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Abstract 
This paper addresses the problem of recognizing ob- 

jects i n  large image databases. The method is based on 
local characteristics which are invariant to simzlarity 
transformations in the image. These characteristics 
are computed at automatically detected keypoints us- 
ing the greyvalue signal. The method therefore works 
on images such as paintings for which geometry based 
recognition fails. Due to the locality of the method, 
images can be recognized being given part of an image 
and in the presence of occlusions. Applying a voting 
algorithm and semi-local constraints makes the method 
robust to noise, scene clutter and small perspective de- 
formations. Experiments show an eficient recognition 
for  different types of images. The approach has been 
validated on an image database containing io20 im-  
ages, some of them being very similar by structure, 
texture or shape. 

1 Introduction 
Recognition and matching are considered as a ma- 

jor problem in computer vision. We want to address 
the ambitious goal of identifying and locating objects 
under the following conditions : 1)partial visibility 
2)different viewing angles 3)complex scenes, complex 
background 4)hundreds or thousands of potential ref- 
erence shapes. 

Furthermore, recognition should also be fast. Meth- 
ods which realize such a recognition have potential ap- 
plications ranging from consulting image databases to 
identifying complex objects in real environments, and 
even visua.1 servoing for a robot arm manipulator. 

There exists two approaches to object recognition 
in the literature. One of them uses geometric features 
of an object. The other one relies on the luminance 
signature of an object, that is on its appearance. The 
interested reader is referred to the extended version of 
this paper for a state of the art about existing recog- 
nition methods [7]. 

Appearance based systems are capable to model 
any kind of object and to differentiate between ob- 
jects of the same geometrical sha.pe. However, previ- 
ous methods proposed in the literature are global and 
therefore do not work if the object is only partially 
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visible or contained in a complex scene. Addition- 
ally, these methods are not invariant to any kind of 
image transformation (except [4] who uses steerable 
filters). This paper presents a new appearance based 
approach which overcomes these drawbacks. The pro- 
posed method is local and invariant to similarity trans- 
formations in the ima,ge. It uses a vector of differen- 
tial greyvalue invariants computed at automatically 
detected keypoints (see figure 1). A robust recogni- 
tion algorithm based on voting and semi-local con- 
straints uses the proposed characterization and ob- 
tains a high recognition rate. This algorithm is re- 
sistant to miss-detection and noise. Furthermore, in- 
dexing via a multi-dimensional hash-table makes fast 
recognition possible. 

vector of local 
characteristics 

Figure 1: Representation of an image. 

Our approach is an important contribution to ob- 
ject recognition. It makes recognition possible for ob- 
jects in situations which could not be dealt with be- 
fore. We can identify and locate objects in case of 
partial visibility, image transformations and complex 
scenes. In case of 3D objects we are not only capa- 
ble to retrieve the corresponding object correctly, but 
also its pose. The success of our approach is based on 
the combination of differential invariants computed at 
keypoints with a robust voting algorithm and semi- 
local constraints. It has been shown that these in- 
variantas can be implemented with a sufficiently small 
filter size to capture local discriminant greylevel in- 
formation. Moreover, the multi-scale approach makes 
our method robust to scale changes up to a factor 2 
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which has never been reported in the literature. 

2 Keypoint detector 
A wide variety of detectors for keypoints exists in 

literature. Keypoints can be detected using contours 
or directly from the greyvalue signal. The main advan- 
tage of detectors operating on the greyvalue images is 
that their performance is not dependent on the success 
or failure of a prior contour extraction step. 

For object recognition as well as matching it is im- 
portant that the detector is repeatable, that is results 
have to be invariant to image transformations. An 
imprecision in the location of keypoints leads to dif- 
ferent characterizations which can no longer be used 
for recognition purposes. In a previous work [l], dif- 
ferent detectors have been compared in the presence of 
image rotation, scale change, light changes and image 
noise. This work has shown a poor stability of exist- 
ing methods and best results for the Harris detector. 
A stabilized implementation of this detector has been 
used in the present work. The stabilization has been 
obtained by using Gaussian derivative filters. A re- 
cursive implementation of these filters guarantees fast 
detection. 

