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Abstract. This paper addresses the problem of 3D surface reconstruction using image sequences. It has been
shown that shape recovery from three or more occluding contours of the surface is possible given a known camera
motion. Several algorithms, which have been recently proposed, allow such a reconstruction under the assumption
of a linear camera motion. A new approach is presented which deals with the reconstruction problem directly from
a discrete point of view. First, a theoretical study of the epipolar correspondence between occluding contours is
achieved. A correct depth formulation is then derived from a local approximation of the surface up to order two.
This allows the local shape to be estimated, given three consecutive contours, without any constraints on the camera
motion. Experimental results are presented for both synthetic and real data.
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1. Introduction

Recovering three-dimensional shapes from visual data
is an important intermediate goal of many vision sys-
tems used in robotics, surveillance, guidance and mod-
elling. In such applications, surface reconstruction is
often used as an intermediate step in the more important
task of 3D representation and recognition.

For non-polyhedral objects, rich and robust infor-
mation on the shape are provided by the occluding
contours. In fact, if some stronga priori knowledge
on the object is available such as parametric descrip-
tions, then a single view allows shape recovery (Ponce
et al., 1989; Zerroug and Nevatia, 1993), object pose es-
timation and object recognition (Kriegman and Ponce,
1990; Glachet et al., 1992; Forsyth et al., 1992). Other-
wise, for any smooth object, a sequence of occluding
contours must be considered to recover the shape.

The problem of reconstructing surfaces from oc-
cluding contours was first considered by Koenderink
(1984), who attempted to infer 3D curvature pro-
perties from occluding contours. Later, Giblin and
Weiss (1987) proved that surface reconstruction can be

performed for planar motion under the assumption of
orthographic projection. The problem of reconstruct-
ing under perspective projection for general known mo-
tions has been tackled by Cipolla and Blake (1990),
and Vaillant and Faugeras (1992). Both approaches
lead to depth computation under the assumption of
continuous observations of the occluding contours and
are based on differential analysis. Unfortunately, the
use of differential computations with discrete observa-
tions requires numerical approximations and produces
numerical instabilities. With the aim of further con-
straining the problem, the occluding contour is sup-
posed to be locally part of a circle. In addition, the
plane containing the circle is supposed to be known: in
(Cipolla and Blake, 1990), the epipolar plane is used
whereas Vaillant and Faugeras (1992) used the radial
plane. While keeping the circle model, Szeliski and
Weiss (1993) proposed to improve the reconstruction
process by computing the epipolar curves on the whole
surface together with an estimate of uncertainty. The
use of estimation theory leads to a more robust shape
recovery using a linear smoother but the basic recons-
truction method remains unchanged.
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The approaches described above only allow a 3D
depth map of points or curves belonging to the surface
to be obtained. In the work of Zhao and Mohr (1994),
the authors attempt to recover the global 3D surface de-
scription from the occluding contours in a single stage
by use of B-spline patches. This approach introduces
a direct regularisation of the reconstructed surface, but
it requires a completea priori parametrisation of the
surface which is usually not available. Therefore it is
preferable to first recover a more accurate 3D depth
map before computing a 3D surface description.

The task considered in this paper is to deal with the
reconstruction problem directly from a discrete point
of view. We first address the problem of the map-
ping between successive occluding contours and we
give new results in the case of the epipolar correspon-
dence. Then, a correct depth formulation is given when
the occluding contours are observed at discrete times.
The main interest of such a formulation is to avoid re-
construction constraints—unlike (Cipolla and Blake,
1990; Vaillant and Faugeras, 1992; Szeliski and Weiss,
1993; Joshi et al., 1995) no reconstruction plane is lo-
cally imposed—so that non-linear motion can be easily
taken into account. Moreover, it gives a general solu-
tion to the reconstruction problem which is always de-
fined except when the camera motion is in the viewing
direction. Our approach is based on a local approxi-
mation of the surface up to the second order, allowing
a linear estimation of depth to be derived, given any set
of three occluding contours.

This paper is organised as follows: the epipolar cor-
respondence induced between two discrete observa-
tions is studied in Section 2. In Section 3, the depth
formulation is established, enabling the discrete ob-
servations of occluding contours to be handled. In
Section 4, our approach is compared to previous me-
thods. The algorithm performances are studied in
Section 5 and significant reconstruction results on real
data are shown in Section 6, before concluding.

2. Viewing Geometry

Let S be a smooth curved surface:S is at leastC2

and not locally plane. Let alsoP be a point onS.
We assume that the imaging system is based on the
pinhole model (i.e., perspective projection). Therefore,
the vector positionr of P can be written

r = C + λT, (1)

whereC is the camera centre position,T the unit view-
ing direction andλ the depth of the pointP along the

Figure 1. Rim and occluding contour under perspective projection.

viewing direction. For a given camera position there is
a locus of points on the surfaceS where the normalN
is perpendicular to the viewing direction. This set of
points is called therim (also known as thelimb) and its
projection onto the image plane is called theoccluding
contour(also known as theextremal boundaryor the
profile), as shown in Fig. 1.

