitable for projective reconstruction, since conceptspute the fundamental matrix F, and hence a pair of camera
such as distance and perpendicularity are not valid in thematrices P̂ and P̂9. In the method of [8], the pair of camera
context of projective geometry. In fact, in projective recon-matrices differ from the true ones by an unknown transfor-
struction, this method will give different results dependingmation H, and P̂ is normalized so that P̂ 5 (I u 0). Finally,
on which particular projective reconstruction is consid-the 3D space points can be computed by triangulation. If
ered—the method is not projective invariant.desired, the true Euclidean reconstruction of the scene

Normally, errors occur not in placement of a feature inmay then be accomplished by the use of ground control
space, but in its location in the two images, due to digitiza-points to determine the unknown transformation, H, and
tion errors, or the exact identification of a feature in thehence the true camera matrices, P and P9. Similarly, in [7]
image. It is common to assume that features in the imagesone of the steps of a projective reconstruction algorithm
are subject to Gaussian noise which displaces the featureis the reconstruction of points from three views, normalized
from its correct location in the image. We assume thatso that the first camera matrix has the form (I u 0). Given
noise model in this paper.three or more views, an initial projective reconstruction

A typical observation consists of a noisy point correspon-may be transformed to a Euclidean reconstruction under
dence u ←→ u9 which does not in general satisfy the epipolarthe assumption that the images are taken all with the same
constraint (1). In reality, the correct values of the corre-camera [5].
sponding image points should be points û ←→ û9 lying closeA desirable feature of the method of triangulation used
to the measured points u ←→ u9 and satisfying the equationis that it should be invariant under transformations of the
û9ÁFû exactly. We seek the points û and û9 that minimizeappropriate class. Thus, denote by t a triangulation method
the functionused to compute a 3D space point x from a point correspon-

dence u ←→ u9 and a pair of camera matrices P and P9.
d(u, û)2 1 d(u9, û9)2, (2)

We write

where d(p, p) represents Euclidean distance, subject to the
x 5 t(u, u9, P, P9). epipolar constraint

û9ÁFû 5 0.The triangulation is said to be invariant under a transfor-
mation H if

Assuming a Gaussian error distribution, the points û9 and
û are the most likely values for true image point correspon-

t(u, u9, P, P9) 5 H21t(u, u9, PH21, P9H21).
dences. Once û9 and û are found, the point x may be found
by any triangulation method, since the corresponding rays

This means that triangulation using the transformed cam- will meet precisely in space.
eras results in the transformed point. If the camera matrices
are known only up to an affine (or projective) transforma- 4. AN OPTIMAL METHOD OF TRIANGULATION
tion, then it is clearly desirable to use an affine- (resp.
projective)-invariant triangulation method to compute the In this section, we describe a method of triangulation

that finds the global minimum of the cost function (2) using3D space points.
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a noniterative algorithm. If the Gaussian noise model can 4.2. Details of Minimization
be assumed to be correct, this triangulation method is then

If both of the image points correspond with the epipoles,
provably optimal. This new method will be referred to as

then the point in space lies on the line joining the camera
the polynomial method, since it requires the solution of a

centers. In this case it is impossible to determine the posi-
sixth-order polynomial.

tion of the point in space. If only one of the corresponding
point lies at an epipole, then we conclude that the point

4.1. Reformulation of the Minimization Problem in space must coincide with the other camera center. Con-
sequently, we assume in the following that neither of theGiven a measured correspondence u ←→ u9, we seek a
two image points u and u9 corresponds with an epipole.pair of points û and û9 that minimize the sum of squared

In this case, we may simplify the analysis by applying adistances (2) subject to the epipolar constraint û9ÁFû 5 0.
rigid transformation to each image in order to place bothAny pair of points satisfying the epipolar constraint must
points u and u9 at the origin, (0, 0, 1)Á in homogeneouslie on a pair of corresponding epipolar lines in the two
coordinates. Furthermore, the epipoles may be placed onimages. Thus, in particular, the optimum point û lies on
the x-axis at points (1, 0, f )Á and (1, 0, f 9)Á, respectively.an epipolar line l̂ and û9 lies on the corresponding epipolar
A value f equal to 0 means that the epipole is at infinity.line l̂9.

The details on how to determine these rigid transforma-Now, we consider a pair of corresponding epipolar lines
tions are given in Section 4.3. In the following, we assumel and l9. Of all pairs of points on l and l9 it is, of course,
that in homogeneous coordinates, u 5 u9 5 (0, 0, 1)Á andthe pair of orthogonal projections of u on l, respectively,
that the two epipoles are at points (1, 0, f )Á and (1, 0, f 9)Á.u9 on l9 which minimizes the sum of squared distances

Applying these rigid transformations has no effect on(2). Let (u, u9) be the pair of these orthogonal projections.
the sum-of-squares distance function (2) and hence doesWe may write d(u, u) 5 d(u, l), where d(u, l) represents
not change the minimization problem. However, the funda-the perpendicular distance from the point u to the line l.
mental matrix must be adapted according to these transfor-A similar expression holds for d(u9, u9).
mations. Since F(1, 0, f )Á 5 (1, 0, f 9)F 5 0, the fundamentalIn view of the previous paragraph, we may reformulate
matrix has a special form (how to compute this matrix fromthe minimization problem as follows. We seek to minimize
the original fundamental matrix is described in Section 4.3):

d(u, l)2 1 d(u9, l9)2, (3)

F 5 1
ff 9d 2f 9c 2f 9d

2fb a b

2fd c d
2 . (4)

where l and l9 range over all choices of corresponding
epipolar lines.