Figure 2: Keypoints detected on the same scene under rota- 
tion. The image rotation between the left image and the right 
image is 155 degrees. 

Figure 2 shows keypoints detected on the same 
scene under rotation. It shows the repeatability of 
the obtained detector. Notice that not all points are 
repeated. However, it is sufficient i€ at least 50% of 
points are detected in two images and if these points 
are precise that is at the same location of the scene. 
On the two images shown in this figure, the number 
of keypoints is 553 and 554. The average number of 
keypoints detected on the images of the database is 
around 150. However, this number depends on the 
image, and it ranges from 20 to 800. 

3 Multi-scal.ed differential greyvalue 

Differential invariants have been studied theoreti- 
cally by Kcenderink [3] and Rorrieny and al. [5]. In- 
terested readers are referred to these works. They 
have made explicit mathematical results first derived 
by Hilbert and they have proposed a stable implemen- 
tation for the computation of differentials. This is cru- 
cial especially if third order differentials are used. For 
this purpose, we have used the rotationally invariant 
Gaussian function to smooth the image. 

invariants 

3.1 Complete set of differential invariants 
We propose to use a complete set of invariants un-  

der the group GL(2)  of rigid displacements in the ini- 
age to characterize the signal. This set will be denoted c. The first part of this vector v' contains the com- 
plete and irreducible set of differential invariants up 
to 2nd order (cf. equation 1). The formulation of this 
first part of the vector is given in tensorial invariant 
manifest notation, so-called Einstein notation. Notice 
that the first component of v' represents 1,he average 
luminance, the second component the square of the 
gradient magnitude and the fourth the Eaplacian. 

The L, are the convolution of the derivatives of the 
Gaussian function with the luminance function L.  It 
is possible to compute thern for different, sizes o- of the 
Gaussian. 

The second pa.rt of the vector v' contain:; a complete 
set of invariants of third order. Equation 2 presents 
this set. 

with ~ i j  the 21) antisymmetric Epsilon tensor defined 

3.2 Multi-scale approach 
The vector V ,  presented in section 3.1, makes ob- 

ject recognition or matching possible in the presence 
of any rigid displacement. To be resistant to scale 
changes, that is to similarity transformations, the vec- 
tor of invariants has to be calculated at, several scales. 
For a function f, a scale change a can be described 
by a siniple change of variables, f(z) = g(u)  where 
g ( u )  = g ( u ( z ) )  = y(crx). We t.hen obtain: 

by E 1 2  = - E 2 1  = 1 and E 1 1  = E 2 2  = 0. 

+ 

fq,) = a"g(")(u) (3) 

where f(") (z) represents the nth derivative of f. 
[ j ( n ) (  X 
____. is a theoretical invariant to sicale change. 

f'k'(x) 
However, in case of a discrete representation of the 
funct,ion, as for an image, the previous equation 3 is 
rewritten as : 

11 (Z) G, , , , ( 2 , o ) d P  = CY" 1, (C)G, I . .  , (U'. 00.) d i i  [ti) 

- iu LU - jx K,  

where Ci, .i2 are the derivatives of the Gaussian. 
Equation 4 shows that the size of thc Gaussiaii, that 

is the calculation support, has to be adjusted. As it 
is impossible to compute invariants at all scales, scale 
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quantization is necessary for a multi-scale approach. 
Often a half-octave quantization is used. The stability 
of the characterization has proven this not to be suf- 
ficient. Experiments have shown that matching based 
on invariants resists to scale change of 20% (see [6]). 
We have thus chosen a scale quantization which en- 
surm that the difference between consecutive sizes is 
less than 20%. As we want to be resistant to scale 
changes up to a factor of 2, the size CT varies between 
0.48 and 2.07, being chosen at values : 0.48, 0.58, 0.69, 
0.53, 1, 1.2, 1.44, 1.73, 2.07. 

