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Abstract 

In this paper, we show how relative SD reconstruc- 
tion for point correspondences of multiple images f r o m  
uncalibrated cameras can be achieved through reference 
points. The original contributions with respect t o  other 
related works in the field are mainly a direct global 
method for relative SD reconstruction, a geometrical 
method t o  select a correct set of reference points among 
all image points. Ezperimental resulis f rom both sim- 
ulated and real image sequences are presented. 

1 Relative positioning 

From a single image, no depth can be computed 
without a priori information. Even more, no invariant 
can be computed from a general set of points [3]. This 
problem becomes feasible using multiple images. The 
process is composed of two major steps. First image 
features are matched in the different images. Then, 
from such a correspondence, depth is easily computed 
using standard triangulation. This approach suffers 
from <several drawbacks: firstly the calibration process 
is an error sensitive process; secondly it cannot always 
be performed on line, particularly when the imaging 
system is obtained by a dynamic system with zoom- 
ing, focusing and moving. Similarly stereo vision with 
a moving camera is impossible as the standard tool for 
locating the position of a camera with translation and 
rotation does not reach the required precision for cali- 
brating such a multistereo system. Introducing in each 
image beacons with exact known position may over- 
come these drawbacks: calibration and reconstruction 
are then solved in the same process [2, 11. But for 
many problems it is impossible to provide such care- 
fully positioned reference points. 

The alternative approach is to use points in the 
scene as reference frame without knowing their coor- 
dinates nor the camera parameters. This has been in- 
vestigated by several researchers these past few years, 
for instance in [lo, 11, 9, 17, 8, 14, 161. 

This year, three independent teams approached the 
same problem of 3D reconstruction from uncalibrated 
cameras, and all three with the same projective basis. 
Faugeras [4] published an insightful algebraic method 
to do 3D projective reconstruction. He demonstrated 
that once the epipolar geometry is somehow deter- 
mined, 3D projective structure can be reconstructed 
up to a collineation by assigning 5 reference points to 
the standard projective basis. One month later, Hart- 
ley published his paper [7] in which he described the 
similar approach in a slightly different way. The same 
month appeared our technical report [12] performed 
differently with our first experimental results. 

The original contributions of this paper are mainly 
twofold. First, we describe a direct 3D relative recon- 
struction method, which differs from that of Faugeras 
and Hartley in that our method is formulated glob- 
ally as a least squares estimation method which does 
not need to first estimate the epipolar geometry, and 
also the method makes full use of redundancy of mul- 
tiple images. Secondly, we provide a geometrical way 
to choose among the set of points those which can be 
selected as reference points. The selected reference 
points should not be degenerated, i.e. no four of them 
coplanar. This result allows to derive a computational 
way to choose the correct reference points. 

We assume that the reader is familiar with elemen- 
tary projective geometry, as it can be found in the first 
chapters of [15] (see also [5]). 

2 Using scene reference points 

This section provides the basic equations of 3D re- 
construction problem, together with the self calibra- 
tion problem. This derivation was developed indepen- 
dently from these recently published by Faugeras in 
[4]. The basic starting point is similar to this work, 
however the way to solve it was influenced by the 
way photogrammetrists simultaneously calibrate their 
camera and reconstruct the scene, by using carefully 
located beacons (cf. [l]). 
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We consider m views of a scene (m 2 2); it is as- 
sumed that n points have been matched in all the im- 
ages, thus providing n x m image points. The assump 
tion that the scene points appear in all the images is 
not essential but only simplifies the explanation here. 
{ M i ,  i = 1,. . . , n) is the (unknown) set of 3D points 
projected in each image, represented by a column vec- 
tor of its four yet unknown homogeneous Coordinates. 

2.1 The basic equations 

For each image j, the point Mi, represented 
by a column vector of its homogeneous coordinates 
(zi, yi, Z i ,  ti)T or ita usual non homogeneous coordi- 
nates (Xi, , Zi)T = (2, e, p ) T ,  is projected as the 
point Wj, represented by a column vector of its three 
homogeneous coordinates (uijwij, vijwij, wij)T or its 
usual non homogeneous coordinates (Ujj ,  vij)*. Let 
Pj be the 3 x 4 projection matrix of the j t h  camera. 

We have for homogeneous coordinates 

form a basis, i.e. a set of 5 points, no four of them 
coplanar. We will come back to how to choose for 
such a basis later in 3.1. For convenience, we assume 
here that the first five points Mi can be chosen to  form 
such a basis; their Coordinates can be assigned to the 
canonical ones: (1, O,O, o ) ~ ,  (o,~,o, o ) ~ ,  (o,o, 1, o ) ~ ,  
(O,O,O, 1) and (l,l, 1, l)T. 