Suppose we have determined the pair of corresponding Consider an epipolar line in the first image passing
epipolar lines l̂ and l̂9 which minimize (3). The searched through the point (0, t, 1)Á (still in homogeneous coordi-
points û and û9 are then just the orthogonal projections of nates) and the epipole (1, 0, f )Á. We denote this epipolar
u on l̂, respectively, u9 on l̂9. line by l(t). The vector representing this line is given by

Our strategy for minimizing (3) is as follows: the cross product (0, t, 1)T 3 (1, 0, f )T 5 (tf, 1, 2t)T, so
the squared distance from the line to the origin is1. Parameterize the pencil of epipolar lines in the first

image by a parameter t. Thus an epipolar line in the first
d(u, l(t))2 5

t2

1 1 (tf )2 .image may be written as l(t).

2. Using the fundamental matrix F, compute the corre-
sponding epipolar line l9(t) in the second image. Using the fundamental matrix to find the corresponding

epipolar line in the other image, we see that3. Express the distance function d(u, l(t))2 1
d(u9, l9(t))2 explicitly as a function of t.

l9(t) 5 F(0, t, 1)Á 5 (2f 9(ct 1 d), at 1 b, ct 1 d)Á.
4. Find the value of t that minimizes this function.

This is the representation of the line l9(t) as a homoge-
In this way, the problem is reduced to that of finding neous vector. The squared distance of this line from the

the minimum of a function of a single variable, t. It will origin is equal to
be seen that for a suitable parameterization of the pencil of
epipolar lines the distance function is a rational polynomial

d(u9, l9(t))2 5
(ct 1 d)2

(at 1 b)2 1 f 92(ct 1 d)2 .function of t. Using techniques of elementary calculus, the
minimization problem reduces to finding the real roots of
a polynomial of degree 6. The total squared distance is therefore given by
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s(t) 5
t2

1 1 (tf )2 1
(ct 1 d)2

(at 1 b)2 1 f 92(ct 1 d)2 . (5)

Our task is to find the minimum of this function.
We may find the minimum using techniques of elemen-

tary calculus, as follows. We compute the derivative

s9(t) 5
2t2

(1 1 (tf )2)2 2
2(ad 2 bc)(at 1 b)(ct 1 d)
((at 1 b)2 1 f 92(ct 1 d)2)2 . (6)

FIG. 1. Example of a cost function with three minima.
Maxima and minima of s(t) will occur when s9(t) 5 0.
Collecting the two terms in s9(t) over a common denomina-
tor and equating the numerator to 0 gives a condition

The (by L translated) epipole e 5 (e1 , e2 , e3)T is rotated
on the x-axis, ifr(t) 5 t((at 1 b)2 1 f 92(ct 1 d)2)2

2 (ad 2 bc)(1 1 (tf )2)2(at 1 b)(ct 1 d) (7) RLe P (1, 0, f )T

5 0.

for some f. Developing the left-hand side, we obtain the
The minima and maxima of s(t) will occur at the roots of equation
this polynomial. This is a polynomial of degree 6, which
may have up to six real roots, corresponding to three min- sin Q(e1 2 e3u1) 1 cos Q(e2 2 e3u2) 5 0,
ima and three maxima of the function s(t). The absolute
minimum of the function s(t) may be found by finding the which allows us to determine the rotation angle Q. The
roots of r(t) and evaluating the function s(t) given by (5) complete rigid transformation in the first image is given
at each of the real roots. More simply, one checks the by T 5 RL. A transformation T9 for the second image is
value of s(t) at the real part of each root (complex or real) determined analogously.
of r(t), which saves the trouble of determining if a root is The fundamental matrix for the transformed images (the
real or complex. One should also check the asymptotic same as in (4)) is then given by
value of s(t) as t R y to see if the minimum distance occurs
when t 5 y, corresponding to an epipolar line u 5 1/ f in F 5 T9F0T21,
the first image.

where F0 here denotes the fundamental matrix before car-
4.3. Determining the Rigid Transformations

rying out the transformations T and T9.
We first carry out a translation which takes the point u

4.4. Local Minimato the origin. If u is given by u 5 (u1 , u2 , 1)T, the translation
is represented by The fact that r(t) in (7) has degree 6 means that s(t)

may have as many as three minima. In fact, this is indeed
possible, as the following case shows. Setting f 5 f 9 5 1
and a 5 2, b 5 3, c 5 3, d 5 4 givesL 5 1

1 0 2u1

0 1 2u2

0 0 1
2.

