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Euclidean Shape and Motion from Multiple 
Perspective Views by Affine Iterations 

St6phane Christy and Radu Horaud 

Abstract-In this paper, we describe a method for solving the 
Euclidean reconstruction problem with a perspective camera model by 
incrementally performing Euclidean reconstruction with either a weak 
or a paraperspective camera model. With respect to other methods 
that compute shape and motion from a sequence of images with a 
calibrated camera, this method converges in a few iterations, is 
computationally efficient, and solves for the sign (reversal) ambiguity. 
We give a detailed account of the method, analyze its convergence, 
and test it with both synthetic and real data. 

Index Terms-Perspective, weak perspective, paraperspective, 
Euclidean and affine reconstruction. 

+ 

1 INTRODUCTION 
THE problem of computing 3D shape and motion from a long se- 
quence of images has received a lot of attention for the last few 
years. Previous approaches attempting to solve this problem fall 
into several categories, whether the camera is calibrated or not, 
and/or whether a projective or an affine model is being used. 
With a calibrated camera one may compute Euclidean shape up to 
a scale factor using either a projective model or an affine model 
[l], [2]. With an uncalibrated camera the recovered shape is de- 
fined up to a projective transformation or up to an affine trans- 
formation [3], [4]. One can therefore address the problem of either 
Euclidean, affine, or projective shape reconstruction. 

In this paper we are interested in Euclidean shape reconstruc- 
tion with a calibrated camera. In that case, one may use either a 
perspective camera model or one of its affine approximations- 
orthographic projection, weak perspective, or paraperspective. 

The perspective model has associated with it, in general, non 
linear reconstruction techniques. This naturally leads to nonlinear 
minimization methods which require some form of initialization 
151, 131. If the initial “guess” is too faraway from the true solution 
then the minimization process is either very slow or it converges 
to a wrong solution. Affine camera models lead, in general, to 
linear resolution methods [l], [2], but the solution is defined only 
up to a sign (reversal) ambiguity and, both these two solutions are 
just an approximation of the true solution, 

The perspective projection can be modeled by a projective 
transformation from the 3D projective space to the 2D projective 
plane. Weak perspective and paraperspective are the most com- 
mon affine approximations of perspective. Recently, in [6] a 
method has been proposed for determining the pose of a 3D shape 
with respect to a single view by iteratively improving the pose 
computed with a weak perspective camera model to converge, to 
the limit, to a pose estimation using a perspective camera model. 
To our knowledge, the method cited above, i.e., [6] is among one 
of the first computational paradigms that link linear techniques 
(associated with affine camera models) with a perspective model. 
In [7], an extension of this paradigm to paraperspective is pro- 
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posed. The authors show that the iterative paraperspective pose al- 
gorithm has better convergence properties than the iterative weak 
perspective one. 

In this paper we describe a new Euclidean reconstruction 
method that makes use of affine reconstruction in an iterative 
manner such that this iterative process converges, to the limit, to a 
set of 3D Euclidean shape and motion parameters that are consis- 
tent with a perspective model. The novelty of the method that we 
propose is twofold: 

1) it extends the iterative pose determination algorithms de- 
scribed in [6] and in [7] to deal with the problem of shape 
and motion from multiple views and 

2) it is a generalization to perspective of the factorization 
methods [l], [2] and of the affine-invariant methods [S]. 

More precisely, the affiine-iterative reconstruction methods that we 
propose here have a number of interesting features: 

They solve the sign (or reversal) ambiguity that is inherent 
with affine reconstruction; 
They are fast because they converge in a few iterations 
(typically three to five iterations), each iteration involving sin- 
gular value decomposition of a measurement matrix. In par- 
ticular there is no matrix inversion being involved as is the 
case with any iterative non-linear optimization technique; 
They can be combined with almost any affine shape and 
motion algorithm. In particular we show how our method 
can be combined with factorization methods [l], [2]. 

