
Euclidean Reconstruction: from Paraperspective

to Perspective ?

Stéphane Christy and Radu Horaud

GRAVIR-IMAG & INRIA Rhône-Alpes
46, avenue Félix Viallet 38031 Grenoble FRANCE

ECCV’96, volume II, pages 129–140

Abstract. In this paper we describe a method to perform Euclidean
reconstruction with a perspective camera model. It incrementally per-
forms reconstruction with a paraperspective camera in order to converge
towards a perspective model. With respect to other methods that com-
pute shape and motion from a sequence of images with a calibrated
perspective camera, this method converges in a few iterations, is com-
putationally efficient, and does not suffer from the non linear nature of
the problem. Moreover, the behaviour of the algorithm may be simply
explained and analysed, which is an advantage over classical non lin-
ear optimization approaches. With respect to 3-D reconstruction using
an approximated camera model, our method solves for the sign (rever-
sal) ambiguity in a very simple way and provides much more accurate
reconstruction results.

1 Introduction and background

The problem of computing 3-D shape and motion from a long sequence of im-
ages has received a lot of attention for the last few years. Previous approaches
attempting to solve this problem fall into several categories, whether the camera
is calibrated or not, and/or whether a projective or an affine model is being used.
With a calibrated camera one may compute Euclidean shape up to a scale factor
using either a perspective model [8], or a linear model [9], [10], [6]. With an uncal-
ibrated camera the recovered shape is defined up to a projective transformation
or up to an affine transformation [4]. One can therefore address the problem of
either Euclidean, affine, or projective shape reconstruction. In this paper we are
interested in Euclidean shape reconstruction with a calibrated camera. In that
case, one may use either a perspective camera model or an affine approximation
– orthographic projection, weak perspective, or paraperspective.

The perspective model has associated with it, in general, non linear recon-
struction techniques. This naturally leads to non-linear minimization methods

? This work has been supported by “Société Aérospatiale” and by DRET.



which require some form of initialization [8], [4]. If the initial “guess” is too far-
away from the true solution then the minimization process is either very slow or
it converges to a wrong solution. Affine models lead, in general, to linear resolu-
tion methods [9], [10], [6], but the solution is defined only up to a sign (reversal)
ambiguity, i.e., there are two possible solutions. Moreover, an affine solution is
just an approximation of the true solution.

One way to combine the perspective and affine models could be to use the
linear (affine) solution in order to initialize the non-linear minimization process
associated with perspective. However, there are several drawbacks with such
an approach. First, such a resolution technique does not take into account the
simple link that exists between the perspective model and its linear approxima-
tions. Second, there is no mathematical evidence that a non-linear least-squares
minimization method is “well” initialized by a solution that is obtained linearly.
Third, there are two solutions associated with the affine model and it is not clear
which one to choose.

The perspective projection can be modelled by a projective transforma-
tion from the 3-D projective space to the 2-D projective plane. Weak perspec-
tive and paraperspective are the most common affine approximations of per-
spective. Weak perspective may well be viewed as a zero-order approximation:
1/(1 + ε) ≈ 1. Paraperspective is a first order approximation of full perspective:
1/(1 + ε) ≈ 1 − ε. Recently, in [3] a method has been proposed for determining
the pose of a 3-D shape with respect to a single view by iteratively improving the
pose computed with a weak perspective camera model to converge, at the limit,
to a pose estimation using a perspective camera model. At our knowledge, the
method cited above, i.e., [3] is among one of the first computational paradigms
that link linear techniques (associated with affine camera models) with a perspec-
tive model. In [5] an extension of this paradigm to paraperspective is proposed.
The authors show that the iterative paraperspective pose algorithm has better
convergence properties than the iterative weak perspective one.