F 5 1
4 23 24

23 2 3

24 3 4
2Now, in order to place the epipole e on the x-axis, we

rotate around the origin by an angle Q which is determined
as shown in the following. A rotation around the origin
can be represented by a matrix and a function

s(t) 5
t2

1 1 t2 1
(3t 1 4)2

(2t 1 3)2 1 (3t 1 4)2
R 5 1

cos Q 2sin Q 0

sin Q cos Q 0

0 0 1
2.

with graph as shown in Fig. 1 (in this graph and also Fig.
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reconstruction; here we only use it to obtain the parameter-
ization in Section 4.2. Of course, in practice the projection
matrices or fundamental matrix are not exactly known.
Correcting these improves the accuracy of the reconstruc-
tion, but this requires iterative methods (cf. Section 5.5)
and usually a good initialization.

5. OTHER TRIANGULATION METHODS

In this section, we discuss several other triangulation
FIG. 2. This is the cost function for a perfect point match, which methods that will be compared with the Polynomial

nevertheless has two minima. method.

5.1. Linear Triangulation

2 we make the substitution t 5 tan(u) and plot for u in the The linear triangulation method is the most common
range 2f/2 # u # f/2, so as to show the whole infinite one, described, for instance, in [8]. Suppose that u 5 Px.
range of t). The three minima are clearly shown. We write in homogeneous coordinates u 5 w(u, v, 1)Á,

As a second example, we consider the case where f 5 where (u, v) are the observed point coordinates and w is
f 9 5 1, and a 5 2, b 5 21, c 5 1, d 5 0, i.e., an unknown scale factor. Now, denoting by pÁ

i the ith row
of the matrix P, the equation u 5 Px may be written as

wu 5 pÁ
1 x, wv 5 pÁ

2 x, w 5 pÁ
3 x.

F 5 1
0 21 0

1 2 21

0 1 0
2.

Eliminating w using the third equation, we arrive at

In this case, the function s(t) is given by upÁ
3 x 5 pÁ

1 x
(8)

vpÁ
3 x 5 pÁ

2 x.
s(t) 5

t2

t2 1 1
1

t2

t2 1 (2t 2 1)2 .

From two views, we obtain a total of four linear equations
in the coordinates of x, which may be written in the formBoth terms of the cost function vanish for a value of t 5
Ax 5 0 for a suitable 4 3 4 matrix, A. These equations0, which means that the corresponding points u and u9
define x only up to an indeterminant scale factor, and weexactly satisfy the epipolar constraint. This can be verified
seek a nonzero solution for x. Of course, with noisy data,by observing that u9ÁFu 5 0. Thus the two points are
the equations will not be satisfied precisely, and we seekexactly matched. A graph of the cost function s(t) is shown
a best solution.in Fig. 2. One sees apart from the absolute minimum at

t 5 0 also a local minimum at t 5 1 (u 5 P/4). Thus, even The Linear–Eigen Method. There are many ways to
in the case of perfect matches local minima may occur. solve for x to satisfy Ax 5 0. In one popular method, one
This example shows that an algorithm that attempts to finds x to minimize iAxi subject to the condition ixi 5 1.
minimize the cost function (2) or equivalently (3) by an The solution is the unit eigenvector corresponding to the
iterative search beginning from an arbitrary initial point smallest eigenvalue of the matrix AÁA. This problem may
is in danger of finding a local minimum, even in the case be solved using the singular value decomposition or Ja-
of perfect point matches. cobi’s method for finding eigenvalues of symmetric matri-

ces [1, 14].
4.5. Optimality

The Linear–LS Method. By setting x 5 (x, y, z, 1)Á

Under the assumption of an unbiased Gaussian noise one reduces the set of homogeneous equations, Ax 5 0,
model, the most probable reconstruction is the one that to a set of four nonhomogeneous equations in three un-
minimizes the sum of squared distances between re- knowns. One can find a least-squares solution to this prob-
projected points and measured image points. In this sense, lem by the method of pseudo-inverses, or by using the
our method gives optimal results if the projection matrices singular value decomposition [1, 14].
(respectively, the fundamental matrix) are exactly known:
the constraint that reprojected points must lie on corre- Discussion. These two methods are quite similar but

in fact have quite different properties in the presence ofsponding epipolar lines is automatically fulfilled for any
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noise. The Linear–LS method assumes that the solution 1/w is the correct one to apply to the second equation of
point x is not at infinity, for otherwise we could not assume (8). For a second image, the correct weight would be
that x 5 (x, y, z, 1)Á. This is a disadvantage of this method 1/w9, where w9 5 p9Á