1 .l Paper Organization 
The remainder of this paper is organized as follows. Section 2 de- 
scribes the relationship between full perspective, paraperspective, 
and weak perspective. Section 3 describes how to perform recon- 
struction with a perspective camera model by iterating either a 
weak perspective reconstruction or a paraperspective reconstruc- 
tion algorithm. Section 4 outlines the well-known factorization 
algorithm. Section 5 describes how to solve for the reversal ambi- 
guity. Section 6 outlines some useful features associated with the 
developed method. Finally, Section 7 provides a practical evalua- 
tion of the method using simulated data with various camera mo- 
tions and Section 8 describes results obtained with real imagery. 

2 CAMERA MODELS 

Let us consider a pin hole camera model. We denote by P, a 3D 

point lying onto a 3D object with Euclidean coordinates X, Y,, and 
Zi in a frame that is attached to the object-the object frame. The 

origin of this frame may well be the object point P,. An object 
point P, projects onto the image in pI with image coordinates U, and 

v, and we have (P, is the vector Pzq from point P, to point P,): 

The first 3 x  4 matrix describes the affine transformation be- 
tween the camera coordinates and the images coordinates com- 
bined with the perspective projection. The second 4 x  4 matrix 
describes the rigid transformation (rotation and translation) be- 
tween the object frame and the camera frame: i, j, and k  are the 
three row vectors associated with the rotation matrix. 

From now on we will be assuming that the intrinsic camera pa- 
rameters are known and therefore we consider the relationship 
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between image points expressed in camera coordinates and in 
image coordinates: ui = a$x, + U, and vi = qyi + D,. In these equa- 
tions GL and ol, are the vertical and horizontal scale factors and U, 
and u, are the image coordinates of the intersection of the optical 
axis with the image plane. It will be shown that the quality of the 
reconstruction method described below depends strongly only on 
the ratio ~,/oI, and that the reconstruction obtained with our 
method is not sensitive to errors in u, and v,. The relationship be- 
tween object points and image points expressed in camera coordi- 
nates can be written as: 

i. P, + t, 
‘, 

1. P, + x0 
k  I’, + t, 1+ E, (2) 

j.P, +t y _ J.P, + yo ~- 
yi = k  I’, + t, 1 + E, 

We have introduced the following notations: I = i/t,, J  = j/f,, 
x0 = t,/t, and yO = t,/t, are the camera coordinates of pO which is 
the projection of PO (the origin of the object frame), and we denote 
by E, the following ratio: 

k  I’, 
E, = 7 

L 

Whenever the object is at some distance from the camera, the E{ are 
small compared to 1. We may therefore introduce two approxima- 
tions of the perspective equations: weak and paraperspective. 

Weak perspective assumes that the object points lie in a plane 
parallel to the image plane passing through the origin of the object 
frame, i.e., PO. This is equivalent to a zero-order approximation: 
1 = 1 Vi, i E 11 n) With this approximation, (2) and (3) be- I+Ei 
come: 

xw - x0 = I P, (5) 

Y,“-yo=J.S (6) 
In the!je two equations x: and y?” are the camera coordinates of 

the weak perspective projection of the point P,. By identification 
with (2) and (3) we obtain the relationship between the weak per- 

spective and the perspective projections of P,: 

x:” z  x,(1+5) (7) 

Y;” = YIP+ 'i) (8) 
Paraperspective may be viewed as a first-order approximation 

of perspective. Indeed, with the approximation: & = 1 - E, Vi, 

i E (1 .., n] and by neglecting the term in l/ fz we obtain the 

paraperspective projection of P,: 

x, = (I P, + x,)(1 - E,) = I P, + x0 - X,]EI 

i P, k.P 
= 1 + x0 - x0 2 = xp 

1 4 i 

There is a similar expression for yi j’. Finally, the paraperspective 
equations are: 

Again, by identification with (2) and (3) we obtain the relationship 
between the paraperspective and the perspective projections of P,: 

x; =x,(l+Fi)-xx,,e, (11) 

YP = Y$ + Ei) - YoEr (12) 

3 SHAPE AND MOTION WITH A PERSPECTIVE CAMERA 
Let us consider again the perspective equations (2) and (3). These 
equations may also be written as: 

x,(1+&,)--X” =I.P, (13) 