4 Recognition Algorithm 
In this section the recognition algorithm is pre- 

sented. It is based on the computation of the sirni- 
larity between two invariant vectors. 
4.1 Mahalanobis distance 

To recognize an image, it is necessary to decide if 
two invariants are similar. We propose to model the 
uncertainties in the components of V as random vari- 
ables with Gaussian distribution and use the Maha- 
lanobis distance to compare invariant vectors. This 
distance takes into account the different magnitude as 
well as the covariance matrix A of the components : 

-+ 

By thresholding this distance, it is possible to de- 
cide statistically if two invariants are similar as the 
square of the Mahalanobis distance is a random vari- 
able with a x2 distribution. As the covariance matrix 
is a real symmetric (semi) definite positive matrix, it 
can be decomposed as follows : 

A-’  = P T D P  = P T f i f i P  

where P is orthogonal and D is diagonal. We then 

To compute the Mahalanobis distance between two 
invariants vectors is thus equivalent to transform t,hese 
vectors by multiplying them by the matrix I , ~ P  and 
to compute the Euclidean distance between the two 
transformed vec t ors. 

4.2 Voting algorithm 
Recognitmion consists of finding the model M i  which 

corresponds to a given image I .  That is the model 
which is “closest” (i.e. the most similar) to this image. 

As for the Hough bransform the idea of the voting 
algorithm is to sum the number of times each model 
is selected. Thus, each time a model Mk is selected, a 
voting table T is updated such that the value T ( k )  is 
incremented by one. Note that a point can select each 
model but only once. The model that is selected most 
often is considered to be tjhe best match: the image 
represents the model .Mi for which 

IC = argmaxT(k) 
k 

Figure 3 shows an example of a voting table in form 
of a histogram. There are 100 objects, object 0 is cor- 
rectly recognized. However, some of the other objects 
have obtained almost equivalent scores. 

60 

40 

20 

0 
0 20 40 60 80 100 

object reference 

Figure 3: Result of the voting algorithm. 

4.3 Indexing into a multi-dimensional 

The complexity of the voting algorithm can be con- 
trolled by organizing the database as a hash table. 
Given a vector v’, it is possible to define a neighbour- 
hood in which all plausible candidates have to lie. An 
indexing technique allows an implementation by or- 
dering the vectors in a multi-dimensional table. Each 
level of this multi-dimensional hash table indexes one 
component of a characterization vector. Thus the hash 
table realizes a partition of the Euclidean space. The 
problems associated to such a multi-dimensional hash 
table are the granularity of this partitioning, and the 
dimensionality of the hash table. We have observed 
that a high dimensionality with a coarse granularity 
at each level is better than a low dimensionality with 
a fine granularity at each level. This can be easily 
explained by the fact that high dimensionality allows 
to better spatially differentiate points. Using high di- 
mensionality, a regular partition is very memory con- 
suming. In our implementation we thus stop further 
partitioning when a cell contains a t  most a given num- 
ber of points. 

This indexing technique leads to a very efficient 
recognition. The database contains 154030 points. 
However, the mean retrieval recognition time for our 
database containing 1020 objects on a Sparc 10 Sta- 
tion, is less than 5 seconds. Performance could be 
further improved by parallelization, as each charac- 
terization vector is searched for separately. 
4.4 Semi-local constraints 

In the presence of noise, a given feature might vote 
for several models. Having a large number of models 
or many very similar ones raises the probability that a 
feature will vote for several models. Califano [a] as well 
as Rao [4] have suggested that using longer vectors v’ 
decreases this probability. Yet, it is not practicable 
to increase the order of derivation of our invariants. 
Adding invariants computed at  different scales, as has 
been proposed by Rao , would make recognition in a 
multi-scale context impossible. 

hash table 
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A way to decrease the probability of false matches is 
to use global features. However, global characteristics 
are sensitive to scene clutters and occlusions. We thus 
propose to use local shape configurations. For each 
feature F in the database, the p closest features in the 
image are selected and we require that at least 50% of 
the neighbours match. 

In order to further increase the recognition rate, a 
simple geometric constraint has been added. This con- 
straint is based on a direction calculated locally from 
the signal : the angle cy of the gradient. As we suppose 
the transformation can be locally approximated by a 
similarity, the difference between these angles has to 
be locally consistent. 