As the camera moves aroundS the occluding con-
tours sweep a surface in the space of parameters which
is called thespatio-temporal surface(Faugeras, 1993;
Giblin and Weiss, 1995). Since the camera centre po-
sition is a function of timet , this surface can be param-
eterised by(s, t), where the parameters describes the
position on the occluding contours and the parameter
t corresponds to time. However, such a parametrisa-
tion is not uniquely defined (Cipolla and Blake, 1990):
curves of constantt are the occluding contours but
curves of constants have no physical interpretation.
Until now, the most generally accepted parametri-
sation of the spatio-temporal surface is theepipolar
parametrisationwhich yields a mapping between suc-
cessive occluding contours called theepipolar corre-
spondence. The advantage of this parametrisation is
that it leads to a local parametrisation of the surface
S which can always be used except when the occlud-
ing contour is singular or when the camera motion is
in the plane tangent to the surface (Giblin and Weiss,
1995). Furthermore, the epipolar correspondence be-
tween points on successive occluding contours con-
strains the reconstruction problem which becomes a
linear estimation, as shall be seen later.

2.1. Epipolar Correspondence

The epipolar parametrisation is derived from the epi-
polar geometry in stereo-vision. It leads to a planar
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Figure 2. Two epipolar correspondentsp1 and p2.

correspondence between two successive occluding
contours as shown in Fig. 2. Hence, two pointsp1 and
p2 on two successive occluding contours are epipo-
lar correspondents if they both belong to the epipo-
lar plane defined by the two camera centres and one
of the points. Such correspondences between points
on the spatio-temporal surface generally induce cor-
respondences between points on the surfaceS. For a
continuous motion of the camera, curves of constant
s on the spatio-temporal surface induce curves on the
surfaceS. These curves are calledepipolar curves.
In this section we focus on the local behaviour of the
epipolar correspondence between two occluding con-
tours ofS.

Consider two occluding contoursO1 andO2 of S
for two successive camera centre positionsC1 andC2.
We denote byT1(s1) the viewing direction for pointsp1

onO1 where the parameters1 describes the position on
O1, and equivalently byT2(s2) the viewing direction for
points p2 onO2 where the parameters2 describes the
position onO2. The epipolar correspondence leads to
the following matching constraint between two image
points p1 and p2 onO1 andO2:

F(s1, s2) | (p1,p2) = 0, (2)

with:

F(s1, s2) = (T1(s1) ∧ T2(s2)) · (C1 − C2).

In the general case, epipolar correspondentsp1 and
p2 are image projections of two different pointsP1 and
P2 on S. This non-stationarityproperty of occlud-
ing contours can be used to discriminate such contours
from others (Vaillant and Faugeras, 1992). However,
there is a circumstance where the property is not veri-
fied. This occurs when the camera motion(C1 − C2)

is in the tangent plane ofS at P1 or P2. In this si-
tuation, pointsp1 and p2 are image projections of the
same fixed pointP (P = P1 = P2), and rims ofS for

camera positionsC1 andC2 intersect atP. We call such
a pointP amultiple pointof the sequence considered.

Definition. A multiple point of an image sequence of
S is a pointP where two or more consecutive rims of
the sequence intersect.

Consequently, ifP is a multiple point of an image
sequence ofS then the epipolar plane atP is tangent to
S. In addition, if then camera centre positions of the
image sequence are aligned, thenP is ofmultiplicity n.

Remark. In the literature, the locus of rim points
where the epipolar plane is tangent to the surface is
called the frontier (Giblin and Weiss, 1995; Cipolla
et al., 1995). For a linear camera motion, the fron-
tier, if it exists, is restricted to isolated points. Thus,
multiple points represent the frontier for linear camera
motions going through successive camera centre posi-
tions of the sequence. Since these rim points are fixed
features on the surface, they can be used to derive con-
straints on the camera motion (Rieger, 1986; Porill and
Pollard, 1991; Cipolla et al., 1995; Joshi et al., 1995).

Equation (2) relates parameterss1 and s2 of two
epipolar correspondents. Now consider the epipolar
map:

f : O1 → O2

which associates with every pointp1 ∈ O1 its epipolar
correspondentp2 ∈ O2 such thatF(s1, s2)| p1,p2 = 0.
Assuming that the occluding contours are smooth1, we
have:

Proposition 1. The epipolar map f is a local diffeo-
morphism at p1 if the point P1 onS, with image pro-
jection p1, is not a multiple point of the sequence
considered.

Proof: This proposition is a direct consequence of the
implicit function theorem (Bruce and Giblin, 1984) ap-
plied to the functionF . We denote bysp1 andsp2 the
parameters of two epipolar correspondentsp1 and p2

onO1 andO2, thereforeF(sp1, sp2) = 0. If the occlud-
ing contours are smooth, thenT1(s1), T2(s2) are smooth
with respect tos1 ands2 and the functionF(s1, s2) is
smooth. By the implicit function theorem, there ex-
ists a continuous mapf : s1 7→ s2 which is smooth
in a neighbourhood ofsp1 provided ∂F

∂s2
(sp1, sp2) 6= 0.