In this paper we describe a new Euclidean reconstruction method that makes
use of affine reconstruction in an iterative manner such that this iterative process
converges, at the limit, to a set of 3-D Euclidean shape and motion parameters
that are consistent with a perspective model. The novelty of the method that
we propose is twofold: (i) it extends the iterative pose determination algorithms
described in [3] and in [5] to deal with the problem of shape and motion from
multiple views and (ii) it is a generalization to perspective of the factorization
methods [9], [6] and of the affine-invariant methods [10]. More precisely, the
affine-iterative reconstruction method that we propose here has a number of
interesting features:

– It solves the sign (or reversal) ambiguity that is inherent with affine recon-
struction;

– It is fast because it converges in a few iterations (3 to 5 iterations), each
iteration involving simple linear algebra computations;



– We show that the quality of the Euclidean reconstruction obtained with our
method is only weakly influenced by camera calibration errors;

– It allows the use of either weak perspective [1] or paraperspective camera
models (paraperspective in this paper) which are used iteratively, and

– It can be combined with almost any affine shape and motion algorithm. In
particular we show how our method can be combined with the factorization
method [9], [6].

2 Camera models

Let us consider a pin hole camera model. We denote by Pi a 3-D point with
Euclidean coordinates Xi, Yi, and Zi in a frame that is attached to the object –
the object frame. The origin of this frame may well be the object point P0. An
object point Pi projects onto the image in pi with image coordinates ui and vi

and we have (P i is the vector
−−→
P0Pi from point P0 to point Pi):





sui

svi

s



 =





αu 0 uc 0
0 αv vc 0
0 0 1 0











iT tx
jT ty
kT tz
0 1













Xi

Yi

Zi

1







The first matrix describes the projective transformation between the 3-D
camera frame and the image plane. The second matrix describes the rigid trans-
formation (rotation and translation) between the object frame and the camera
frame.

From now on we will be assuming that the intrinsic camera parameters are
known and therefore we can compute camera coordinates from image coordi-
nates: xi = (ui − uc)/αu and yi = (vi − vc)/αv

In these equations αu and αv are the vertical and horizontal scale factors
and uc and vc are the image coordinates of the intersection of the optical axis
with the image plane.

The relationship between object points and camera points can be written as:

xi = (i · P i + tx)/(k · P i + tz) (1)

yi = (j · P i + ty)/(k · P i + tz) (2)

We divide both the numerator and the denominator of eqs. (1) and (2) by
tz. We introduce the following notations:

– I = i/tz is the first row of the rotation matrix scaled by the z-component of
the translation vector;

– J = j/tz is the second row of the rotation matrix scaled by the z-component
of the translation vector;



– x0 = tx/tz and y0 = ty/tz are the camera coordinates of p0 which is the
projection of P0 – the origin of the object frame, and

– We denote by εi the following ratio:

εi = k · P i/tz (3)

We may now rewrite the perspective equations as:

xi = (I · P i + x0)/(1 + εi) (4)

yi = (J · P i + y0)/(1 + εi) (5)

Whenever the object is at some distance from the camera, the εi are small
compared to 1. We may therefore introduce the paraperspective model as a first
order approximation of the perspective equations, Figure 1. Indeed, with the
approximation: 1/(1+ εi) ≈ 1− εi ∀i, i ∈ {1...n} we obtain xp

i and yp
i which are

the coordinates of the paraperspective projection of Pi:

xi ≈ (I ·P i +x0)(1−εi) ≈ I ·P i +x0 −x0εi =
i · P i

tz
+x0 −x0

k · P i

tz
= xp

i (6)

where the term in 1/t2z was neglected. There is a similar expression for yp
i .

Finally, the paraperspective equations are:

xp
i − x0 =

i − x0 k

tz
· P i (7)

yp
i − y0 =

j − y0 k

tz
· P i (8)

3 Reconstruction with a perspective camera

Let us consider again the perspective equations (4) and (5). These equations
may be also written as (there is a similar expression for yi):

xi(1 + εi) − x0 − x0

1

tz
k · P i

︸ ︷︷ ︸

εi

=
1

tz
i · P i − x0

1

tz
k · P i

These equations can be written more compactly as:

(xi − x0)(1 + εi) = Ip · P i (9)

(yi − y0)(1 + εi) = Jp · P i (10)

with: Ip = i−x0 k
tz

and Jp =
j−y0 k

tz
Equations (9) and (10) can be interpreted

in two different ways: (i) we can consider xi and yi as the perspective projection



of Pi or (ii) we can consider xi(1 + εi) − x0εi and yi(1 + εi) − y0εi as the
paraperspective projection of Pi.