The remaining part of this section is devoted to the 
problem of building from these now fixed reference 
points an explicit solution. 

2.2 Direct nonlinear reconstruction 

From the above section, the most direct way is to 
try to solve this system of nonlinear equations. As the 
projective coordinates of the spatial points are defined 
up to a constant, so for each point, the constraint 
z; + y; + z: + t: = 1 can be added. Since the system 
is an overdetermined one, we can hope to solve it by 
standard least squares technique. The problem can be 
formulated as minimizing, over 

Pijmij = P j M i , i = 1 ,  ... , n , j = l t - . * , m  (1) 

where pij is an unknown scaling factor which is dif- 

(zi,yi,zi,ti,py> ,... p&))for i= 1 ,..., m , j =  1 ,..., n; 

2 x m xn+n 
fk (uij vij ; zi, Vi Ti , ti, #>, * * .&)) ) a  ferent for each image point. 

uk Equation 1 is usually written in the following way, F =  ( 
hiding the scaling factor, using the non homogeneous k = l  

coordinates of the image points: where fk( . )  is either 

As we have n points and m images, this leads us to 
2 x n x m equations. The unknowns are 11 x m for 
the Pj which are defined up to a scaling factor, plus 
3 x n for the Mi. So if m and n are large enough we 
have a redundant set of equations. 

It is easy to understand that the solution for 
the equation 1 is not unique. Let A be a spatial 
collineation represented by its 4 x 4 invertible ma- 
trix. If Pj,j = l ,..., m and Mi,i = l ,..., n are a 
solution to 1, so are obviously PjA-’ and AMi, as 
pijmij = (PjA-l)(AMi),i = 1 , .  . . , n ,  j = 1,. . . , m  

Therefore is established the first result: The so- 
lution of the system l can only be defined up to a 
collineation. 

As a consequence of this result, a basis for any 3D 
collineation can be arbitraryly chosen in the 3D space. 
For a projective space P3, 5 algebraically free points 

subject to z: + y: +z! +t? - 1 = 0 for i = 1 , .  . . , m. 
uk is the standard deviation of each image measure, 

uij or vij , suppposed normally distributed and uncor- 
related. On the other hand, it can also be considered 
as the weight for each function. So the problem is 
a general weighted least squares estimation, thus the 
constraints z? + 2 + z! + t: - 1 = 0 can be ea% 
ily transformed into corresponding penalty functions 
in order that the whole problem is an unconstrained 
least squares problem. As for the multiplicative scalar 
of each projection matrix, we can for example impose PE) = 1 for j = 1, . . . , n with no loss of generality. 
Therefore this system leads to m + 2 x n x m equ& 
tions in 11 x m + 3 x n unknowns, 

This can be solved by the standard nonlinear least 
squares routine due to Levenberg-Marquardt [13]. 
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Statistically, it is equivalent to the maximum likeli- 
hood estimator. The alternative of minimizing F(.) 
as above is to minimize over (X i ,  yi, Zi ,  ti, &>, ...&2), 

To have the usual Euclidean shape representation, 
the Euclidean Coordinates should be known for the 5 
points, that should be like (Zi ,  ui, ti, 1)=, i = 1, . . . 5  

then, solve for the corresponding collineation which 
transforms a pure projective shape into a usual Eu- 
clidean shape. 

However we can also at the beginning assign the 
reference points to their Euclidean coordinates, in this 
case, the 3D reconstruction thus obtained is directly 

2xmxn+n 

k = l  

g k  (uij, v i j  ; zi Yi , Z i  ti, Pljl) *--&!) 12  

u k  
G =  ( 

where g k ( . )  is either 

~ , , ( p ~ ) 1 , + ~ S f i ~ , + p ~ ) ~ , + p ~ ) ~ , ) - ( ~ ~ ) ~ , + p ( : 2 ) ~ , + p ( 1 3 ? ~ , + ~ ~ ) f , )  its Euclidean shape. 

g k ( . )  is a simple algebraic transformation of f k ( . ) ,  

this transforms the real Euclidean distance error into 
an algebraic distance which degrades the error func- 
tion. However, in doing so, the degree of nonlinearity 
of equations is greatly reduced, especially the Jaco- 
bian matrix of g k ( . )  is nicely reduced. This may lead 
to faster convergence but leaves the solution a little 
bit degraded, since the distance error is only algebraic, 
not Euclidean. This point will be discussed later and 
get confirmed in our experimentation in Section 4. 