3 x. Of course, we cannot weigh the
when we are seeking to carry out a projective reconstruc- equations in this manner because the weights depend on
tion, when reconstructed points may lie on the plane at the value of x which we do not know until after we have
infinity. On the other hand, neither of these two linear solved the equations. Therefore, we proceed iteratively to
methods is quite suitable for projective reconstruction, adapt the weights. We begin by setting w0 5 w90 5 1, and
since they are not projective invariant. To see this, suppose we solve the system of equations to find a solution x0 . This
that the camera matrices P and P9 are replaced by PH21 and is precisely the solution found by the Linear–Eigen or
P9H21. One sees that in this case the matrix of equations, A Linear–LS method, whichever is being used. Having found
becomes AH21. A point x such that Ax 5 « for the original x0 we may compute the weights.
problem corresponds to a point Hx satisfying (AH21) We repeat this process several times, at the ith step
(Hx) 5 « for the transformed problem. Thus, there is a one- multiplying Eq. (8) for the first view by 1/wi , where wi 5
to-one correspondence between points x and Hx giving the p3xi21 and the equations for the second view by 1/w9i , where
same error. However, neither the condition ixi 5 1 nor w9i 5 p9Á

3 xi21 using the solution xi21 found in the previous
the condition x 5 (x, y, z, 1)Á is invariant under application iteration. Within a few iterations this process will converge
of the projective transformation H. Thus, in general the (one hopes) in which case we will have xi 5 xi21 and so
point x solving the original problem will not correspond wi 5 pÁ

3 xi . The error (for the first equation of (8) for
to a solution Hx for the transformed problem. example) will be «i 5 u 2 pÁ

1 xi/pÁ
3 xi which is precisely the

For affine transformations, on the other hand, the situa- error in image measurements as in (2).
tion is different. In fact, although the condition ixi 5 1 is This method may be applied to either the Linear–Eigen
not preserved under affine transformation, the condition or the Linear–LS method. The corresponding methods will
x 5 (x, y, z, 1)Á is preserved, since for an affine transforma- be called Iterative–Eigen and Iterative–LS, respectively.
tion, H(x, y, z, 1)Á 5 (x9, y9, z9, 1)Á. This means that there The advantage of these methods over other iterative least-
is a one-to-one correspondence between a vector x 5 (x, squares minimization methods such as a Levenberg–
y, z, 1)Á such that A(x, y, z, 1)Á 5 « and the vector Hx 5 Marquardt (LM) iteration [14] is that they are very simple
(x9, y9, z9, 1)Á such that (AH21)(x9, y9, z9, 1)Á 5 «. The to program. In fact, they require only a trivial adaptation
error is the same for corresponding points. Thus, the points to the linear methods. There is no need for any separate
that minimize the error i«i correspond as well. Hence, the initialization method, as is often required by LM (see Sec-
Linear–LS method is affine invariant, whereas the Linear– tion 5.5). Furthermore, the decision on when to stop iterat-
Eigen method is not. These conclusions are confirmed by

ing (convergence) is simple. One stops when the change
the experimental results.

in the weights is small. Exactly when to stop is not critical,
since the change in the reconstructed points x is not very

5.2. Iterative Linear Methods sensitive to small changes in the weights. The disadvantage
of this method is that it sometimes fails to converge. InA cause of inaccuracy in the two methods Linear–LS
unstable situations, such as when the points are near theand Linear–Eigen is that the value being minimized iAxi
epipoles, this occurs sufficiently often to be a problemhas no geometric meaning and certainly does not corre-
(perhaps for 5% of the time). If this method is to be usedspond to the cost function (2). In addition, multiplying
in such unstable circumstances, then a fallback method iseach of the equations (rows of A) by some weight will
necessary. In the experiments, we have used the optimalchange the solution. The idea of the iterative linear method
Polynomial method as a backup in case convergence hasis to change the weights of the linear equations adaptively
not occurred within 10 iterations. In this way the statisticsso that the weighted equations correspond to the errors
are not negatively biased by occasional very bad results,in the image coordinate measurements.
due to nonconvergence.In particular, consider the first equation of Eq. (8). In

Despite the similarities of the properties of the Itera-general, the point x we find will not satisfy this equation
tive–LS method with a direct nonlinear least-squares mini-exactly—rather, there will be an error « 5 upÁ

3 x 2 pÁ
1 x.

mization of the goal function (2), it is not identical. BecauseWhat we really want to minimize, however, is the differ-
the Iterative–LS method separates the two steps of com-ence between the measured image coordinate value u and
puting x and the weights w and w9, the result is slightlythe projection of x, which is given by pÁ

1 x/pÁ
3 x. Specifically,

different. In fact the three methods, Iterative–LS, Itera-we wish to minimize «9 5 «/pÁ
3 x 5 u 2 pÁ

1 x/pÁ
3 x. This means

tive–Eigen, and LM, are distinct. In particular, the Itera-that if the equation had been weighted by the factor 1/w,
where w 5 pÁ

3 x, then the resulting error would have been tive–LS and Iterative–Eigen methods are not projective
invariant, though experiments show that they are quiteprecisely what we wanted to minimize. The same weight
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insensitive to projective transformation. Of course, Itera- Setting the derivative equal to zero, separating the two
terms on opposite sides of the equal sign and squaring totive–LS is affine invariant, just as Linear–LS is.