The basic idea of our method is to estimate values for εi incrementally such
that one can compute the paraperspective projections of the 3-D points from
the perspective projections which are the true image measurements. Therefore,
the perspective reconstruction problem is reduced to the problem of iterative
paraperspective reconstruction.

I p

Pi

P
0

x0

x 0

center of
projection

paraperspective
projection

perspective
projection

i

k

image plane

optical axisF

Fig. 1. This figure shows the principle of projection with a paraperspective camera
model. We consider the plane through P0 parallel to the image plane. A 3-D point Pi

first projects onto this plane along the direction of FP0 and then is projected onto
the image along a line passing through F . Notice that the two vectors Ip and Jp are
orthogonal to the direction of projection FP0 (Ip only is depicted here).

Let us consider now k views of the same scene points. We assume that image-
to-image correspondences have already been established. Equations (9) and (10)
can be written as:

sij = AjP i (11)

In this formula the subscript i stands for the ith point and the subscript j for
the jth image. The 2-vector sij is equal to:

sij =

(
(xij − x0j)(1 + εij)
(yij − y0j)(1 + εij)

)

(12)

In these equations εij (see eq. (3)) is defined for each point and for each
image:

εij = kj · P i/tzj
(13)

The reconstruction problem is now the problem of solving simultaneously
2×n×k equations of the form of eq. (11). We introduce a method that solves these



equations by affine iterations. More precisely, this method can be summarized
by the following algorithm:

1. ∀i, i ∈ {1...n} and ∀j, j ∈ {1...k} set: εij = 0 (initialisation);
2. Update the values of sij according with eq. (12) and using the newly com-

puted values for εij ;
3. Perform an Euclidean reconstruction with a paraperspective camera;
4. ∀i, i ∈ {1...n} and ∀j, j ∈ {1...k} estimate new values for εij according with

eq.(13);
5. Check the values of εij :

if ∀(i, j) the values of εij just estimated at this iteration are identical with
the values estimated at the previous iteration, then stop;

else go to step 2.

The most important step of this algorithm is step 4: estimate new values
for εij . This computation can be made explicit if one considers into some more
detail step 3 of the algorithm which can be further decomposed into: (i) Affine
reconstruction and (ii) Euclidean reconstruction.

The problem of affine reconstruction is the problem of determining both
Aj and P i, for all j and for all i. It is well known that affine reconstruction
determines shape and motion up to a 3-D affine transformation. Indeed, for any
3×3 invertible matrix T we have: AjP i = AjTT−1P i. In order to convert affine
shape and motion into Euclidean shape and motion one needs to consider some
Euclidean constraints associated either with the motion of the camera or with the
shape being viewed by the camera. Since we deal here with a calibrated camera,
we may well use rigid motion constraints in conjunction with paraperspective
[6]. See [7] for the case of an uncalibrated affine camera. Therefore, step 3 of
the algorithm provides both Euclidean shape (P 1...P n) and Euclidean motion.
Based on the parameters of the Euclidean shape and motion thus computed one
can estimate εij for all i and for all j using eq. (13) – step 4.

The above algorithm can be easily interpreted as follows. The first iteration
of the algorithm performs a 3-D reconstruction using the initial image measure-
ments and a paraperspective camera model. This first reconstruction allows an
estimation of values for the εij ’s which in turn allow the image vectors sij to be
modified (step 2 of the algorithm). The sij ’s are modified according to eq. (12)
such that they better fit the approximated camera model being used.

The next iterations of the algorithm perform a 3-D reconstruction using
(i) image vectors that are incrementally modified and (ii) a paraperspective
camera model.

