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Abstract 

It is  possible to recouer the three-dimensional struc- 
ture of a scene using images taken with ancalibrated 
cameras and pixel correspondences between these im- 
ages. But such reconstruction can only be performed 
up to a projective transformation of the SD space. 
Therefore constraints have t o  be put on the recon- 
structed data in order t o  gel the reconstruction in the 
euclidean space. Such constraints arise from knowl- 
edge of the scene: location of points, geometrical con- 
straints on lines, etc.  W e  discuss here the kind of con- 
straints that have to be added and show how they can 
be fed in a general fmmework.  Experimental results 
on real data prove the feasability, and experiments on 
simulated data address the accuracy of the results. 

1 Introduction 

One of the principal goals of research in computer 
vision is to enable machines to perceive the three- 
dimensional nature of the environment. It is very well 
known that recovering depth for a single image is not 
possible. But if we use more than one image the prob- 
lem becomes feasible. Usually the process requires the 
calibration of the cameras and the matching of the 
features in the different images. This approach suf- 
fers from two major drawbacks: firstly the calibration 
process is an error sensitive process, secondly in many 
applications it is not possible to calibrate on-line. 

An alternative approach is to use points in the scene 
as a reference frame without knowing their absolute 
coordinates nor the camera parameters. This has been 
investigated by several researchers these past few years 
using projective geometry [SI or affine shape [9]. Koen- 
derink and van Doorn [4], Lee and Huang[5] developed 
two similar methods for shape recovering under or- 
t hography hypothesis. 

Recently, Faugeras [2] developed a very nice re- 
construction method using standard tools of projec- 

tive geometry. He demonstrates that it is possible 
to reconstruct 3-D scenes only from point matches, 
but such reconstruction can only be defined up to a 
collineation. Simultaneously and independently other 
groups [3] converged to the same kind of approach. 

The approach developed in our group [SI was pri- 
marily inspired by Tomasi and Kanade’s works [lo] 
who solve the similar problem in the affine case, i.e., 
dealing with orthographic projection. Unfortunately, 
this approach does not extend to the projective case. 
Therefore we developed a parameter estimation a p  
proach to this 3D reconstruction problem with several 
views (images). It allows to put in the same framework 
the resolution of the previous problem and the inte- 
gration of euclidean constraints on the world to be re- 
constructed. This differs substantially from Faugeras 
and Hartley approaches which mainly rely on the et+ 
timation of the fundamental matrix. 

The contribution of this paper is mainly to show 
that this parameter estimation approach is a good al- 
ternative to the linear methods developed by Faugeras 
and Hartley, that convergence is not a problem and 
that the accuracy of the reconstruction can be cor- 
rectly estimated. We explain how geometrical con- 
straints may be added to the image measure and pro- 
vide a geometrical understanding of this process. 

In Section 2 we give the basic equations used and 
describe the reconstruction method with 5 points as a 
reference frame. We show in Section 3 how euclidean 
constraints can be used to get a unique solution for 
the projective reconstruction. Section 4 gives an im- 
plementation of the method which solves the problem 
in presence of noise using redundant data. The ro- 
bustness of this implementation and the convergence 
problem are then discussed. 

2 The basic equations of the method 

This section considers the problem of computing 
location of points in 3-D space given perspective views 
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2:.1 The basic equations 

We consider v images of a scene (v 2 2) composed 
of p points. For simplicity, it is assumed that all points 
have been matched in all the images, thus providing 
p x v image points. 

{Pi ,  i = 1 , .  . . ,p} are the unknown 3-D points pro- 
jected in each image. 

For each image j, the point Pi, represented by 
a column vector of its homogeneous coordinates 
(E i  , yj , Zi , ti)T or its usual non homogeneous coordi- 
nates (Xi, x, Zi)T = (?, 2, ?)T, is projected as the 
point pi,, represented by a column vector of its three 
homogeneous coordinates (uij, vij , ~ i j ) ~  or its usual 
non homogeneous coordinates (Vi,, Kj)T. Let Mj be 
the 3 x 4 projection matrix of the j t h  image. 

We have for the non homogeneous coordinates of 
the image points: 

obtained with a mean value equal to the observed one, 
and with a covariance matrix C. 

Let us call Q the vector of all parameters, and q k  
one of its elements, U the vector of all the measure 
ments Uij and Kj,  and let UI be one of its elements. 

If the relation between the measures 11 and param- 
eters q, is linear, i.e., U = AQ, then the maximum 
likelyhood estimation of the parameters is the vector 
Q which minimisea the Mahalanobis distance, i.e. the 
least square criterion 

x - - (  U - AQ)‘C-’(U - AQ) (2) 

In the non linear case, linearization may be ob- 
tained by taking the first order Taylor expansion of the 
non linear function linking Q with each U[. Therefore, 
in our case, equation (2) leads to the minimization of 
this simple sum: 

These equations express nothing else than the 
collinearity of the space points and their correspond- 
ing projection points. 

As we have p points and v images, this leads to 
2 x p x v equations. The unknowns are 11 x v for the 
14, which are defined up to a scaling factor, plus 3 x p 
for the sapce points. So if v and p are large enough 
we have a redundant set of equations. 