Likewises1 is a smooth function ofs2 in a neighbour-
hood ofsp2 provided ∂F

∂s1
(sp1, sp2) 6= 0. Rewriting (2)
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Figure 3. The epipolar correspondence is ambiguous in the proxi-
mity of a multiple point: p1 has two close correspondentsp2.

and taking the derivatives with respect tos1 ands2, we
obtain:{

∂F
∂s2

(
sp1, sp2

) = (
(C1 − C2) ∧ T1

(
sp1

)) · ∂T2
∂s2

(
sp2

)
,

∂F
∂s1

(
sp1, sp2

) = (
(C2 − C1) ∧ T2

(
sp2

)) · ∂T1
∂s1

(
sp1

)
.

The epipolar plane atp2 is spanned byT2(sp2) and
(C2 − C1), or equivalently byT1(sp1) and(C1 − C2).
Thus∂F

∂s2
(sp1, sp2) = 0 if ∂T2

∂s2
(sp2)belongs to the epipolar

plane atp2. SinceT2(sp2) and ∂T2
∂s2

(sp2) both belong to
the tangent plane ofS at P2, this occurs at pointsp1 and
p2 where the epipolar plane is tangent to the surface.
In this case,P2 is a multiple point andP1 = P2. Like-
wise ∂F

∂s1
(sp1, sp2) = 0 if the epipolar plane is tangent to

the surface and thusP2 = P1. The map f : s1 7→ s2 is
therefore a local diffeomorphism atsp1 if the point p1

is not the projection of a multiple point. 2

Proposition 1 says that given two epipolar correspon-
dentsp1 andp2, there exist neighbourhoods ofp1 and
p2 where the epipolar map is smooth and has a smooth
inverse, provided thatp1 andp2 are not projections of
a multiple point. In fact, in the neighbourhood of the
projection of a multiple point, the epipolar map yields
two correspondents, as shown in Fig. 3.

The epipolar correspondence is thus ambiguous in
the proximity of a multiple point. The criterion one
can use to resolve this ambiguity is that the images
of P1, P2 and the multiple point must appear in the
same order along occluding contours (this assumes that
occluding contours have the same orientation). Note
that this criterion is similar to the ordering constraint
in stereo-vision.

2.2. Recovering Depth along the View Line

Our goal is to recover rims from their projections.
First, we suppose that under a continuous motion of the
camera a complete description of the spatio-temporal

surface is available. Then, (1) can be derived accord-
ing to timet and by taking the scalar product with the
normalN to the surface, we obtain:

λ = − ∂C
∂t · N

∂T
∂t · N

. (3)

This is the depth formula for points on rims as de-
fined in (Cipolla and Blake, 1990). Assuming that we
have a parametrisation ofS, we can therefore compute
∂T
∂t from the spatio-temporal surface and then recover
the depth for points on the spatio-temporal surface
where ∂T

∂t · N 6= 0. Unfortunately, only discrete infor-
mation (occluding contours at discrete timesti , i ∈
[1, . . . , m]) are available and (3) can not be applied
directly. In fact, depth can be computed only by ap-
proximation. In this section, we discuss such an ap-
proximation.

Now consider two successive occluding contours at
timest1 andt2. Let P1 andP2 be two points on the rims
of S at t1 andt2. Using the notations of the previous
section, we have:{

r1 = C1 + λ1T1 at P1,

r2 = C2 + λ2T2 at P2.

Thus, denoting by1x the difference1x = x1 − x2,
wherex is any ofr , C, λ andT , gives:

1r = 1C + λ11T + 1λT2,

and by taking the scalar product with the normalN2 to
the surface atP2, we obtain the following depth formula
for point P1:

λ1 = −1C · N2

1T · N2
+ 1r · N2

1T · N2
. (4)

If the image projectionsp1 and p2 of P1 and P2

are matched according to the epipolar correspondence,
then the first term of the above expression corresponds
to a triangulation formula. Indeed,−1C·N2

1T ·N2
is the dis-

tance from the camera centreC1 to the viewlines inter-
section (see Fig. 4). This value is therefore the depth of
a virtual point with image projectionp1 andp2. Hence,
it can be computed from measurements in two images
by using a stereo formula. On the other hand, the sec-
ond term of (4) depends on the distance1r between
surface pointsP1 and P2. This value can not be com-
puted,a priori, from measurements in two images. A
first approach would consist in omitting this term in (4).
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Figure 4. Intersection of tangents in the epipolar plane.

We could then recover the depth of a surface point with
only two images. But this approach leads to a stereo
reconstruction and implicitly assumes that rims are not
view dependent which is of course false. For a smooth
surface which is not locally plane,1r · N2 6= 0 except
at a multiple point. Therefore, the second term of (4)
should not be omitted when computing depth.

The approach we have developed is based on a local
surface model: a second order approximation. Such
a model allows1r · N2 to be expressed as a function
of local properties ofS. Hence, by using more than
two images (three for a second order approximation),
we can fit locally the surface model to the image mea-
surements and estimate both depth and local properties.
This idea is developed in the following section.