Y$ + &i) ~ yo = J P, (14) 

Let us subtract the paraperspective term from both the left and 
right sides of (13) and (14). We obtain: 

1 
~!(l+s~)-x0-r,fk.P, =fi~Pi-xotk~F, 

ti z  z  
Ei 

yi(l+F,)-y,-yo~k.I’L =ki.Pt-yokk.I’t 
ti= z  

C, 
These equations can be written more compactly as: 

(xi-XoKl + 4) = 1,. P, (15) 

(yi - y& + 4) = J, P, (16) 

To summarize, we have two different sets of equations that de- 
scribe the same perspective camera model: 

l The first set, i.e., (13) and (14) establish the link between 
perspective and weak perspective and 

l The second set, i.e., (15) and (16) establish the link between 
perspective and paraperspective. 

The basic idea of our method is to estimate values for E, incremen- 
tally such that one can compute either the weak or the paraperspec- 
tive projections of the 3D points from the perspective projections 
which are the true image measurements. Therefore, the perspective 
reconstruction problem is reduced to the problem of iterative weak 
perspective or iterative paraperspective reconstruction. 

Let us consider now k  views of the same scene points. We as- 
sume that image-to-image correspondences have already been 
established. Both (13) and (14) or (15) and (16) can be written as: 

s  ‘I =A I’ 
2% 

d4 
(17) 

2~33x1 

In this formula the subscript i stands for the ith point and the subscript 
i for the ith image. The Z-vector si, is equal to (weak perspective): 

or to (paraperspective): 

(18) 

In these equations sii, i.e., (4) is defined for each point and for 
each image: 

The reconstruction problem is now the problem of simultane- 
ously solving 2 x  y1 x  k  equations of the form of (17). The un- 
knowns of these equations are: The coordinates P, the matrices A,, 
and the perspective corrections E+, We introduce a method that 
solves these equations by linear iterations. More precisely, this 
method can be summarized by the following algorithm: 
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Initialization YJi, i E 11 . . n) and Yj, j E 11 k1 set: Ed, = 0; 
step 1 Update the values of sJj according with (19); 
step z  Perform an Euclidean reconstruction with either a weak or a 

paraperspective camera; 
step 3 Vi, i E (1 _.. n] and Yj, j l (1 k) estimate new values for E,, 

according with (20); 
if ‘d(i, j) the values of Ed] just estimated at this iteration are identical 

with the values estimated at the previous iteration, 
then stop; 

else go to step 1. 

The keystone of this algorithm is step 3: estimate new values 
for G]. This computation can be made explicit if one considers in 
some more detail step 2 of the algorithm which can be further 
decomposed into: 

1) affine reconstruction and 
2) Euclidean reconstruction. 

The problem of affine reconstruction is the problem of deter- 
mining both A, and P,, for all j and for all i, in (17), when some 
estimates of s,, are provided. Such a reconstruction determines 
shape and motion up to a 3D affine transformation. Indeed, for 
any 3 x  3 invertible matrix T we have: 

AjPt = A,TT-‘P, (21) 

In order to convert affine shape and motion into Euclidean shape 
and motion, one needs to consider some Euclidean constraints asso- 
ciated either with the motion of the camera or with the shape being 
viewed by the camera. Since we deal here with a calibrated camera, 
we may well use rigid motion constraints in conjunction with weak 
or paraperspective [ll, 121. Therefore, step 2 of the algorithm pro- 
vides both Euclidean shape (P, . . I’,) and Euclidean motion (3D ro- 
tation and translation between each camera and a scene frame). 

Various methods are available for estimating Euclidean struc- 
ture from affine structure either with a calibrated camera [I], [8] 
(weak perspective), [21 (paraperspective), or with an uncalibrated 
camera [41. Based on the parameters of the Euclidean shape and 
motion thus computed one can estimate &!,, for all i and for all j 
using (20)-step 3. 

The first iteration of the algorithm performs a 3D reconstruc- 
tion using the initial image measurements and a weak or paraper- 
spective camera model. This initial reconstruction allows the esti- 
mation of values for the E!,S which in turn allow the image vectors 
sq to be modified (step 1 of the algorithm). The s,s are modified 
according to (18) (for weak perspective) or according to (19) (for 
paraperspective) such that they better fit the approximated camera 
model being used. 