At convergence, the equations (11) are equivalent with the perspective equa-
tions (9), (10). In other terms, this algorithm solves for Euclidean reconstruc-
tion with a perspective camera by iterations of Euclidean reconstruction with a
paraperspective camera. Therefore, before we proceed further in order to under-
stand some important features of this iterative algorithm, it is necessary to have



insights into the problem of Euclidean reconstruction with a paraperspective
camera.

The iterative algorithm outlined in this paper is best illustrated on Figure 2.
At the first iteration, the algorithm considers the true perspective projections
of Pi and attempts to reconstruct the 3-D points as if they were projected in
the image using paraperspective. At the second iteration the algorithm considers
modified image point positions. At the last iteration, the image point positions
were modified such that they fit the paraperspective projections.

Po

Pi

optical axis

image plane

first iteration
second iteration
...
last iteration

center of
projection

not modified

perspective
projection

paraperspective
projection

 

Fig. 2. The iterative algorithm described in this section modifies the projection of a
3-D point from true perspective to paraperspective (see text).

4 Reconstruction with a paraperspective camera

In this section we develop step 3 of the algorithm outlined in the previous section.
Methods that use a linear camera model provide a 3-D affine reconstruction if
at least 2 views of 4 non-coplanar points are available and if the motion is not a
pure translation. However, 3 views are necessary in order to convert this affine
reconstruction into an Euclidean one. While the affine-invariant method allows
a more direct analysis of the problem, [10] the factorization method is more
convenient from a practical point of view.

The factorization method, [9] computes shape and motion simultaneously by
performing a singular value decomposition of the 2k×n matrix σ which is formed
by concatenating eq. (11) for all i and j: σ = AS = O1ΣO2. Affine shape and
motion, i.e., the 2k× 3 matrix A and the 3×n matrix S, can be computed only
if the rank of the measurement matrix σ is equal to 3.

The rank of σ is equal to the rank of the n × n diagonal matrix Σ. Even if
the rank condition stated above is satisfied, the rank of Σ may be greater than 3
because of numerical instability due to noise. Tomasi & Kanade [9] suggested



to solve the rank problem by truncating the matrix Σ such that only the 3
largest diagonal values are considered. They claim that this truncation amounts
to removing noise present in the measurement matrix. Therefore, one can write
the singular value decomposition of the measurement matrix as σ = O′

1
Σ′O′

2
+

O′′

1
Σ′′O′′

2
where Σ′ is a 3 × 3 diagonal matrix containing the 3 largest diagonal

terms of Σ.

Finally, affine shape and affine motion are given by S = (Σ ′)1/2O′

2
and

A = O′

1
(Σ′)1/2.

4.1 From affine to Euclidean

Obviously, the factorization method described above does not provide a unique
decomposition of the measurement matrix σ. The method that we describe here
for recovering Euclidean shape and motion with a paraperspective camera is an
alternative approach to the method described in [6].

One has to determine now Euclidean shape and motion by combining the
affine reconstruction method just described and the Euclidean constraints avail-
able with the camera model being used. As already mentioned, one has to de-
termine a 3×3 invertible matrix T such that the affine shape S becomes Eu-
clidean:

(
P 1 . . . P n

)
= T−1

(
S1 . . . Sn

)
and the affine motion becomes rigid:

(
R1 . . . Rk

)T
=

(
A1 . . . Ak

)T
T . Indeed, in order to avoid confusion we denote

by S and A affine shape and affine motion and by P and R Euclidean shape and
rigid motion. The matrices Rj are given by:

Rj =

(
Ipj

Jpj

)

The Euclidean constraints allowing the computation of T are the following [6]:

‖Ipj
‖2/(1 + x2

0j
) = ‖Jpj

‖2/(1 + y2

0j
)

and
Ipj

· Jpj
= x0j

y0j
/2

(

‖Ipj
‖2/(1 + x2

0j
) + ‖Jpj

‖2/(1 + y2

0j
)
)