3. Reconstruction

We have seen in the previous section that more than
two images are needed to estimate the local properties
of the surfaceS. We show here that by using three
images, a local approximation up to order 2 ofS can
be computed. Moreover, if points between occluding
contours ofS are matched according to the epipolar
correspondence, this approximation leads to a linear
estimation of the position and the curvatures ofS at a
point P. Unlike previous methods (Cipolla and Blake,
1990; Vaillant and Faugeras, 1992; Szeliski and Weiss,
1993; Joshi et al., 1995) which use ana priori plane
in order to estimate the epipolar curve, no assump-
tion is made on the camera motion or the local surface
shape. Instead, a local parametrisation of the surfaceS
is used which in turn leads to a local surface approxima-
tion. We first present the local parametrisation(x, y)

that is used and the induced local approximation of
the surface. We show then that such a parametrisation

allows linear equations to be derived for both depth and
normal curvature in the viewing direction.

3.1. The Osculating Quadric

SinceS is a smooth surface, a neighbourhood of a point
P on S can be represented in the formz = h(x, y),
whereP is the origin of the coordinate frame and the
z axis is directed by the normalN of S at P. Thus
thexy plane is the tangent plane toS at P. Moreover,
h is a differentiable function and by taking Taylor’s
expansion atP, we have:

h(x, y) = z

= 1

2
(hxxx2 + 2hxyxy + hyyy2) + R(x, y),

whereR(x, y) satisfies:

lim
(x,y)→(0,0)

R(x, y)

x2 + y2
= 0.

The quadratic form1
2(hxxx2 + 2hxyxy + hyyy2) is

known as the Hessian ofh at (0, 0) and corresponds to
the second fundamental form ofS at P. The quadratic
surfaceQ defined by

Q =
{
(x, y, z), z = 1

2
(hxxx2 + 2hxyxy + hyyy2)

}
approximatesS up to order 2. This surface is calledthe
osculating quadricof S at P and is uniquely defined.

We first assume that thex and y axes are oriented
by T andrs/|rs| respectively, whereT is the viewing
direction andrs the tangent to the rim ofS at P. Since
these directions are conjugate (Koenderink, 1984), the
first and second fundamental forms2 of S at P, in the
parametrisation(x, y), are:

I P =
[

1 cosθ
cosθ 1

]
I I P =

[
kt 0
0 ks

]
,

whereθ is the angle betweenT andrs, kt is the nor-
mal curvature along the viewing directionT , andks is
the normal curvature of the rim atP. Note thatkt is
the normal curvature of the epipolar curve atP. There-
fore, the osculating quadric ofS at P is defined, in the
parametrisation(x, y), by:

Q =
{
(x, y, z), z = 1

2
(kt x

2 + ksy2)

}
. (5)
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Figure 5. Epipolar curves.

We denote byE−1 andE1 the epipolar planes at a
point P ∈S corresponding to three successive posi-
tions of the camera centreC−1, C andC1, i.e., planes
(C, C−1, P) and(C, C1, P) (see Fig. 5). The pointP is
therefore a point belonging to the rim observed fromC.
For a general motionE−1 andE1 are different (they are
identical for a linear motion). The intersection of one
epipolar plane with the surfaceS is a curve. By abuse
of language, we call these curves epipolar curves3 and
we have then the following property:

Proposition 2. In any epipolar planeE at P, the
epipolar curve is, up to the order2, the graph of the
following function:

zE = g(x) = 1

2

kt

cosβE
x2, (6)

where the x axis is directed by T|P, the zE axis is such
that (x, zE ) form an orthonormal basis ofE and βE
is the angle between the normal N to the surface at
P and the projection NE of N in the epipolar plane:
cosβE = N · NE .

Proof: Near the pointP, we have the following de-
scription ofS:

z = 1

2
(kt x2 + ks y2) + R(x, y), (7)

with lim(x,y)→(0,0) R(x, y)/(x2 + y2) = 0. Let E be an
epipolar plane atP and letβE be the angle between the
normal N to S at P and its projectionNE in E . The
equation of this plane can be written as:

zsinβE = y cosβE sinθ,

whereθ is the angle between thex axis and they axis
(or equivalently betweenT andrs at P). Now if thezE

axis is defined such that(x, zE ) form an orthonormal
basis ofE , we have:

z = zE cosβE .

The epipolar curve is the intersection of the planeE
with the surfaceS. Therefore by substituting in (7)
and neglecting third order and higher terms we obtain
for points on these curves:

zE cosβE = 1

2

(
kt x

2 + sin2 βE

sin2 θ
ksz

2
E

)
. (8)

In general, the termsin2 βE
sin2 θ

ks in (8) can be considered
as bounded since:

1. The case sinθ = 0 happens only whenP is ob-
served along an asymptotic direction which yields
a cusp on the occluding contour.

2. The curvatureks, which is linked to the curvature of
the occluding contour, is finite in our context (the
observed object is smooth).