Since the standard projective basis are assigned 
to the reference points, the solution provides a t  the 
same time the projective shape and each camera's 
projection matrix. A projective shape is defined up 
to a collineation, at this stage, no metric information 
is present, only projective properties are preserved. 
For example, aligned points remain aligned, copla- 
nar points remain coplanar and conics are transformed 
into conics, a circle may be represented by an hyper- 
pole . . . 

Next, a pure projective shape can be transformed 
into its affine or Euclidean representation. However 
to do this, supplementary affine and Euclidean infor- 
mation shoud be incorporated. That is, we should 
determine a collineation A, a matrix of 4 x 4, which 
brings the canonical basis e i ,  i = 1,. . . , 5  to any five 
points ai = (ail, ai2, ais, ai4)T = Aei 

If these five points are only affinely known, that 
is, 4 of them can be assigned the standard affine co- 
ordinates, the fifth point should have its affine coor- 
dinatw with respect to these 4 points, that is the 5 
points can have the following coordinates (1, 0, 0, l)T, 

That is, to get the affine representation, affine 
knowledge (a, p, 7) has to be available. Then by solv- 
ing the linear equations system above, we obtain the 
collineation which transforms a pure projective shape 
into an affine shape. 

(OBI, 0, (O,O, 1, (1,1,1,1) and (a, P,  7, 1IT. 

In this section, we will show some very interesting 
geometric properties once the epipolar geometry has 
been established. In particular, we can determine if 
any fourth point is coplanar with the plane defined by 
any three other points. That leads to an automatic 
selection of general reference points from image planes 
and point reconstruction in a geometric way. 

3.1 The coplanarity test 

As we assume here that the epipolar constraint is 
known, we know the essential matrix E which con- 
tains all this information [4, 71. E is a 3 x 3 matrix 
such that from the point m = ( ~ , y , t ) ~  in image 1, 
the corresponding epipolar line I' in image 2 has its 
coefficients satisfying I' = (a', b', c ' ) ~  = Em. 

Now, consider Figure 1. It displays two images of 
four 3D points A, B, C, D, projected in the two im- 
ages. The dashed lines correspond to some of the 
epipolar lines going through each of the vertices of the 
quadrangles. The epipolar constraint specifies that 
the epipolar line corresponding to c passes through c', 
and conversely. 

Figure 1: Match of diagonal intersections with epipo- 
lar constraint 

If A, B, C, D are coplanar, then the diagonals in- 
tersect in this 3D space plane in a point M which is 
projected respectively as m and m'. Therefore m and 
m' have to satisfy the epipolar constraint too, as it 
is displayed in Fig. 1. Conversely consider the case 
where A, B, C,  D are not coplanar. The diagonals are 
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no more in the same plane and therefore do not inter- 
sect in the space. So m is the image of two 3D points, 
MI lying on (AC), and NI lying on (BD).  Similarly 
m' is the image of A42 and Nz. If the central point 
0' of the second image is not in the plane defined by 
(ACO), nor in the plane (BDO), then the 2 view lines 
(Om) and (0"') do not intersect, and therefore the 
points m and m' are not in epipolar correspondence. 

The condition that 0' does not lie in the plane 
(OAC) is equivalent to the condition that the epipole 
in the first image does not lay on (ac), which is ther+ 
fore checked easily. Notice that in such a case, we can 
chooee as diagonals (AB) and (CD) instead of (AC) 
and (BD). Therefore the only condition we reach for 
applying this method is to have none of the projections 
a, b, c, d being the epipole. So we proved that 
Theorem: If neither a, b, c, nor d a n  the epipole 

point of image 2 with respect of image 1, then it exists 
at least one diagonal intersection m such that m and 
its corresponding intersection mr satisfy the epipolar 
constraint if and only if A, B,C, D a n  coplanar. 

In fact this theorem leads to a useful and straight- 
forward construction technique. Observing three 
points and a line in an image, it is possible to re- 
construct the intersection of this line with the plane 
defined by the three points, provided the essential ma- 
trix. 

Such a technical result is particularly useful for 
computing construction directly in the image without 
going through the 3D reconstruction. It allows for in- 
stance to compute several invariants for stereo images 
(cf. [61). 

3.2 Search for a 5 point basis 

The above result can be directly applied to aut* 
matically select the necessary reference points from 
image points for projective reconstruction without any 
a priori spatial knowledge. Basically, we will be able 
to get rid of the coplanar reference points. In this 
case, one possible version of the algorithm can be 1. 
choose for MI and M2 the farthest points pair in one 
of the image; 2. choose for MS the farthest point 
from MlMa; 3. sort the other points according to 
the distances to the plane determined by the triangle 
MlMzMs,  chooae for M4 the one which has the max- 
imum distance. The distance is not the orthogonal 
distance from the point to the plane a8 we expect (not 
possible at this step), it  is the projection on the sec- 
ond image of the distance from the point to the plane 
along the first viewing line of that point; 4. Sort the 
remaining points according to the maximum distance 

to any face of the tetrahedron MI, Ma, Ms, M4, choose 
for Ms the point which has the maximum distance. 