The solution of system (1) can only be defined up 
tlo a collineation. As a matter of fact, if hfj and Pi 
are a solution, so are Mj W-’ and WP, where W is 
a collineation of the 3-D space, i.e. a 4 x 4 invertible 
matrix . 

As a consequence of this result, a basis for any 3-D 
collineation can be arbitraryly chosen in the 3-D space. 
For the projective space P3, 5 algebraically free points 
(i.e. no four of them being coplanar) form a basis. 
Their coordinates can be assigned to the canonical 
ones: ( ~ , o , o , o ) ~ ,  (0, I , O ,  o)*, (o,o, 1, o)~, (0, O,O, I)* 
and (1,1,1, l)T 

21.2 Direct non linear reconstruction 

From the above equations, the problem can be for- 
mulated as a conditional parameter estimate problem. 
In the general case we have to estimate parameters 
(here the matrices Mj and the 3-D coordinates of 
points) having noisy measurements (here the image 
coordinates). We assume that the measurement are 

r \  ffij 

2.3 Results 

Five views of a scene (Figure 1) have been used. A 
total of 73 points have been matched, some of them 
vanishing and reappearing from view to  view. Five 
points on the house have been measured and chosen 
as a basis. They are denoted by an x on Figure 2 
which displays the result of the reconstruction. Re- 
constructed points are linked by edges allowing us to 
display segments. Confidence regions (ellipsoids) of 
the reconstructed points have been, for simplicity, rep- 
resented by their best bounding parallelepiped. They 
have been computed with all nij equal to 1.0, and cor- 
respond to a 68.3% confidence limit. The difference 
between the reconstructed point coordinates and the 
measured ones (with an ordinary ruler) was less than 
1.5“. 

But, in many cases, the need of located reference 
points is a drawback. The next section describes how 
this can be avoided by use of geometrical constraints. 

3 The euclidean constraints 

We showed in Section 2 the ability to reconstruct a 
3-D scene using 5 known points as a reference frame. 
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Figure 1: A view of the scene Figure 2: Reconstructed scene 

But if we suppose that no point is known, the only 
kind of 3-D reconstruction that can be obtained is pro- 
jective, i.e., the solution has no metric information and 
is defined up to a collineation. 

Presently the reconstruction is done up to a pro- 
jective transformation W .  We address here the prob- 
lem of recovering the euclidean solution without know- 
ing any 3-D point, i.e., finding the transformation W 
which brings the solution to an euclidean world. As 
W is a 4 x 4 homogenous matrix, and therefore has 
15 degrees of freedom, so at least 15 constraints are 
needed to define W .  This is done by using geometrical 
knowledge about the scene and translating them into 
constraints, for instance setting position of points as 
we already did in the previous section. 

We want to define a 3-D collineation which has 15 
degrees of freedom. We know that an affine trans- 
formation fixes three of these degrees. An euclidean 
transformation has only six. So six constraints on the 
affine transformation have to be added if we want to 
have our transformation being defined up to a rigid 
transformation. This can be done gradually. But for 
a real case application, the move from the projective 
solution to the euclidian one is done by estimating the 
matrix W using constraints on the scene. 

3.1 A real case application 

For our example all the constraints were coded in 
order to express the constraints on the matrix W .  

To get a unique euclidean solution we fixed a ref- 
erence frame in the scene where our constraints will 
be expressed. This is not a restriction in our opinion 
as in almost all the scenes we can find such a refer- 
ence frame: In an indoor or outdoor scene the floor is 

present and can be used as the horizontal plane XOY. 
Also two vertical planes which are perpendicular to 
each other can be found (building walls, room walls, 
etc...), we can use them as the XOZ and YOZ planes 
respectively. 

Furthermore, from an image it is possible to com- 
pute spatial directions (for example the vertical direc- 
tion) by finding vanishing points [8]. 
In the following A' = ( X A I , Y A ~ , % A ~ , ~ A ~ ) *  is a point 
with coordinates before adding the geometrical con- 
straints, and A = WA' = (XA, y ~ ,  ZA,  l)T the point 
with corrected coordinates (euclidean coordinates). 
(Wij) is the 4 x 4 matrix representing the projective 
transformation to be computed. 

3.2 Including constraints 

Fixing a point. Knowing the exact position of 
a point A, leads directly to three linear conditions on 
W; for instance for the x-coordinate we can write that 

w11xA'  + w12yA' + W132A' + W14tA' 

W41xA' + w42yA' + w43zA'  + W44tA' 
X A  = 

Laying on the horizontal plane. Knowing that a 
point A belongs to the horizontal plane will translate 
into TA = 0, and therefore provides a linear equation 
on the third line coefficients of W .  The same kind of 
equation can be obtained for the points laying on the 
other planes of our reference frame. 

Vertical alignment. Let A and B be two verti- 
cally aligned points, this translates into ZA - XB = 0 
and YA - = 0 which provide two constraints on W .  