Thus, solving (8) for(x, zE ) close to(0, 0) yields:{
zE = 1

2
kt

cosβE
x2 + RE (x), cosβE 6= 0,

zE = x = 0, cosβE = 0,

with: limx→0 RE (x)/x2 = 0. This shows that up to
second order, the epipolar curve is represented by:

zE = 1

2

kt

cosβE
x2, cosβE 6= 0.

The case cosβE = 0 occurs whenP is a multiple
point, the epipolar curve is then restricted to a single
point P. 2

Remark. The approximation given in Proposition 2
verifies Meusnier’s theorem (do Carmo, 1976) which
says that the curvature atP of the epipolar curve is
k = kt

cosβE
. However, it should be noticed that a local

approximation of the epipolar curve based on a cir-
cle verifies also Meusnier’s theorem. But such an ap-
proximation implicitely implies that the surface is lo-
cally spherical which is less general than the osculating
quadric model.

Note that in the above proposition, thex axis is the
one previously defined in the parametrisation(x, y)

and is thus independent of the epipolar plane.
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Since P is the origin of thex axis, Proposition 2
says that the epipolar curve depends on the position
of P in the epipolar plane (i.e., its depth) and on the
normal curvaturekt of S along the viewing direction.
Our purpose is to recover the position of a rim pointP
using three successive occluding contours ofS, there-
fore this can be done by estimating epipolar curves. In
the general case there are two different epipolar planes
E−1 andE1 for a point P and three successive camera
positions, thus there are also two epipolar curves. Since
we can match, in the corresponding images, epipolar
correspondents, we know two tangents to each epipolar
curve (see Fig. 5). The following section shows how to
compute epipolar curves given these tangents.

3.2. Estimation of the Epipolar Curves

Our goal is to recover the depthλ and the curvature
kt at P. It has been shown that these values are re-
lated to the position and the curvature of the epipolar
curves. Therefore, the problem is to estimate two of
these curves given three tangents. The previous sec-
tion showed that the epipolar curves are, up to order 2,
parabolas of the epipolar planes. Moreover, although
the epipolar curves are not in the same plane, by using
Proposition 2, linear estimations of bothλ andkt can
be derived.

Now consider the epipolar planeE1. We denote by
βE1 the angle between the normalN at P and its pro-
jection NE1 in E1:

cosβE1 = N · NE1.

By Proposition 2, the epipolar curve with tangentsT
andT1 is defined by (up to order two):

zE1 = 1

2
kE1x

2, kE1 = kt

cosβE1

,

where(x, zE1) form an orthogonal basis ofE1. Let xP1

be the abscissa ofP1 as shown in Fig. 6.
SinceP1 belongs to the epipolar curve, the tangent

to S at P1 in the directionT1 goes through the point
(

xP1
2 , 0) and it follows that:

T1 · NE1 = kE1 x2
P1

/2√(
kE1 x2

P1
/2

)2
+
(

xP1/2
)2

,

sign
(
xP1

) = −sign
(
T1 · NE1

)
,

thus:

xP1 = 1

kE1

−T1 · NE1√
1 − (

T1 · NE1

)2
.

Figure 6. The epipolar planeE1.

Sincekt = kE1 cosβE1, the above expression can be
rewritten as:

xP1 = cosβE1

kt

−T1 · NE1√
1 − (

T1 · NE1

)2
. (9)

T1, NE1 and cosβE1 can be computed from image
measurements. Thus, we can determine the distance
xP1
2 between the intersection of the tangents andP given

the curvaturekt . In addition, it was shown (Section 2.2)
that the distance between the camera centreC and the
intersection of the tangents can also be computed from
image measurements. Hence, if this distance is denoted
by d1, we have the following relation:

λ = d1 − 1

2
xP1, (10)

which allows the depth atP to be computed given the
normal curvature along the viewing direction.

Likewise, sinceT is also tangent to the second epipo-
lar curve in the epipolar planeE−1, the depth atP can
also be computed in the planeE−1. Hence, by (9) and
(10): 

xP−1 = cosβE−1

kt

T−1 · NE−1√
1−

(
T−1 · NE−1

)2
,

λ = d−1 − 1
2xP−1.

Consequently, we obtain the following system in two
unknownskt andλ:

λ = d−1 + cosβE−1

2 kt

T−1 · NE−1√
1−

(
T−1 · NE−1

)2
,

λ = d1 + cosβE1
2 kt

T1 · NE1√
1−

(
T1 · NE1

)2
.

(11)

Note a crucial property of the above system, i.e., its
linearity in ( 1

kt
, λ).
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Remark. The connection with the depth formula (4)
as written in 2.2 becomes clear if we write (see Fig. 6):

r P − r P1 = −1

2
xP1T

−
√(

kE1 x2
P1

/
2
)2 + (

xP1

/
2
)2

T1,

thus:

1r · N1 = −1

2
xP1T · N1,

and substituting in (4) withP1 = P andP2 = P1 gives:

λ = −1C · N1

1T · N1
− 1

2
xP1.