We denote by aj and bj the row vectors of matrix Aj . Using the constraints
above, for k images one obtains 2k constraints for the matrix T :

aT
j TT T aj/(1 + x2

0j
) − b

T
j TT Tbj/(1 + y2

0j
) = 0 (14)

aT
j TT Tbj = x0j

y0j
/2

(

aT
j TT T aj/(1 + x2

0j
) + bT

j TT Tbj/(1 + y2

0j
)
)

(15)

These constraints are homogeneous and non linear in the coefficients of T . In
order to avoid the trivial null solution the scale factor must be fixed in advance.
For example, one may choose ‖Ip1

‖2 = 1 + x2

01
or ‖Jp1

‖2 = 1 + y2

01
. Hence we

obtain one additional constraint such as:



aT
1
TT Ta1 = 1 + x2

01
(16)

These constraints are non linear in the coefficients of T . With the substitution
Q = TT T equations (14), (15), and (16) become linear and there are 6 unknowns
because, by definition, Q is a 3×3 symmetric positive matrix. Since we have
2k + 1 independent equations and 6 unknowns, at least 3 views are necessary
to estimate Q. Finally T can be derived from Q using a factorization of Q. As
it will be explained later in section 5 there is an ambiguity associated with the
factorization of the symmetric semi-definite positive matrix Q and this ambiguity
is the origin of the reversal ambiguity associated with any affine camera model.

Next we determine the parameters of the Euclidean motion by taking ex-
plicitly into account the paraperspective camera model. The method presented
below is an alternative to the method proposed in [6] and it is equivalent to the
problem of computing pose with a paraperspective camera [5].

First we determine the translation vector. From the formulae above we have:

tzj
= 1/2

(

(
√

1 + x2

0j
)/(‖Ipj

‖) + (
√

1 + y2

0j
)/(‖Jpj

‖)
)

and txj
= x0j

tzj
, tyj

= y0j
tzj

.

Second, we derive the three orthogonal unit vectors ij , jj , and kj as follows.
Ip and Jp may be written as:

ij = tzj
Ipj

+ x0j
kj (17)

jj = tzj
Jpj

+ y0j
kj (18)

The third vector, kj is the cross-product of these two vectors kj = ij × jj .
Let’s, for convenience, drop the subscript j. We obtain for k:

k = t2z Ip × Jp + tzy0 Ip × k − tzx0 Jp × k

Let S(v) be the skew-symmetric matrix associated with a 3-vector v, and I3×3

be the identity matrix. The previous expression can now be written as follows:

(I3×3 − tzy0 S(Ip) + tzx0 S(Jp))
︸ ︷︷ ︸

B

k = t2z Ip × Jp (19)

This equation allows us to compute k, provided that the linear system above
has full rank. Indeed, one may notice that the 3×3 matrix B is of the form:

B =





1 c −b
−c 1 a

b −a 1





Its determinant is strictly positive and therefore, B has full rank and one can
easily determine kj using eq. (19) and ij and jj using eqs. (17) and (18). As
a consequence, it is possible to compute the rigid motion between each camera
position and the 3-D scene, i.e., ij , jj , kj , txj

, tyj
, and tzj

and to estimate εij

for each image and for each point (eq. (13)).



5 Solving the reversal ambiguity

The algorithm outlined in Section 3 solves for Euclidean reconstruction with a
perspective camera by iterations of an Euclidean reconstruction method with
a paraperspective camera. In this section we show how this iterative algorithm
has to be modified in order to solve the reversal ambiguity problem which is
inherent with any affine camera model. Indeed, let us consider again the affine
shape and motion recovery method outlined in the previous section. A key step
of this method consists of computing a transformation T that converts affine
structure into Euclidean structure. This transformation must be computed by
decomposition of a symmetric semi-definite positive matrix Q: Q = TT T . There
are at least two ways to determine T :

1. Q can be written as Q = ODOT , where O is an orthogonal matrix containing
the eigenvectors of Q and D is a diagonal matrix containing the eigenvalues
of Q. Since the eigenvalues of a symmetric semi-definite positive matrix are
all real and positive, one may write Q as: Q = (OD1/2)(OD1/2)T = KKT .