The next iterations of the algorithm perform a 3D reconstruc- 
tion using 

1) image vectors that are incrementally modified and 
2) a weak (or para) perspective camera model. 
At convergence, (17) is equivalent with the perspective equa- 

tions (13), (14) or (15), (16). In other terms, this algorithm solves for 
Euclidean reconstruction wifk a perspective camera by iterations of un 
Euclidean reconstruction method zuitk an affine camem. Therefore, 
before we proceed further in order to understand some important 
features of this iterative algorithm, it is necessary to have insights 
into the problem of Euclidean reconstruction with an affine cam- 
era model. 

The iterative algorithm outlined in this paper is best illustrated 
in Fig. 1. At the first iteration, the algorithm considers the true 
perspective projections of Pi and attempts to reconstruct the 3D 
points as if they were projected in the image using weak perspec- 
tive. At the second iteration the algorithm considers modified im- 
age point positions. At the last iteration, the image point positions 
were modified such that they fit the weak perspective projections. 

- 

Fig. 1. The iterative algorithm described in this section modifies the 
projection of a 3D point from true perspective to weak perspective (see 
text). 

4 RECONSTRUCTION WITH A WEAK-PERSPECTIVE OR A 
PARAPERSPECTIVE CAMERA 

In this section, we develop step 2 of the algorithm outlined in the 
previous section. Methods that use a linear camera model provide 
a 3D affine reconstruction if at least two views of four noncoplanar 
points are available and if the motion is not a pure translation. 
However, three views are necessary in order to convert this affine 
reconstruction into an Euclidean one. While the affine-invariant 
method allows a more direct analysis of the problem [91, the fac- 
torization method is more convenient from a practical point of 
view. 

The factorization method [l] computes shape and motion si- 
multaneously by performing a singular value decomposition of 
the 2k x  n matrix owl-rich is formed by concatenating (17) for all i 
and j: 

CT= AS o-2) 
We refer to this formula as the affine shape and motion equation, or: 

Tomasi and Kanade [ll noticed that A and S in (22) may be 
computed simultaneously by performing a singular value decom- 
position of the 2k x  n matrix: c= 0,X0,. 

Obviously, the factorization method briefly outlined above 
does not provide a unique decomposition of the measurement 
matrix c  Tomasi and Kanade [ll and Weinshall and Tomasi [S]] 
provide solutions for the case of a weak perspective camera. Poel- 
man and Kanade 121 and Christy and Horaud [9] provide solutions 
for the case of a paraperspective camera. 

One has to determine Euclidean shape and motion by combin- 
ing the affine reconstruction method just described and the 
Euclidean constraints available with the camera model being used. 
As already mentioned, one has to determine a 3 x  3 invertible ma- 
trix T such that the affine shape S becomes Euclidean and the af- 
fine motion becomes rigid. Following [II, [81, [2], and [9] the con- 
straints allowing the estimation of matrix T are nonlinear. With the 
substitution Q  = TT’ these constraints become linear. Once Q  is 
estimated, T can be recovered up to mirror-symmetric ambiguity 
with an affine camera and uniquely with a perspective camera, as 
it is explained below. 

5 SOLVING THE REVERSAL AMBIGUITY 
The algorithm outlined in Section 3 solves for Euclidean reconstruc- 
tion with a perspective camera by iterations of an Euclidean recon- 
struction method with either a weak perspective or a paraperspective 
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camera. In this section we show how this iterative algorithm has to be 
modified in order to solve the reversal ambiguity problem which is 
inherent with any affine camera model. Indeed, let us consider again 
the affine shape and motion recovery method outlined in the pre- 
vious section. A key step of this method consists of computing a 
transformation T that converts affine structure into Euclidean struc- 
ture. This transformation must be computed by decomposition of a 
symmetric semi-definite positive matrix Q  = TTT. Clearly this de- 
composition is not unique and there are at least two ways to de- 
termine T: 

1) Q  can be written as Q  = ODOT where 0 is an orthogonal 
matrix containing the eigenvectors of Q  and D is a diagonal 
matrix containing the eigenvalues of Q. Since the eigenval- 
ues of a symmetric semi-definite positive matrix are all real 
and positive, one may write Q  as: 

Q  = (OD”‘)(OD”2)T = KKT 

2) Alternatively one may use the Cholesky decomposition of Q  = 
LL’ where L is a lower triangular matrix, or any other decom- 
position method taking a positive symmetric matrix into TTT. 