This shows that the second term of (4) is a function of
the curvaturekt of S at P.

The special case cosβE−1 = 0 or equivalently
cosβE1 = 0 occurs when the normalN at P is orthog-
onal to the epipolar plane. This implies thatP is a
multiple point and thus1T · N±1 = 0. However, if
the camera motion is not along the line of sight atP
(1T 6= 0), the depth at such points can still be com-
puted since in this case two or more different image
projections ofP are available. This points out that
d−1 andd1 should be computed using a robust formula
instead ofd±1 = −1C·N±1

1T ·N±1
which is not defined at a

multiple point (i.e.,1T · N±1 = 0). See the appendix
for details on how we computed±1.

Finally, by solving (11) and assuming that camera
motions are not along any line of sight, we obtain the
following solutions:

λ = d1a−1−d−1a1

a−1−a1
,

kt = a1−a−1

d−1−d1
,

}
if a−1 6= a1,

λ = d−1 = d1, if (a−1, a1) = (0, 0),

(12)

where: 
a−1 = cosβE−1

T−1·NE−1√
1−

(
T−1·NE−1

)2
,

a1 = cosβE1

T1·NE1√
1−

(
T1·NE1

)2
,

and: {
d−1 = −(C−C−1)·((T∧T−1)∧T−1)

(T−T−1)·((T∧T−1)∧T−1)
,

d1 = −(C−C1)·((T∧T1)∧T1)

(T−T1)·((T∧T1)∧T1)
.

A geometrical interpretation ofd1 andd−1 is that they
represent the distances from the camera centre position
C to the viewing line intersections (see 2.2). To give
an interpretation of the termsa1 anda−1, consider the
projection ofP1 and P−1 onto the viewing line atP.
Intuitively, a1 anda−1 can be seen as the positions of
these projected points with respect toP. Hence, ifP
is a double point, then eithera1 or a−1 is zero and ifP
is a triple point, then botha1 anda−1 are zero.

Remark. The above solutions are not defined ifa−1 =
a1 with a1 6= 0. This corresponds to situations where
the projections ofP−1 andP1 onto the viewing line at
P are the same. Thus, the contributions of the viewing
directionsT−1 andT1 in (11) are equal and the system
has an infinity of solutions. However, unique solutions
for depth and the normal curvaturekt at such pointsP
can still be found. The idea is to first compute the depth
at one of the epipolar correspondentsP1 or P−1. This
can be done by applying (11) atp1 (or equivalently
p−1). To this aim, two epipolar correspondents top1

(or equivalentlyp−1) must be found. We already have
p and we can also usep−1 (or equivalentlyp1) since
p−1 andp1 are epipolar correspondents in that particu-
lar case. Once the depth atP1 has been computed, we
can determine the depth atP by the fact that they both
belong to the same parabola. Then, the equation given
by applying (11) atP gives the normal curvaturekt .

We conclude that the position of a rim point and
the normal curvaturekt in the viewing direction can
be estimated at any regular point and double point,
except if the camera motion is in the viewing direc-
tion. For points where more than two rims intersect
(i.e., (a−1, a1) = (0, 0)) and with the same exception,
depth can be estimated but not the normal curvature.
And if the camera motion is along one of the viewing
directionsT−1 or T1, neither curvatures nor depth atP
can be computed.

4. Comparison with Osculating Circle Methods

Most previous works on surface reconstruction from
occluding contours (Vaillant and Faugeras, 1992;
Cipolla and Blake, 1990; Szeliski and Weiss, 1993;
Seales and Faugeras, 1995; Joshi et al., 1995) make
use of osculating circle methods. In such methods, a
rim point P is reconstructed by estimating the oscula-
ting circle atP and its epipolar correspondents on the
previous and the next rim. To this aim, the viewing lines
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Figure 7. Rims under non-linear camera motion.

are projected onto a plane and a circle tangent to these
three directions is computed. In (Cipolla and Blake,
1990; Szeliski and Weiss, 1993; Joshi et al., 1995)
one of the epipolar planes is used and in (Vaillant and
Faugeras, 1992; Seales and Faugeras, 1995) the radial
plane is used. These approaches implicitly suppose
that the camera motion is linear (Cipolla and Blake,
1990; Szeliski and Weiss, 1993; Joshi et al., 1995) or
that the observed surface is locally cylindrical (Vaillant
and Faugeras, 1992; Seales and Faugeras, 1995), and
assume that the surface remains on the same side of the
tangents in the projection plane.

Our approach avoids such constraints, no assump-
tion has to be made on the camera motion, the local
surface shape or the side of the tangents on which the
surface lies. In addition, it appears that for non-linear
camera motions, part of the rim can not be recons-
tructed by use of an osculating circle method. See for
example Fig. 7 where the three successive camera posi-
tionsC−1, C, andC1 are not aligned. In this situation,
there is part of the rim to be reconstructed where the
point P and its epipolar correspondents are not organ-
ised as expected for the estimation of the osculating
circle. This corresponds to pointsP wherea1 anda−1

have the same sign or, in other words, where the pro-
jection ofP−1 andP1 onto the viewing line atP are on
the same side ofP. In such cases, the epipolar curves
defined atP can not be considered as part of the same
curve and methods based on the osculating circle lead
to false solutions since they approximate both epipo-
lar curves with a single planar curve: a circle (see for
example Fig. 8).