Experiments show that the iterative methods Itera- remove the square roots gives
tive–LS and Iterative–Eigen perform substantially better
than the corresponding noniterative linear methods. 1

(1 1 (tf )2)3 5
(ad 2 bc)2(at 1 b)2

((at 1 b)2 1 f 92(ct 1 d)2)3

5.3. Midpoint Method

A commonly suggested method for triangulation is to which finally leads to a polynomial of degree 8 in t. We
find the midpoint of the common perpendicular to the two evaluate s2(t) at the roots of this polynomial to find the
rays corresponding to the matched points. This method is global minimum of s2(t).
relatively easy to compute using a linear algorithm. How-
ever, ease of computation is almost its only virtue. This 5.5. Photogrammetry
method is neither affine nor projective invariant, since

In the photogrammetric community, ‘‘triangulation’’perpendicularity is not an affine and midpoint not a projec-
means reconstruction from several, usually more than twotive concept. It is seen to behave very poorly indeed under
images [17]. Most of the proposed methods are designedprojective and affine transformation and is by far the worst
for calibrated cameras, i.e., are only applicable in the caseof the methods considered here in this regard. For the
of Euclidean reconstruction. The most general method,record, we outline an algorithm to compute this midpoint.
however, the bundle adjustment with self-calibration is eas-Let P 5 (M u 2Mc) be a decomposition of the first camera
ily adapted to the case of projective reconstruction. Here,matrix. The center of the camera is (1

c) in homogeneous
the coordinates of the reconstructed points are estimatedcoordinates. Furthermore, the point at infinity that maps
iteratively (usually by a Levenberg–Marquardt-basedto a point u in the image is given by ( 0

M21u). Therefore, any
method) with the objective of minimizing the sum ofpoint on the ray mapping to u may be written in the form
squared distances between measured image points and the( 1

c1aM21u) or in nonhomogeneous coordinates, c 1 aM21u,
reprojected 3D points. This is exactly the same minimiza-for some a. Given two images, the two rays must meet in
tion criterion as the cost function (2), and therefore thespace, which leads to an equation aM21u 2 a9M921u9 5
same results should be found.c9 2 c. This gives three equations in two unknowns (the

An advantage of this method is that corrections of thevalues of a and a9) which we may solve using linear least-
projection matrices are easily incorporated into the recon-squares methods. This minimizes the squared distance be-
struction process. Since the given projection matrices aretween the two rays. The midpoint between the two rays
never exact in practice, this method may be used to en-is then given by (c 1 aM21u 1 c9 1 a9M921u)/2.
hance an initial reconstruction.

However, the major drawback is the need of a good5.4. Minimizing the Sum of the Magnitudes of Distances
initialization for the reconstruction. Thus, this method can

Instead of minimizing the square sum of image errors, not be considered as a stand-alone reconstruction tech-
it is possible to adapt the polynomial method to minimize nique. Therefore, we do not consider it in the experiments.
the sum of absolute values of the distances, instead of the
squares of distances. This method will be called Poly-Abs.

6. EXPERIMENTAL EVALUATION OFThe quantity to be minimized is d(u, l) 1 d(u9, l9)
TRIANGULATION METHODSwhich, as a function of t, is expressed by

A large number of experiments were carried out to eval-
uate the different methods described above. We concen-s2(t) 5

utu
Ï1 1 (tf )2

1
uct 1 d u

Ï(at 1 b)2 1 f 92(ct 1 d)2
.

trated on two configurations.

Configuration 1. The first configuration was meant toThe first derivative is of the form
simulate a situation similar to a robot moving down a
corridor, looking straight ahead. This configuration is

s92(t) 5 g1
1

(1 1 (tf )2)3/2 shown in the left part of Fig. 3. In this case, the two epipoles
are close to the center of the images. For points lying
on the line joining the camera centers depth cannot be2g2

(ad 2 bc)(at 1 b)
((at 1 b)2 1 f 92(ct 1 d)2)3/2 ,

determined, and for points close to this line, reconstruction
becomes difficult. Simulated experiments were carried out
for points at several distances in front of the front camera.where g1 and g2 are equal to 21 or 1, depending on the

signs of t and (ct 1 d), respectively. Numerical values we used are as follows:
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To measure the invariance to transformation, an affine
or projective transformation was applied to each camera
matrix. The projective and affine transformations were
chosen so that one of the camera matrices was of the form
(I u 0). This is the normalized form of a camera matrix used
in the projective reconstruction method of [8]. It represents
a significant distortion, since the actual camera matrix was
(by construction) of the form (M u 0), where M was a diago-
nal matrix diag(700, 700, 1).