Let H be a nonsingular matrix such that L = KH and we have: 

Q  = LL7 = KHHTKT = KKT 

We conclude that H is necessarily an orthogonal matrix. The or- 
thogonality of H is also claimed in [S] but without any formal 
proof. Therefore H represents either a rotation or a mirror trans- 
formation (its determinant is either +l or -1) and there are two 
classes of shapes that are possible: 

. a direct shape which is defined up to a rotation and 

. a reverse shape which is obtained from the direct shape by 
applying a mirror transformation. 

Since shape is defined up to rotation and without loss of generality 
we choose the mirror transformation to be -1 where I is the iden- 
tity matrix. Therefore the affine shape and motion equation can be 
written as: 

CJ= AS = (-A)(-S) 

Because of this reversal ambiguity, there are two solutions for 
the E,!S at each iteration of the reconstruction algorithm described 
above. 

We consider the case of paraperspective. A similar treatment is 
possible for weak perspective. The vectors ki are computed ac- 
cording to [9]. This computation may use either I, and J, (the first 

solution) or -I, and -JP (the second solution). Therefore we obtain 
two distinct solutions, that is, ki and k: The two solutions for &;I 

correspond to ki and P, and to ky  and -I’,: 

12 k1f2 p 
Et, = ‘+ 

21 
At each iteration of the perspective reconstruction algorithm 

two values for E are thus estimated. Therefore, after N iterations 
there will be 2d possible solutions. All these solutions are not, 
however, necessarily consistent with the image data and a simple 
verificntion technique allows to check this consistency and to 
avoid the explosion of the number of solutions. Finally, a unique 
solution is obtained. 

Let S(l) be the positive shape computed at the first iteration of 

the algorithm and X(l) be the negative shape (R”’ = -SC”). At each 

one of the next iterations one has to deal with four shapes: Sik’ and 

Sr) that are issued from the positive solution and Rik’ and RF) 
that are issued from the negative solution. The S-shape and the X- 
shape the most consistent with the shapes selected at the previous 

iterations are selected. Finally, a unique solution is selected on the 
basis of consistency with the image data. 

6 METHOD ANALYSIS 
6.1 Sensitivity to Camera Calibration 
So far we assumed that the camera is calibrated, which means that 
the intrinsic camera parameters are known, i.e., aU, ad, u,, and z), in 
(1). It is well known that camera calibration is difficult and that the 
camera parameters are not stable over time and space. It is also 
known that the only stable intrinsic camera parameter is the ratio 
between the horizontal and vertical pixel size: y= oc,/%. We con- 
sider again the perspective equations (13) and (14). By combining 
them with U; = a,x, + u, and with zli = aVyi + v, we obtain: 

u,(l + &J - u. - UcEi = y @  P, (23) 

v,(l + 6) ~ v0 - v,& = ol,J I’, (24 
By inspecting the above equations, it is straightforward to no- 

tice that the intrinsic parameter 4 acts as a scale factor on the 3D 
shape. Since shape can be recovered only up to a similarity transforma- 
tion, exact knowledge of the value of ol, does not affect the solution. 

Moreover, the remaining intrinsic parameters, u, and v,, are 
weighted by E, which is the ratio between the size of the object 
measured along the optical axis divided by the distance between 
the object and the optical center of the camera. The absolute value 
of this ratio (q) varies between 0 (the object is very far) and a posi- 
tive value that insures that the object doesn’t “bump” into the lens 
of the camera. In practice a maximum value of E i may be 0.5 but 
more realistic values are in the range [O.l, 0.21. Therefore, the cali- 
bration errors committed on U, and ‘u, are scaled down by the same 
factor. 