This shows that epipolar curves have to be estimated
as two different curves and that a method based on the
osculating circle allows only a partial reconstruction of
the rim in the case of non-linear camera motions.

Our work gives a more general solution to the recon-
struction problem. Except for the special cases where

Figure 8. A possible situation for epipolar curves in the case of
a non-linear camera motion. The point to be reconstructed is the
point P while the position estimated by an osculating circle method
is P̃.

the camera motion is in the viewing direction, depth
can be computed at any rim point and for any camera
motion. Moreover, it gives a unique solution to the re-
construction problem without knowing on which side
of the tangent lines the object lies.

5. Algorithm Performances

In order to determine the accuracy of the reconstruc-
tion, we have tested our algorithm on a synthetic
sphere. We have chosen synthetic data because it allows
computation of exact errors introduced by the recon-
struction algorithm. We present here results for plane
camera motions.

We suppose that a sphere of radius 200 mm is ob-
served with a camera positioned 1300 mm away from
the sphere centre. The intrinsic camera parameters cor-
respond to those of a sony ICX camera. A uniform
noise is added to the image measurements with a stan-
dard deviation of one pixel in both image plane direc-
tions. Since a sphere is observed, the normal curvature
in the viewing directionkt is equal to the inverse of the
sphere radius and the depth is constant for points on
one rim. Figure 9 shows the rims observed for plane
camera rotations around the sphere centre and Fig. 10
gives reconstruction errors for two different rotation
angles between successive camera positions.

The depth mean error for a 5 degrees rotation be-
tween two camera positions is 1.4 mm and 0.69 mm
for a 10 degrees rotation. Note that a depth error of
1 mm yields a distance of 0.0025 mm between the
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Figure 9. Rims for plane camera rotations around the sphere centre.
The rim to reconstruct is rim 2.

reconstructed point and the sphere. This shows that
a high precision can be expected for rim point posi-
tions. On the other hand, the second graph shows that
the normal curvature computed is far more sensitive to
noise than depth. This is not surprising since depth
depends on first order differential property whereas
curvatures are second order differential properties of
the surface. This graph shows also situations where er-
rors increase drastically, namely: points for whicha−1

anda1 are close. In such cases, reconstruction is ill-
conditioned. This corresponds, in this example (plane

Figure 10. Depth and radius errors for plane camera rotations. The abscissa represents the reconstructed point position on the rim in degrees,
the position of the origin is shown in Fig. 9. Solid lines correspond to camera rotations of 10 degrees and dotted lines to camera rotations of 5
degrees. The two peaks in the radius error graph correspond to points wherea−1 is equal toa1.

camera rotations), to regions of the surface where the
three epipolar corresponding points are close. Hence,
the estimated curvature is highly biased whereas the
depth is still robust. However, for strongly non-linear
camera motions, the depth computed is also highly
noise sensitive in the vicinity of such points.

In addition, it appears in Fig. 10 that reconstruction
errors increase when the rotation between two succes-
sive camera positions decreases. In fact, for a 2 degrees
rotation the depth mean error is 3.53 mm and reaches
9 mm for a 1 degree rotation. Such noise sensitivity
for small camera displacements is due to natural limita-
tions of the reconstruction from images. Indeed, recon-
struction algorithms (including stereo-vision) are based
on viewing line intersections which are extremely noise
sensitive if the viewing directions are close. Hence,
very small camera displacements leads to highly biased
results and therefore, robust surface reconstruction can
not be achieved in such cases.

6. Experimental Results

We present here results for three real image sequences.
Occluding contours were tracked usingsnakes(Berger,
1994; Kass et al., 1988)—see Figs. 11(b), 12(b) and
13(b)—the first image sequence consists of 27 images
of a tea pot which were taken with unknown camera
motions. Therefore a preliminary calibration step is
needed. This was done using a calibration pattern
which is present in every image (see Fig. 11(a)). First,
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Figure 11. (a) An image of the sequence, (b) tracked occluding contours, (c) reconstructed rims, (d) triangulated points, (e) rendered surface,
(f) projection of the reconstructed surface in the original image.
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Figure 12. (a) An image of the sequence, (b) tracked occluding contours, (c) reconstructed rims, (d) triangulated points, (e) rendered surface,
(f) projection of the reconstructed surface in the original image.



   
P1: PMR/SFI P2: PMR/SFI P3: PMR/SFI QC: / T1: PMR

International Journal of Computer Vision KL410-02-Boyer March 1, 1997 11:26

3D Surface Reconstruction 231

Figure 13. (a) An image of the sequence, (b) tracked occluding contours, (c) reconstructed rims, (d) triangulated points, (e) rendered surface,
(f) projection of the reconstructed surface in the original image.