The most unstable situation is Configuration 1, in which
the epipoles are in the center of the two images, and points
lie close to the epipoles. Since this situation gave the most
severe test to the algorithms, we will give the results for
that configuration. Results of two cases are presented. In
one case the points are at a distance of 0.15 units in front
of the first camera (near points case) and in the other case,

FIG. 3. The two simulation configurations. they are at 0.55 units distance (far points case). The results
will be presented in Graphs 1–8 along with a commentary
for each graph. The measured error is denoted either as

• The distance between the two cameras is 1 unit. 2D error (meaning error of measured compared with the
• The radius of the sphere of observed points is 0.05 reprojected points) or as 3D error, meaning the error com-

units. pared with the correct values of the points in space. In
• The distance between the center of the point sphere addition, we talk of Euclidean, affine, and projective recon-

and the projection center of the front camera is chosen as struction errors. For affine or projective reconstruction,
0.15 or 0.55 units. The center of the sphere lies on the the camera matrices were transformed by a transformation
baseline of the two cameras. of the given sort, the triangulation was carried out, and

• The cameras have the same calibration matrix finally the reconstructed points were retransformed into
the original frame to compare with the correct values. For
Euclidean reconstruction, no transformation was carried
out. Fifty points were reconstructed in 100 trials. EveryK 5 1

700 0 0

0 700 0

0 0 1
2.

data point in the graph expresses the average of the 100
median errors for each 50 points. The horizontal axis of

Configuration 2. In the other configuration, the pair of
cameras was almost parallel, as in an aerial imaging situa-
tion. The points were assumed to be approximately equi-
distant from both cameras, with several different distances
being tried. This configuration is shown in the right-hand
part of Fig. 3. This was a fairly benign configuration for
which most of the methods worked relatively well.

In each set of experiments, 50 points were chosen at
random in the common field of view. For each of several
noise levels varying from 1 to 10 pixels (in a 700 3 700
image), each point was reconstructed 100 times, with differ-
ent instances of noise chosen from a Gaussian random
variable with the given standard deviation (noise level).
For each reconstructed point both the 3D reconstruction
error and the 2D residual error (after reprojection of the

GRAPH 1. 3D error for Euclidean reconstruction (near points). Thispoint) were measured. The errors shown are the median
graph shows all methods. All perform almost equally. The Polynomialerrors. Average errors were also computed. In this latter
method performs marginally worse than the others. It is designed tocase the graphs (not shown in this paper) had the same
minimize 2D error, which explains why it is optimal in this regard; it is

general form and led to the same conclusions. However, not quite optimal for 3D errors. Euclidean reconstruction is the only
they were a little less smooth than the graphs shown here, instance in which Midpoint performed even marginally well, and the only

case in which Polynomial was beaten.being more sensitive to occasional gross errors.
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GRAPH 2. 3D error for Euclidean reconstruction (far points). The GRAPH 4. Comparison of Euclidean (lower curve) and projective
configuration is the same as that for Graph 1, except that the points are 2D errors. The method shown is Iterative–Eigen. The graph shows that
further from both cameras. The curves from the bottom are Linear–LS, this method is almost projective invariant (that is, the two curves are
iterative–LS, and Midpoint, which are almost indistinguishable. The almost the same). This would be an excellent method, except for its
curves for Linear–Eigen and Iterative–Eigen are also identical, Then failure to converge in very unstable situations (about 1% of trials with
follows Poly–Abs and Polynomial. noise above two pixels). The nonconverging cases are ignored in this

graph. In cases where the points are not near the epipoles nonconvergence
is not a problem. The Iterative–LS method (not shown) performs simi-
larly, but just slightly worse, whereas Polynomial is exactly projective
invariant (the two curves are superimposed).each graph is the noise level (between 0 and 10 pixels RMS

in each axial direction), and the vertical axis measures the
error, in pixels for 2D error, or in space units for 3D error.

The goal of these experiments was to determine how
7. EVALUATION WITH REAL IMAGES the triangulation method affects the accuracy of recon-

struction. Since it makes sense to measure the accuracy ofThe algorithms were also carried out with the pair of
reconstruction in a Euclidean frame where distance has areal images shown in Fig. 4. These images were the images
meaning, a close approximation to a correct Euclideanused for one set of experiments in [2].
model for the object was estimated by eye and refined
using the measured image locations of the corners of the

GRAPH 3. 2D error for Euclidean reconstruction (near points). The
configuration is the same as that for Graph 1, except that the median
2D error is measured. Of course Poly–Abs performs best (since it is GRAPH 5. 2D error for projective reconstruction (near points). This

is the case for which all methods performed well in the Euclidean case.optimized for this task) but Polynomial, Iterative–LS- and Iterative-
Eigen are almost indistinguishable. The three very bad performers are This graph shows the results for methods (from the bottom) Poly–Abs,