An example for using the geometrical coherence and 
the semi-local constraints is displayed in figure 4. It 
gives the score if constraints are applied to the exam- 
ple in figure 3 .  The score of the object to be recognized 
is now quite distinctive. 

30 I I 1  

0 20 40 60 80 100 
object reference 

Figure 4: Result of applying geometric and semi-local con- 
straints 

Experiments (see section 5) have shown the impor- 
tance of these constraints. Each constraint decreases 
the number of ambiguities. A consequence of using 
the geometric constraint is that the threshold t used 
to select a model has less importance. 

These constraints permit to select only discrimi- 
nant points of an image. They decrease the number 
of false matches and reduces the overall number of 
matches. There are from 18 to 75 points matched dur- 
ing the recognition process depending on the image. 
This small number of matched points compared to the 
number of detected keypoints illustrates the rejection 
of non discriminant points and explains why an im- 
ages stored in the database with only 20 points can he 
correctly retrieved even if images of the database are 
stored with 600 points. 

5 Experimental Results 
Experiments have been conducted for an image 

database containing more than 1000 images. They 
have shown the robustness of the method to image ro- 
tation, scale change, partial visibility and scene clut- 
ter. Moreover, an object can be recognized in complex 
scenes and in the presence of occlusion. 
5.1 Content of the database 

The database used for the experiments presented in 
the following contains 1020 images. This includes 200 

paintings images, 100 aerial images and 720 images of 
3D objects. These images are of a wide vaxiety. How- 
ever, when we consider the paintings images or the 
aerial images , we observe that some images are very 
similar. This leads to ambiguities which 1,he recogiii- 
tion method is capable of dealing with. Notice also 
the small size of the details in case of aerial images. 

I I I 

Figure 5: Some images of the database. The dat.abasecontains 
more than 1000 images. 

In case of planar 2D object, an object is represented 
by one image in the database. This is also the case 
for nearly planar objects as for aerial images which 
corresponds to paraperspective project,ion. In order 
to recognize a 3 0  object from any viewpoint, it has to 
be represented by several images which are st30red in 
the database. Each image corresponds to a different 
aspect of the object and is in the following referred 
to by model image. The required nuniber of model 
images depends on the complexity of the object. To 
obtain a set of model images, equally spaced views 
of an object were taken (images uniformly distributed 
over a circle). 

Figure 6: Some model images of the “Dinosaur” contained in 
the database. 

For the ”Dinausor” object, (see figure 6 ) ,  18 images 
at 20 degrees increments in pose are sufficient to  build 
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the dinosaur’s model. For less complex objects, such 
as the “Abstract Hand” (second image from the left 
in the fourth row of figure 5),  9 views proved to be 
sufficient to set up a model base. 

5.2 Recognition results 
In this section, recognition results are presented. 

Figure 7 shows the recognition of a painting image 
in the presence of image rotation and scale change. 
Moreover, this figure shows that correct recognition is 
possible if only part of an image is given. 

In figure 8 an example of an aerial image is dis- 
played. It shows correct retrieval in case of image ro- 
tation and if part of an image is used. However, in case 
of aerial images we also have to deal with a change in 
viewpoint, that is a perspective deformation and scene 
clutter. Notice that buildings appear differently due 
to changed viewing angles and cars have moved. This 
example shows that correct retrieval is still possible if 
only one view has been stored in the base. 

- i 
i 

I I 

Figure 8: The image on the right is correctly retrieved using 
any of the images on the left (courtesy of Istar) .  

Figure 9 shows recognition of a 3D object. The 
object has been correctly recognized in the presence 
of rotation, scale change, change in background and 
occlusion. Notice that the object has not only been 
recognized correctly, but that the corresponding pose 
has also been retrieved. 

Figure 9: The image on the right is correctly retrieved using 
any of the image on the left. 