6.2 An Analysis of Convergence 
In order to analyze the convergence of the iterative reconstruction 
algorithm outlined in Section 3 we consider separately the equa- 
tions associated with a weak perspective camera model and with a 
paraperspective camera model. It is quite difficult to analyze the 
convergence of such algorithms from a theoretical point of view. 
Therefore we base our analysis on numerical considerations by 
analyzing the size of the neglected terms relative to those that are 
retained. 

Consider (13), (14) and (15), (16). Both these sets of equations 
describe the full perspective projection with a calibrated camera. 
The first ones allow to express the perspective reconstruction 
problem in terms of an iterative weak perspective algorithm while 
the second ones allow to express the same problem in terms of an 
iterative paraperspective algorithm. If good estimates for the values 
of E, are available, then the perspective reconstruction problem is 
reduced to an affine reconstruction problem. Of course, in practice 
it seems difficult to provide such estimates. In this section we 
show that initializing &ij to zero provides sensible initial estimates 
even if the object is quite close to the camera. This explains why 
the iterative algorithms converge in a few iterations. We start by 
analyzing the weak perspective case and then we extend our 
analysis to paraperspective. 

Let, for n points and k  views, E;, be the true values that the it- 
erative algorithm is supposed to eventually estimate. At the first 
iteration, the algorithm performs a standard reconstruction using a 
weak perspective camera model, i.e., it computes shape and mo- 
tion using the affine shape and motion equation (22) followed by 
Euclidean normalization. 

Therefore, the “reconstruction errors” are proportional to the 
“weak perspective errors” Ixp~l and IY,,&~~. If these errors are 

large, the weak perspective solution estimated at the first iteration 
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of the algorithm will be rather different than the solution being 
sought and convergence cannot be guaranteed. In their work on 
pose estimation, Dementhon and Davis [6] noticed that the itera- 
tive weak perspective algorithm converges even if the expected 
values for &?, are as large as 1, provided fkat the scene points lie irz the 
neighborhood of the optical axis. Indeed, when the scene points are 
close to the optical axis, the camera coordinates of their projec- 
tions, xi, and yl,, are small (the origin of the camera frame lies onto 
the optical axis) and they compensate for the large values of &i, 

(see Section 2.1). Moreover, as it has been discussed in the previ- 
ous Section, the most realistic maximum value for E; is 0.5. 

The iterative paraperspective algorithm is able to deal with 
configurations where the weak perspective algorithm diverges. 
Indeed, in the case of paraperspective, the initial errors are 

1(x,, - xolkbl and 1(x0 - xoi Is;/. Whenever the point p0 is properly 

chosen (typically, it should be the center of mass of the set of image 

points), then the differences (x,, - x0$ and (yi, - yO,) are small and they 
compensate for large values of &,I. Therefore the iterative paraper- 

spective reconstruction algorithm is likely to converge over a wider 
range of configurations than the weak perspective one. 

6.3 A Comparison with Nonlinear Minimization Methods 
In the past, a number of authors have tried to solve the Euclidean 
structure and motion problem using nonlinear optimization tech- 
niques. It its most general form the problem is to minimize the 
following error function [5]: 

where x!, and yr are the coordinates of an image point and gii and ii, 

are the coordinates of the projected 3D point using a perspective cam- 
era model: the latter coordinates are therefore given by (2) and (3). 

For n points and k  images, the error function above has 2 x n x ic 
positive squared terms. The vector X encapsulates the unknowns of 
the problem: 3 x  n coordinates and 6 x  k  motion parameters. We seek 
a value for X which minimizes the error function. The Jacobian of 
f(X)isamxpmatrixandwehave:m=2xnxkandp=3xM+6xk. 
Any nonlinear minimization method searches the minimum incre- 
mentally and at each iteration the following linear system must be 
solved in order to compute dX and replace X by X + dX: 

J?‘(X)J(X)dX = b 

Therefore, the complexity of each iteration is dominated by the 
complexity of inverting a symmetric definite positive matrix-the 
Hessian. The size of the Hessian matrix is p x p and therefore it is a 
function of n and k. Furthermore, if one takes into account the fact 
that the Hessian is a banded matrix, the complexity of inverting 
the Hessian is of p3 + 8p2 + p flops 1101. By replacing 

Y 
with its ex- 

pression we obtain the following complexity: 27~1 + 162n’k + 
324nk’ + 216k + 72~~’ + 288nk + 288k’ + 3n + 6k If we retain the 
third-order terms we obtain: 2711” + 162& + 324nk2+ 216k3. 