2. Alternatively one may use the Cholesky decomposition of Q: Q = LLT where
L is a lower triangular matrix.

Let H be a non singular matrix such that L = KH and we have:

Q = LLT = KHHT KT = KKT (20)

We conclude that H is necessarily an orthogonal matrix. The orthogonality of
H is also claimed in [11] but without any formal proof. Therefore H represents
either a rotation or a mirror transformation (its determinant is either +1 or −1)
and there are two classes of shapes that are possible:

– a direct shape which is defined up to a rotation and
– a reverse shape which is obtained from the direct shape by applying a mirror

transformation.

Since shape is defined up to rotation and without loss of generality we choose
the mirror transformation to be −I where I is the identity matrix. Therefore
the affine shape and motion equation can be written as: σ = AS = (−A)(−S).
Because of this reversal ambiguity, there are two solutions for the εij ’s at each
iteration of the reconstruction algorithm described above.

The vectors kj are computed using eq. (19). This equation may use either
Ip and Jp (the first solution) or −Ip and −Jp (the second solution). Therefore
we obtain two distinct solutions, that is, k1

j and k2

j . The two solutions for εij

correspond to k1

j and P i and to k2

j and −P i: ε1,2
ij = ±k

1,2
j · P i/tzj

.

At each iteration of the perspective reconstruction algorithm two values for
εij are thus estimated. Therefore, after N iterations there will be 2N possible



1st iteration

2nd iteration

Nth iteration

Unique
solution

R (1)S (1)

S (2)
1

R (2)
1

S (2)
2

R (2)
2

S
1
(N) S

2
(N) R

1
(N) R

2
(N)

Fig. 3. A strategy for selecting a unique solution (see text).

solutions. All these solutions are not, however, necessarily consistent with the
image data and a simple verification technique allows to check this consistency
and to avoid the explosion of the number of solutions. Finally, a unique solution
is obtained.

The first iteration of the algorithm makes available two solutions – a “posi-
tive” shape S and a “negative” shape (−S) – that are both considered. At the
next iterations of the algorithm two shapes are maintained: one shape consis-
tent with S and another shape consistent with −S. Therefore, at convergence,
one obtains two solutions, each one of these solutions being consistent with one
or the other of the initial shapes. Finally, the solution that best fits the image
data is selected as the unique solution. This solution selection process is best
illustrated on Figure 3.

6 Experimental results and discussion

In this section we describe two types of experiments: (i) experiments with syn-
thetic data which allow us to study both the accuracy of the 3-D reconstruction
and the behaviour of the iterative algorithm, and (ii) experiments with real data.

Let us consider some synthetic data. We designate by D the distance between
the center of these data and the camera center of projection divided by the
size of the data’s diameter – D is therefore a relative distance. Hence, D is
approximatively equal to 1/εij where εij is the average value of εij for all i
and j. For a fixed value of D we consider 10 camera motions, each motion
being composed of 15 images. Each such motion is farther characterized by a



translation vector and a rotation axis and angle. The directions of the translation
vector and rotation axis are randomly chosen. The angle of rotation between
two images is equal to 20. Moreover, the image data obtained by projecting
this object onto the image plane is perturbed by adding Gaussian noise with a
standard deviation equal to 1.

The accuracy of the reconstruction is measured by the difference between the
theoretical 3-D points and the reconstructed 3-D points. We compute the mean
and the maximum values of these differences over all motions at a fixed relative
distance D. Figure 4 summarizes the results.

Fig. 4. The behaviour of the factorization method (small squares) is compared with
the behaviour of the iterative method described in this paper (small triangles) as a
function of the relative distance between the object and the camera (see text). The
left side shows the mean value of the distance between object points and reconstructed
points and the right side shows the maximum value of this distance.