Polynomial, Iterative–Eigen, and Iterative–LS. This graph shows thatLinear–Eigen, Linear–LS, and Midpoint. The maximum Y scale is 75
pixels. Hence, this graph shows that 2D error and 3D error are not well Polynomial or Poly–Abs is the best method for projective reconstruction,

whereas Iterative–Eigen and Iterative–LS (except for occasional noncon-correlated, since despite large 2D errors, these methods perform well in
terms of 3D error. vergence) perform almost as well.
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GRAPH 6. 2D error for projective reconstruction (near points), con- GRAPH 8. Affine invariance. The three curves shown are, from the
tinued. This shows the bad performers for the same configuration as that bottom, Iterative–Eigen (Euclidean), Iterative–LS (Euclidean and affine
for Graph 5. The graphs shown are (from the bottom) Poly–Abs (as superimposed), and Iterative–Eigen (affine). Thus, as predicted by the-
reference), Linear–Eigen, Linear–LS, and Midpoint. This shows how ory, the Iterative–LS method is precisely affine invariant, but Iterative–
serious a problem nonvariance under transforms can be. Eigen is not (but almost). Once more we remark that except for occasional

nonconvergence, these would be good methods.

dark squares. The Euclidean model so obtained was used struction into agreement with the Euclidean model. Next,
as ground truth. controlled zero-mean Gaussian noise was introduced into

We desired to measure how the accuracy of the recon- the point coordinates, triangulation was carried out in the
struction varies with noise. For this reason, the measured projective frame, the transformation H was applied, and
pixel locations were corrected to correspond exactly to the error was measured in the Euclidean frame. Graph 9
the Euclidean model. This involved correcting each point shows the results of this experiment for two triangulation
coordinate by an average of 0.02 pixels. The correction methods. It clearly shows that the optimal method gives
was so small, because of the very great accuracy of the superior reconstruction results. Note that for these experi-
provided matched points. At this stage we had a model ments, the projective frame was computed only once, with
and a set of matched points corresponding exactly to the noiseless data, but triangulation was carried out for data
model. Next, a projective reconstruction of the points was with added noise. This was done to separate the effect of
computed by the method of [5, 8], and a projective trans- noise on the computation of the projective frame from the
form H was computed that brought the projective recon- effect of noise in the triangulation process. Graph 9 shows

the average reconstruction error over all points in 10 sepa-
rate runs at each chosen noise level.

8. TIMING

The following table shows approximate relative speeds
for the different algorithms.

GRAPH 7. 3D error for projective reconstruction (near points). This
is the same as Graphs 5 and 6 except that we show the 3D error. Poly–Abs
performs marginally better than Polynomial. Then follow Linear–Eigen,
Iterative–LS, Iterative–Eigen, and Linear–LS. The graph for the Mid- FIG. 4. Pair of images used for reconstruction experiments, showing

matching epipolar lines.point method goes off scale already for a noise of one pixel.
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ods. They are a bit slower than the other methods, but by
a factor of 2 or 3 only, which is probably not significant.

The Iterative–LS method is a good method, apart from
the problem of occasional nonconvergence. Its advantage
is that it is about three times as fast as the Polynomial
method and is nearly projective invariant. In general Itera-
tive–LS seems to perform better than Iterative–Eigen, but
not very significantly. The big problem, however, is non-
convergence. This occurs frequently enough in unstable
situations to be a definite problem. If this method is used,
there must be a backup method, such as the Polynomial
method to use in case of nonconvergence.

We summarize the conclusions for the various methods.

Polynomial. This is the method of choice when thereGRAPH 9. Reconstruction error. This graph shows the reconstruction
are only two images and time is not an issue. It is clearlyerror for the Midpoint (above) and Polynomial methods. On the hori-
superior to all other methods, except perhaps Poly–Abs.zontal axis is the noise; on the vertical axis the reconstruction error. The

units for reconstruction error are relative to a unit distance equal to the In fact, it is optimum under the assumption of a Gaussian
side of one of the dark squares in the image. The methods Linear–LS, noise model. It is affine and projective invariant.
Linear–Eigen, Iterative–LS, and Iterative–Eigen gave results close to
the Polynomial method. Even for the best method the error is large for Poly–Abs. This is guaranteed to find the global mini-
higher noise levels, because there is little movement between the images. mum of sum of magnitude of image error. This may be a
However, for the actual coordinate error in the original matched points better model for image noise, placing less emphasis on(about 0.02 pixels), the error is small.

larger errors. It seems to give slightly better 3D error re-
sults. Otherwise it does not behave much differently from
Polynomial and it is affine and projective-invariant.

Poly 14 Midpoint. This is not a method that one could recom-
Linear–Eigen 3 mend in any circumstances. Even for Euclidean reconstruc-
Iterative–Eigen 5 tion it is no better than other linear methods, such as
Midpoint 2 Linear–LS, which beats it in most other respects. It is
Poly–Abs 30 neither affine nor projective invariant.
Linear–LS 2

Linear–Eigen. The main advantage is speed and sim-Iterative–LS 3
plicity. It is neither affine nor projective invariant.