In order to compare our iterative method with such a nonlinear 
method, let’s compute the complexity of one iteration. The most time- 
consuming part of the algorithm is the singular value decomposition 
of the measurement matrix oof size 2k x  M. Therefore, the complexity 
of singular value decomposition is in our case [lo]: 2212” + 8nk’. 

The complexities of the factorization method and of the nonlin- 
ear minimization methods are shown in Table 1 for three cases: the 
number of images (k) is much smaller than the number of points 
(n), the number of images is approximately equal to the number of 
points, and the number of images is much larger than the number 
of points. 

TABLE 1 
THE NUMBER OF FLOAT OPERATIONS AS A FUNCTION OF THE 
NUMBER OF POINTS (N) AND OF THE NUMBER OF IMAGES (K) 

Method k= n/10 k-n k=lOn 

Factorization 22n3 30n3 822n3 

Nonlinear (one iteration) 46n3 729n3 250000n3 

The above comparison holds for one iteration. We can conclude 
that the method proposed in this paper is infvinsically more effi- 
cient than a non linear minimization method. Notice the dramatic 
increase in complexity of the nonlinear method when the number 
of images is larger than the number of points. 

7 SIMULATION EXPERIMENTS 
In this section, we study the performance of the affine iterative 
algorithms and we compare them with the factorization method. 
Two types of performances are studied: 

1) the accuracy of 3D reconstruction as a function of various 
types of motions and in the presence of image (pixel) noise 
and 

2) the convergence of the affine iterative algorithms as a func- 
tion of various types of motion. 

In all the experiments described in this section we used 15 im- 
ages and 42 tracked points and the following features: 

The intrinsic camera parameters are: u, = uC = 256, oc,, = ol, 
= 1,000. 
The angular variation between each view is 2’. 
Gaussian noise with maximum standard deviation CJ= 1 has 
been added to the image measurements and there are 200 
trials for each experiment. 
One important parameter for each experiment is the average 
distance between the 3D points and the camera. Let D be the 
distance from the center of gravity of the set of 3D points to 
the center of projection, divided by the diameter of the 3D 
point set-D is therefore unit-less and we call it a relative dis- 
tance. 
For those experiments for which D varies, the maximum 
variation is limited to 5. 
The quality of a reconstruction result is evaluated by the 
mean and maximum of the Euclidean distance between the 
theoretical 3D points and the estimated 3D points as well as 
the mean and maximum of the difference between the theo- 
retical angle values between pairs of 3D edges and the esti- 
mated angle values. 

The experiments below compare the iterative paraperspective 
algorithm with the paraperspective factorization algorithm, the 
latter being simply the first iteration of the former. Figs. 2 and 3 
show the quality of the 3D Euclidean reconstruction for various 
motion types. The behavior of the reconstruction algorithm does 
not seem to depend on the direction of motion. 

Figs. 4 and 5 study the behavior of the two iterative algorithms 
(weak perspective and paraperspective) when the motion is par- 
allel to the optical axis and when the center of gravity of the 3D 
point set is at a fixed offset away from the optical axis. On an aver- 
age, the paraperspective iterative algorithm requires less iterations 
than the weak perspective iterative algorithm. The convergence 
rate of both algorithms is close to 100% for a relative distance 
greater than four. When the relative distance is equal to three, the 
convergence rate of both algorithms drops to 75%. It is worthwhile 
to notice that relative distances smaller than three are not realistic 
in practice, because, in this case, partial occlusion of the point set 
becomes predominant. 
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Fig. 2. The quality of reconstruction as a function of D (see text) when 
the motion direction is parallel to the image plane. 
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Fig. 3. The quality of reconstruction as a function of D when the motion 
is towards the camera, roughly parallel to the optical axis, and the 
center of gravity of the point set is at a fixed offset away from the opti- 
cal axis. 