Finally, we consider one experiment performed with real images: A sequence
of 13 images of a wood piece with 10 tracked points (figure 5); In all these
experiments the camera center was fixed to uc = vc = 256 and the horizontal
and vertical scale factors were fixed to αu = 1500 and αv = 1000.

In this paper we described a method for solving the Euclidean reconstruc-
tion problem with a perspective camera by incrementally performing Euclidean
reconstruction with a paraperspective camera model. The method converges, on
an average, in 5 iterations, is computationally efficient, and it produces accurate
results even in the presence of image noise and/or camera calibration errors.
The method may well be viewed as a generalization to perspective of shape and
motion computation using factorization and/or affine-invariant methods. It is
well known that with a linear camera model, shape and motion can be recovered
only up to a sign (reversal) ambiguity. The method that we propose in this paper
solves for this ambiguity and produces a unique solution even if the camera is
at some distance from the scene.



(a) (b) (c)

(d) (e) (f)

Fig. 5. This figure shows one image (a) out of a sequence of 13 images where only
10 points were tracked and reconstructed. The first row (b) and (c) shows the result
of reconstruction using the factorization method with a paraperspective model, while
the second row (d), (e), and (f) shows the result of reconstruction with the iterative
method and a perspective model. In this example the iterative algorithm converged in
4 iterations.

Although the experimental results show that there are little convergence
problems, we have been unable to study the convergence of the algorithm from
a theoretical point of view. We studied its convergence based on some numerical
and practical considerations which allow one to determine in advance the optimal
experimental setup under which convergence can be guaranteed [2]. In the future
we plan to study more thoroughly the convergence of this type of algorithms.

References

1. S. Christy and R. Horaud. A quasi linear reconstruction method from multiple
perspective views. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 374–380, Pittsburgh, Pennsylvania, USA,
August 1995. IEEE Computer Society Press, Los Alamitos, Ca.

2. S. Christy and R. Horaud. Euclidean shape and motion from multiple perspective
views by affine iterations. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 18(11):1098–1104, November 1996.



3. D. F. DeMenthon and L. S. Davis. Model-based object pose in 25 lines of code.
International Journal of Computer Vision, 15(1/2):123–141, 1995.

4. R. I. Hartley. Euclidean reconstruction from uncalibrated views. In Mundy Zisser-
man Forsyth, editor, Applications of Invariance in Computer Vision, pages 237–
256. Springer Verlag, Berlin Heidelberg, 1994.

5. R. Horaud, S. Christy, F. Dornaika, and B. Lamiroy. Object pose: Links between
paraperspective and perspective. In Proceedings Fifth International Conference on
Computer Vision, pages 426–433, Cambridge, Mass., June 1995. IEEE Computer
Society Press, Los Alamitos, Ca.

6. C. J. Poelman and T. Kanade. A paraperspective factorization method for shape
and motion recovery. In Jan-Olof Eklundh, editor, Computer Vision – ECCV
94, Proceedings Third European Conference on Computer Vision, volume 2, pages
97–108. Springer Verlag, Stockholm, Sweden, May 1994.

7. L. Quan and R. Mohr. Self-calibration of an affine camera from multiple views. In
6th International Conference CAIP’95, Computer Analysis of Images and Patterns,
pages 448–455, Prague, September 1995.

8. R. Szelinski and S. B. Kang. Recovering 3-D shape and motion from image streams
using non-linear least squares. Technical Report CRL 93/3, Digital – Cambridge
Research Laboratory, March 1993.

9. C. Tomasi and T. Kanade. Shape and motion from image streams under or-
thography: a factorization method. International Journal of Computer Vision,
9(2):137–154, November 1992.

10. D. Weinshall. Model-based invariants for 3-d vision. International Journal of
Computer Vision, 10(1):27–42, February 1993.

11. D. Weinshall and C. Tomasi. Linear and incremental acquisition of invariant shape
models from image sequences. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 17(5):512–517, May 1995.