Since these are relative measurements only no units ap-
Linear–LS. This has the advantage of being affine in-pear, but all these algorithms will process several thousands

variant, but should not be used for projective recon-of points per second. In most applications, speed of compu-
struction.tation will not be an issue, since it will be small compared

with other parts of the computation, such as point matching Iterative–Eigen. This method gives very good results,
or camera model computation. markedly better than Linear–Eigen, but not quite as good

as Polynomial. It may easily be generalized to several im-
ages and is almost projective invariant. The big disadvan-9. DISCUSSION OF RESULTS
tage is occasional nonconvergence, which occurs often
enough to be a problem. It must be used with a backupAll the methods performed relatively for Euclidean re-

construction, as measured in terms of 3D error. In the method in case of nonconvergence.
case of 2D error, only the methods Polynomial, Poly–Abs,

Iterative–LS. This method is similar in performance
iterative–LS, and Iterative–Eigen perform acceptably, and

and properties to Linear–Eigen but should not be used for
the last two have the disadvantage of occasional noncon-

projective reconstruction, since it does not handle points at
vergence. The Poly–Abs method seems to give slightly

infinity well. On the other hand it is affine invariant.
better 3D error performance than the Polynomial method
but both of these seem to be excellent methods, not suscep- In summary, the Polynomial or Poly–Abs method is the

method of choice for almost all applications. The Poly–Abstible to serious failure and giving the best overall 3D and
2D error performance. The only distinct disadvantage is method seems to give slightly better 3D reconstruction

results. Both these methods are stable, provably optimal,that they are not especially easily generalizable to more
than two images, in contrast to the other proposed meth- and relatively easy to code. For Euclidean reconstruction,



TRIANGULATION 157

proach, in Proceedings, of the ARPA Image Understanding Workshopthe linear methods are a possible alternative choice, as
1994, Monterey, CA, 1994, pp. 1009–1016.long as 2D error is not important. However, for affine or

8. R. Hartley, R. Gupta, and T. Chang, Stereo from uncalibrated cam-projective reconstruction situations, they may be orders of
eras, in Proceedings, IEEE Conference on Computer Vision and Pat-

magnitude inferior. tern Recognition, 1992, pp. 761–764.

9. R. I. Hartley and P. Sturm, Triangulation, in Proceedings of the
ARPA Image Understanding Workshop 1994, Monterey, CA, 1994,ACKNOWLEDGMENTS
pp. 957–966.

Thanks to Paul Beardsley and Andrew Zisserman for making the 10. J. J. Koenderink and A. J. van Doorn, Affine structure from motion,
calibration images and data available to us. J. Opt. Soc. Am. A 8(2), 1992, 377–385.

11. H. C. Longuet-Higgins, A computer algorithm for reconstructing a
scene from two projections, Nature 293, 1981, 133–135.REFERENCES

12. R. Mohr, F. Veillon, and L. Quan, Relative 3D reconstruction using
multiple uncalibrated images, in Proceedings, IEEE Conference on1. K. E. Atkinson, An Introduction to Numerical Analysis, 2nd ed.,
Computer Vision and Pattern Recognition, 1993, pp. 543–548.Wiley, New York, 1989.

13. J. Ponce, D. H. Marimont, and T. A. Cass, Analytical methods for2. P. A. Beardsley, A. Zisserman, and D. W. Murray, Navigation using
uncalibrated stereo and motion reconstruction, in Computer Vision—affine structure from motion, in Computer Vision—ECCV ’94, LNCS
ECCV ’94, LNCS Series 800, pp. 463–470, Springer-Verlag, Berlin/Series 801, pp. 85–96, Springer-Verlag, Berlin/New York, 1994.
New York, 1994.

3. P. A. Beardsley, A. Zisserman, and D. W. Murray, Sequential Updat-
14. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,ing of Projective and Affine Structure from Motion, Technical Report,

Numerical Recipes in C: The Art of Scientific Computing, CambridgeOxford University, 1994.
Univ. Press, Cambridge, UK, 1988.

4. O. D. Faugeras, What can be seen in three dimensions with an uncali-
15. L. S. Shapiro, A. Zisserman, and M. Brady, Motion from point

brated stereo rig? in Computer Vision—ECCV ’92, LNCS Series 588,
matches using affine epipolar geometry, in Computer Vision—ECCV

pp. 563–578, Springer-Verlag, Berlin/New York, 1992. ’94, LNCS Series 801, pp. 73–84, Springer-Verlag, Berlin/New
5. R. I. Hartley, Euclidean reconstruction from uncalibrated views, in York, 1994.

Applications of Invariance in Computer Vision, LNCS Series 825, pp. 16. A. Shashua, Projective depth: A geometric invariant for 3D recon-
237–256, Springer-Verlag, Berlin/New York, 1994. struction from two perspective/orthographic views and for visual

6. R. I. Hartley, Estimation of relative camera positions for uncalibrated recognition, in Proceedings, International Conference on Computer
cameras, in Computer Vision—ECCV ’92, LNCS Series 588, pp. 579– Vision, 1993, pp. 583–590.
587, Springer-Verlag, Berlin/New York, 1992. 17. C. C. Slama (Ed.), Manual of Photogrammetry, 4th ed., American

Society of Photogrammetry and Remote Sensing, 1980.7. R. I. Hartley, Lines and points in three views—An integrated ap-