This will provide us with a reasonably scattered 
points set. 

4 Experimental results 

4.1 Qualitative results 

All our experiences are conducted with a Pulnix 765 
camera, a lens of 18" kinoptics and FG150 Imag- 
ing technology grab board. The camera is assumed 
to be a perfect pin-hole one, distorsion is not com- 
pensated. One of the experiments is performed on a 
wooden house. The camera is set in about 2m from 
the object. We tracked over about one hundred imagea 
covering roughly two sides of the wooden house. The 
points tracked are the curvature extrama of smoothed 
contour chains by B-splines. In this experience, we 
also wanted to validate the reconstruction with points 
only present in part of the sequence. In total, 73 points 
were tracked, but almost half of them are present b e  
tween only two successive views. Final reconstruction 
is done with five views of them. In Figure 2, three 
images of the sequence are displayed. 

Figure 2: The wooden house image sequence 

The reconstruction, illustrated in Figure 3, has an 
excellent qualitative aspect. 

Figure 3: The reconstructed wooden house 

As we have mentionned, we have choice between 
minimizing F( a )  and G( e ) .  Experiences confirm that 
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while minimizing G( . ) ,  with very few, about 5 itera- 
tions instead of about 10 or even more, we can obtain 
a quite satisfactory solution. But since the distance 
error is only algebraic, not Euclidean, the solution is 
always slightly degraded. In our experiments, we put 
them in a sequential order, beginning with minimizing 
G( . ) ,  and ending with minimizing F ( . ) .  

All experimental results 
are performed by Levenberg-Marquardt’s algorithm. 
Practical experimentation shows that the algorithm 
works very well. The convergence does not depend too 
much on the initial starting points, it converges with 
almost any initialization although we have no mean 
to formally prove its convergence. For our experi- 
ments, each projection matrix is systematically initial- 
ized a~ unity identity matrix and each point is started 
from (0.5,0.5,0.5,0.5). Some other experiments, for 
instance on a paper house and the calibration pat- 
terns, are also performed and have been reported in 
the technical report [ 121. 

4.2 Quantitative results 

The accuracy of the tracked points is generally 
within two pixels, but some of them may have more 
than that. To have an idea of the precision of the 
reconstructed points, we measured some points’ coor- 
dinates of the wooden house by a ruler. The following 
numerical table 4.2 shows the absolute errors of the 
reconstruction of some selected points. While taking 
into account of rough measures’ performance by the 
ruler, the absolute error is within one millimeter, it is 
a very acceptable result. 

As the least squares estimator can be considered as 
an maximum likelyhood one if we admit that the im- 
ages points are normally distributed, that is what we 
assumed at the beginning. The confidence limits of the 
reconstructed points can be estimated from the corre- 
sponding covariance matrix provided by Levenberg- 
Marquardt’s algorithm. In Figure 4, the confidence 
region ellipsoid of each point corresponding to 68.3 
percent confidence region is displayed. For simplic- 
ity, each associated ellipsoid is displayed by its corre- 
sponding bounding parallelepiped. 

8 

% 

Figure 4: Confidence region 

It is very important to note that in this figure the 
point with the largest confidence region is just the 
point which lies on a cup, therefore is not a real 3D 
“corner” in the original image. The general correct 
rigid “corner” points have very small confidence re- 
gions. 

5 Discussion 

The qualitative results are excellent. If we assume 
that the exact location of the reference points are 
known, quantitative results can be obtained; they are 
better than those provided by stereovision, but still 
not excellent enough for some industrial applications. 
One first way to improve the location accuracy is to 
have better location measures in the image. Another 
source of inaccuracy is the lens distorsion which is not 
yet taken into account. 

For the same problem, Faugeras [5] and indepen- 
dently Hartley [7] provide an elegant linear projective 
reconstruction which heavily relies on the computa- 
tion of the epipolar geometry and the associated fun- 
damental matrix. The results we obtained with their 
method was much less accurate then the one we got 
with our approach; but as we were unable to reproduce 
their accuracy in the computation of the fundamental 
matrix, no comparison can be made right now. A com- 
mon testbed will be set in the near future in order to 
be able to compare with the linear methods proposed 
independently by Faugeras [5] and Hartley [7]. 
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