Fig. 4. Number of iterations (weak perspective and paraperspective) as 
a function of D where the motion is towards the camera and the center 
of gravity of the point set is at a fixed offset away from the optical axis. 

Fig. 5. The rate of convergence of the two iterative algorithms as a 
function of D where the motion is towards the camera and the center of 
gravity of the point set is at a fixed offset away from the optical axis. 

8 REAL IMAGERY EXPERIMENTS 
In this section, we consider two examples obtained with real im- 
ages and with the paraperspective iterative algorithm: 

l A sequence of five images of a cube where 38 points were 
tracked over the image sequence (Fig. 61 and 

l A sequence of five images of a house with 46 tracked points 
(Fig. 7). 

In all these experiments, the camera center was fixed to U, = D, = 256 
and the horizontal and vertical scale factors were fixed to a, = 1,500 
and OL, = 1,000. The camera motion was a general motion. One may 
easily notice the large discrepancy between the reconstruction results 
obtained with the factorization method and with the affine iterative 
method-this discrepancy is visible especially when the data is shown 
from above such that the perspective effect associated with visualiza- 
tion vanishes. In both cases, the iterative paraperspective algorithm 
converged after five iterations and the computation time was of 0.3 
seconds on a Sun/SparclO-41/Sun-OS workstation. 

Fig. 6. This figure shows an image (top-left) out of a sequence of five 
images grabbed with a moving camera and the result of reconstructing 
38 points with the iterative method (top-right). Top views of the recon- 
structed scene allow to compare more quantitatively the result of the 
factorization method (bottom-left) with the result of the iterative method 
(bottom-right) described in this paper 
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Fig. 7. Same as the previous figure for another sequence of five im- 
ages and 46 points. 

9 DISCUSSION 
In this paper, we described a method for solving the Euclidean 
reconstruction problem with a perspective camera by incremen- 
tally performing an Euclidean reconstruction with either a weak or 
a paraperspective camera model. The method converges-on an 
average-in five iterations, is computationally more efficient than 
non-linear minimization methods, and it produces accurate results 
even in the presence of image noise and/or camera calibration 
errors. The method may well be viewed as a generalization to per- 
spective of shape and motion computation using factorization 
methods. It is well known that with a linear camera model, shape 
and motion can be recovered only up to a sign (reversal) ambigu- 
ity. The method that we propose in this paper solves for this am- 
biguity and produces a unique solution even if the camera is at 
some distance from the scene. 

Although the experimental results show that there are few 
convergence problems, we have been unable to study the conver- 
gence of the algorithm from a theoretical point of view. We stud- 
ied its convergence based on some numerical and practical consid- 
erations which allow one to determine in advance the optimal 
experimental setup under which convergence can be guaranteed. 
Indeed the experiments that we carried out and which are de- 
scribed in detail above (Section 8) show that convergence does not 
depend upon the motion that the camera undergoes with respect 
to the scene. The algorithm fails to converge when there are scene 
points very close to the camera. However such configurations are 
not desirable because they lead to occlusions. The paraperspective 
model has better convergence properties than the weak perspec- 
tive one, mainly because it requires fewer iterations. 

Although we have not performed such a comparison, it is clear 
that non-linear minimization algorithms provide more accurate 
results than our algorithm, simply because non linear methods are 
designed to minimize a least-squares error function at the cost, 
nevertheless, of a larger number of float operations (see Table 1). 
As already mentioned, our algorithm converges after five itera- 
tions (on an average) which compares favorably with the number 
of iterations associated with nonlinear minimization methods as it 
was reported by a number of authors [3], [5]. 

Therefore, the class of iterative algorithms described in this pa- 
per are an excellent compromise between linear resolution tech- 

niques (affine camera) and nonlinear minimization techniques 
(perspective camera), both in terms of quality of reconstruction 
and of computation time. 
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