The mean recognition rate is of 99.7% for 1180 
recognition tests using whole images. Notice that none 
of the test images is stored in the base. When we 
consider the different kinds of images separately, we 
obtain a recognition rate of 100% for the painting im- 
ages taken under different rotations and scales, 99% 
for the aerial images taken from different viewpoints 
(images which are not recognized correctly correspond 
to an harbor and contain only water) and 99.86% for 
the 3D objects taken under different viewing angles. 
We will now show the robustness of the method for 
different kinds of image transformations, variations of 

viewpoints for 3D objects and if only part of an image 
is given. 

Invariance to image rotation To test invariance 
to image rotation, we have taken images of different 
paintings by rot,ating the camera around its optical 
axis. This is possible via a special mechanism of our 
lenses. Figure 10 shows some rotated images for one 
of the paintings, the “Sanja” painting. The right most 
image is the one contained in the base. The recogni- 
t,ioii rate obtained is 100% for 40 different rotations 
equally distributed over a circle. This experiment 
shows that the characterization is completely invari- 
ant to image rotation. It is thus not necessary to store 
in the database more than one image for different ro- 
tations. 

Figure 10: Image rotations of the “Sanja” painting. The  right 
most image is the one stored in the database. All other images 
have been correctly recognized. 

Robustness to  scale change To test robustness 
to scale changes, we have used a zoom lens to take 
several images of an object with different scale factors. 
Figure 11 shows some scaled images for one of the 
paintings. the “Vangogh” painting. Using a multi- 
scale approach, the recognition rate attains a score of 
100% up to a scale change of 2.2. 

Figure 11: Scale changes of the “sower” painting. The  right 
most image is the one stored in the database. All other images 
have been correctly recognized using a multi-scale approach. 

Robustness to  viewpoint variations for 3D ob- 
jects To test the robustness to a change of the view- 
ing angle. test images are taken at  different angles 
than the images stored in the base. For each 3D ob- 
ject, test images have been taken at  20 degrees differ- 
ence in viewing angle. The viewing angles of the test 
images lie in the middle of two images stored in the 
base which are spaced by 20 degrees. The recognition 
rate obtained is of 99,86%. 

Robustness in case of part of an image To test 
robustness being given part of an image, about 100 
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parts have been extracted for painting images, see fig- 
ure 12. These parts are sufficient to  recognize the cor- 
responding paintings correctly. Considering the size of 
our database, this can be explained only by the fact 
that points are very discriminant. 

Figure 12: Parts  of paintings. 

One possible application of the recognition of a part 
is to find a small object in a big image, for example to  
find a hotel on a city map. Experiments have shown 
good results for this task. 

6 Conclusion 
This paper has shown that the differential greylevel 

invariants introduced by Kcenderink efficiently char- 
acterize points. These invariants describe the image 
locally. They also present the advantage of being con- 
tinuous. Used in a multi-scale approach, they allow 
to derive a method robust to scale changes and hence 
provide a description of points robust to the group 
of image similarity transformations. As automatically 
detected keypoints are characteristics of patterns, in- 
variants calculated at keypoints can be used for in- 
dexing 2D greylevel patterns. A voting algorithm in a 
multi-dimensional hash table permits then to retrieve 
images. However, blindly voting on individual invari- 
ants is not sufficient to guarantee the correctness of 
the answer in database indexing. It is then crucial to 
introduce a semi-local coherence between these iden- 
tifications. This increases the recognition rate. By 
adding a measure of geometrical coherence a recogni- 
tion rate of at least 99% is then attained. Experiments 
were conducted on a database containing 1020 images : 
paintings, aerial parts of cities and 3U objects. It has 
been shown that even small parts of images can be 
recognized. This is due to the fact that the proposed 
characterization is very discriminant. This has been 

Figure 7 :  The image on the right is correctly retrieved using any of the images on the left 
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shown by the small number of points used for recog- 
nition. 

However, this method is limited by the robustness 
of the keypoint detector to scale changes. The next 
step is therefore to propose a detector roblist to such 
changes. Another possible extension of our work is to 
include affine deformations. The problem is not only 
to determine affine invariants, but mainly to provide 
an algorithmic framework within which to allow affine 
variations. 
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