Distance between points. If the distance be- 
tween A and B is d then: 

(ZA - ~ 8 ) ’  + (ZA - 28)’ + (ZA - ZB)’ = d2 

which provides one constraint on the matrix W 
I[f sufficiently coherent constraints are added in this 
way, then the solution is unique. 

Dealing with the equations. From equations 
provided above, W can be computed using non-linear 
least square method. Covariance put on constrainte is 
defined either by the known variance of the measures, 
or set to  a low-fhreshold for exact values. 

4 Solving the system 

The reconstruction problem is specified by the set 
of equations (1) and by the set of equations derived 
by the euclidean constraints presented in the previous 
section. Solving directly this highly non-linear system 
often leads to divergent computations. This section 
explains how we estimate the matrix W giving a pro- 
jective solution, then how this first estimate of the 
euclidean solution is used to get a better accuracy. 

4.1 Estimation of the euclidean solution 

At this stage a projective solution is computed. The 
final projective mapping will be the computation of 
the matrix W which satisfy the best added euclidean 
constraints as they are described in Section 3. 

The problem here is to estimate the 15 coefficients 
of W .  Again, as W is defined up to a scaling factor, 
we added here the constraint Ci,(Wij)2 = 1.  The 
problem can be written as minimizing over: 

(3) 

where fk ( - )  are the previously mentioned constraints. 

4.2 Final estimation 

At this point the solution is close to the optimal 
estimate. Therefore this solution is used as initial val- 
ues for the set of the non-linear equations (1) which is 
solved by Levenberg-Marquardt method. 

4.3 Experimental results 

We made several experiments with similar conclu- 
sions and we present here two of them: 

3-1) coordinates (cm) [ compui 

X l Y l Z l  X, 
0.00 
12.00 
0.00 
0.00 
6.00 
0.00 
6.00 
12.00 
13.50 
-1.50 

0.00 0.50 
0.00 0.50 
18.00 0.50 
0.00 14.50 
18.00 22.50 
18.00 14.50 
0.00 22.50 
0.00 14.50 
-1.50 0.50 I -1.50 0.50 

0.000 
12.041 
0.000 
0.000 
5.946 
0.000 
5.946 
12.021 
13.489 
-1.511 

.. . . . . - 

YC 
0.030 
0.059 
18.030 
0.025 
17.982 
18.025 

0.025 
-0.018 

-1.526 
-1.526 

a t e s  

Z C  

0.478 
0.504 
0.478 
14.458 
22.431 
14.458 
22.431 
14.458 
0.523 
0.523 

Table 1: example of reconstructed 3D coordinates 

real data: the images were the ones used in Sec- 
tion 2. To estimate W, 4 points laying on each 
plane are used giving rise to 12 constraints, we 
also used 4 pairs of points parallel to each axis 
and 12 distances giving rise to 24 and 12 con- 
straints. Qualitatively, the reconstructed scene is 
very similar to the one obtained in Section 2. 

Simulated data: 4 images where simulated with 
60 matched points, using the same kind of con- 
straints we obtained without noise a perfect result 
up to tiny numerical round-off errors. 

4.4 Accuracy in reconstruction 

This subsection discusses the accuracy of the recon- 
struction of simulated data, then it provides a com- 
parison of this accuracy to the one obtained using 5 
known points as in Section 2. We will not detail the 
accuracy obtained on real data because we had not 
the exact 3-D coordinates of points in that case. 

Table ( 1 )  gives for 10 points the 3-D coordinates 
of the simulated scene and the ones computed by our 
method using constraints. Noise on data was within 
f l  pixels. From these results we can see that the 
errors on the 3-D coordinates are reasonable, but in 
order to study the stability of the method, noise with 
different amplitudes is added to the 2-D coordinates, 
then 3-D coordinates are computed with both the 
method of Section 2 and the method using constraints. 
Figure 3 displays the mean errors on 3D positions 
when perturbing the images. As it could be guessed 
from the beginning, redundant euclidean constraints 
provide a better accuracy in the reconstruction. Par- 
ticularly, it has to be noted that the method with 5 
points is very sensitive to the location of these 5 points. 

With larger noise amplitude, results degrade 
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Figure 3: Precision in presence of noise 

quickly [7]. and subpixel precision is the only issue. 

5 Conclusion and discussion 

This paper shows how reconstruction can be done 
from multiple views using the parameters estimation 
approach. Such an approach allows for instance to 
work with a camera with automatic focus and aper- 
ture, without knowing neither the position from where 
each view is taken nor the internal camera param- 
eters. However reconstruction is only done up to a 
collineation. Therefore euclidean knowledge has to be 
added. The parameter estimation framework allows to 
add euclidean constraints to the projection equations 
from where we get an euclidean solution. 

Resolution of such a non linear optimisation pro- 
cess was possible in all our experiments on real and 
simulated data and convergence was very fast. It is 
probably due to the large redundancy of equations. 

Implementation is straightforward and is done with 
standard numerical methods. 

Results are excellent on a qualitative basis. How- 
ever, for reaching accurate reconstruction on  a quanti- 
tative basis, subpixel precision has to be reached as it 
is proven by the experiments on simulated data. This 
is not really new and is in accordance with what is 
done by photogrammetrists [I]. 
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