         
P1: PMR/SFI P2: PMR/SFI P3: PMR/SFI QC: / T1: PMR

International Journal of Computer Vision KL410-02-Boyer March 1, 1997 11:26

232 Boyer and Berger

discrete points on rims are recovered if they are not
close, according to a threshold, to points wherea1 and
a−1 are equal. The resulting points are then used to
construct a triangular mesh with respect to contour in-
formation: two 3D points are connected if and only if
they are on two consecutive rims. A ray-tracer is then
used to render the surface. Finally, in order to estimate
the accuracy of the reconstruction, the rendered sur-
face is projected onto the original images. This is done
by use of the perspective projection matrix computed
during the calibration step. The results of the different
steps of the reconstruction process are shown in Fig. 11.

The reconstructed tea pot shown in this figure is
incomplete. This results from the fact that the total
camera rotation during the sequence is not sufficient to
allow a global perception of the surface. In fact, we
reconstruct only what we see and thus a partial surface
description may be obtained, depending on the total
amount of rotation. This points out that a surface model
based on triangular facets is well adapted to modelise
the reconstructed surface since it does not require anya
priori information on the surface. Thus, it allows par-
tial as well as complete surface representations without
any parametric or topologic information.

In the next examples, real image sequences of a vase
and a calabash were taken using a rotating turntable—
see Figs. 12(a) and 13(a). The rotation angle between
two successive images is of 10 degrees for the vase
sequence and of 7 degrees for the calabash sequence.
Except for the calibration step which was performed
before the sequences were taken, the reconstruction
process is the same as in the previous example. Results
are shown in Figs. 12 and 13.

Figures 11(f), 12(f) and 13(f) show that recon-
structed surfaces are coherent. It should also be noted
that regions of the surfaces wherea−1 is close toa1

are still well reconstructed. This is due to the fact that
even if these regions correspond to points on one rim for
which the reconstruction is ill-conditioned, they may
also correspond to points on other rims for which the
reconstruction is well-conditioned. Such regions cor-
respond, for the sequences presented, to points which
are located at the top and the bottom of the surfaces.
Figures 11(c), 12(c) and 13(c) show that the recon-
structed rims cover also these regions.

7. Conclusion

We have established formulas for the depth and the nor-
mal curvature at a point on a rim of a surface. It shows

that the computation of the local surface shape can be
done with three consecutive occluding contours, even
for a non-linear camera motion. Our work extends pre-
vious results obtained by others and leads to a general
linear solution which is always defined except when the
camera motion is in the viewing direction. Moreover, it
gives a unique solution to the reconstruction problem
without knowing on which side of the tangent lines
the object lies. In addition, we have pointed out lo-
cal properties of the epipolar correspondence and thus
situations where this correspondence may fail, namely
the multiple points of an image sequence.

This makes it possible to recover the global surface
shape. We have tested our algorithm on real data and
shown accurate and efficient results on simple objects
(i.e., surfaces are at leastC2 and they are not locally
plane). For more complex objects, occluding contours
may not be sufficient to allow a complete perception
of the object. This is the case, for example, if the ob-
ject presents concavities. In addition discontinuities
may appear on the observed rims and thus a local ap-
proximation of the surface by a quadric is not always
adapted. See, for example, a composed object such as a
coffee cup with a handle; epipolar correspondence may
lead to points which belong to the cup and to the han-
dle, which are two different surfaces. This shows that
topological properties of the observed object must be
taken into account in the reconstruction process. Our
current work is concerned with rim discontinuities and
we plan to integrate different reconstruction methods
in order to handle cases such as concavities.

Appendix: Computing the Distance
to the Intersection of Tangents

The distanced1 from the camera centre positionC to
the intersection of tangents with directionT1 and T
verifies:

(C + d1 T − C1 − d′ T1) = 0,

whered′ is the distance fromC1 to the intersection of
tangents with directionT1 andT . SinceT1 · N1 = 0
we can therefore write:

d1 = −1C · N1

1T · N1
, 1T · N1 6= 0.

However, such a formulation does not hold for a
multiple point. Sinced1 corresponds to the stereo
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reconstruction of the tangents intersection, it should
not depend on the normalN1 to the surface. Thus, if
we write instead:

d1 = −1C · ((T ∧ T1) ∧ T1)

1T · ((T ∧ T1) ∧ T1)
, 1T 6= 0,

d1 is then defined at a multiple point except when the
camera motion is along the line of sight(T = T1).
Furthermore, ifT and T1 are two different viewing
directions of a multiple point, thend1 is the depth of
this point.
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Notes

1. Under the hypothesis we made onS (i.e., smooth and not lo-
cally a plane) and for a generic viewpoint, occluding contours
are locally smooth except at a cusp or a T-junction (Koenderink,
1986).

2. See (do Carmo, 1976) for definitions.
3. As introduced in 2.1, the epipolar curve is defined for a contin-

uous camera motion. Thus, the curves under considerations are
the epipolar curves for linear camera motions going through two
successive camera centre positions.
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