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Stereo Correspondence Through Feature G rouping 
and Maximal C liques 

RADU HORAUD AND 

Abstract-In this paper we propose a method to solve the stereo cor- 
respondence problem. The method matches features and feature rela- 
tionships and can be paraphrased as follows. Linear edge segments are 
extracted from both the left and right images. Each such segment is 
characterized by its position and orientation in the image as well as its 
relationships with the nearby segments. A relational graph is thus built 
from each image. For each segment in one image a set of potential 
assignments in the other image is determined. These assignments are 
represented as nodes in a correspondence graph. Arcs in this graph rep- 
resent compatible assignments established on the basis of segment re- 
lationships. Stereo matching becomes equivalent to searching for sets 
of mutually compatible nodes in this graph. These sets are found by 
looking for maximal cliques. The maximal clique the best suited to rep- 
resent a stereo correspondence is selected using a benefit function. Fi- 
nally we show numerous results obtained with this method. 

Index Terms-Feature-based matching, feature grouping, geometric 
constraints, maximal cliques, stereo vision, subgraph isomorphism. 

I. INTRODUCTION 

T HE stereo correspondence problem is the problem of 
matching two images of the same scene from different 

viewing positions. As a consequence, the three-dimen- 
sional geometry of the scene may be recovered. The cor- 
respondence problem is difficult because it is not straight- 
forward to find a one-to-one mapping between the two 
images. A space point projects onto the two images at two 
different locations and in the absence of additional knowl- 
edge it is practically impossible to establish a relationship 
between these locations. In this paper we propose a so- 
lution to the correspondence problem based on the explo- 
ration of both the geometric constraints available with the 
imaging device and the structural similarities between the 
two images. On  one hand, the known relationship be- 
tween the two images imposes metric constraints on the 
relationship between the two projections of a space fea- 
ture. On  the other hand, certain descriptive properties of 
the scene are quasi invariant under perspective projection, 
and therefore they do not change too much with the view- 
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ing position. We propose and implement a matching al- 
gorithm which explicitly takes into account both these 
pieces of information: metric constraints and structural 
(descriptive) similarities between the left and right im- 
ages. This algorithm constructs a graph and then performs 
a graph search in order to find the best available sets of 
mutually compatible left-to-right assignments. 

A. Approaches to Stereo 
Previous approaches to the stereo correspondence prob- 

lem have attempted to take into account various pieces of 
knowledge in order to simplify the search. See [6] for a 
discussion concerning research in stereo vision performed 
before 1982. More recently, image features have exten- 
sively been used as a basis for stereo matching. We briefly 
review the constraints that are used in conjunction with 
image features in order to solve for the stereo correspon- 
dence problem. 

The dimensionality of the search space can be reduced 
from two dimensions to one dimension by observing that 
for any point in one image, its potential matching points 
in the other image must lie along a line: this is the epi- 
polar constraint, a geometric property available with the 
stereo sensor whenever it is properly calibrated. Further- 
more, opaque surfaces impose an ordering constraint 
along corresponding epipolar lines. The ordering con- 
straint has been used in various ways, i.e., [4], [17] and 
has been thoroughly studied in [22]. The gradient of the 
disparity (the disparity being defined as the difference in 
position between the two images of a projected space 
point) is directly related to the smoothness of the scene 
surfaces. If one deals with smooth surfaces, the disparity 
will vary smoothly. The smoothness of disparity con- 
straint is used in most of the existing techniques. Edge- 
based matching making use of multiple scale representa- 
tion is proposed by Grimson [ 131. Eastman and Waxman, 
[ 1 l] suggest to include correspondence and reconstruction 
into a unique stage using an explicit surface representa- 
tion. A limit on the disparity gradient is used in [19] in 
order to eliminate impossible pairs of matches. 

All these approaches usually assume that the matching 
features are markings on smooth surfaces. The proposed 
algorithms work well especially in such domains as aerial 
photography interpretation and artificially made surfaces 
(random dot stereograms, for example). 

While it seems to be correct to use the smoothness of 
disparity constraint for matching surface markings such 
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as texture edges,  it is not correct to apply this constraint 
when deal ing with discontinuity edges,  i.e., edges  arising 
from surface orientation discontinuities or from depth dis- 
continuities. Indeed, at these locations the scene surface 
is not smooth and  hence  the smoothness of disparity as- 
sumption is not valid any  more. As a  complimentary ap-  
proach we want to investigate ways to perform stereo 
matching without using this constraint. Instead, we want 
to explore image feature relationships. 

A. Our Approach 
In this paper  we propose a  method for matching straight 

lines and  relationships between them. Hence,  we empha-  
size the cooperat ion between feature grouping and  stereo 
matching. 

Straight lines are extracted from each image. These 
lines are grouped on  the premise that some scene prop- 
erties are invariant under  perspect ive projection. Hence,  
an  image is descr ibed in terms of features (straight lines), 
feature attributes, and  relationships between nearby fea- 
tures. The  structural description thus obtained is repre- 
sented by  a  relational graph. W ith this representat ion an  
image is considered globally rather than as  a  list of indi- 
vidual features. 

The  stereo cor respondence problem becomes the prob- 
lem of f inding a  match between the two structural descrip- 
tions, i.e., a  mapping function between elements of the 
two sets of features which preserves the compatibilities 
between feature relations. W e  denote by  I, and  l2 two left 
image features and  by  rl and  r2 two right image features. 
Let a, be  the relation between 1, and  Z2 and  CR2 be  the 
relation between rl and  r2. The mapping function (1, --+ 
rI ), ( Z2  + r2) must satisfy the following condit ions. 

1) The  relation CR, between I, and  Z2 must be  compati- 
ble with the relation a2  between r, and  r2. 

2) The  mapping is one-to-one,’ i.e., each  feature in the 
left image is ass igned a  single feature in the right image. 

3) The  mapping must maximize a  benefit function. 
In order to find such a  mapping function we propose to 

build a  cor respondence graph and  to perform a  search in 
this graph. For each  feature in one  image we compute the 
range of expected geometr ic characteristics for its poten- 
tial assignments in the other image. A certain number  of 
left-feature-to-right-feature pairs is obtained. These pairs 
constitute the nodes  of the cor respondence graph. When-  
ever  two such pairs are compatible, an  arc is built between 
the corresponding nodes.  A stereo matching, or a  map-  
ping function is equivalent to a  set of mutually compatible 
nodes.  Hence,  the stereo cor respondence problem is now 
cast into the problem of f inding maximal cl iques in a  
graph. 

The  largest maximal cl ique in the cor respondence graph 
is associated with the mapping which has  the largest num- 
ber  of feature pair ings and  the largest number  of compat-  
ible relations. Hence,  the largest maximal cl ique should 

be  regarded as  the “best match” [5]. In practice we have 
noticed that among  the many  maximal cl iques detected in 
the cor respondence graph, the largest one  does  not always 
cor respond to the best match. Moreover,  there may be  
several largest maximal cliques. Therefore we have as- 
sociated a  benefit function to each maximal clique. This 
benefit function advantages “large” cliques. The  maxi- 
mal cl ique which maximizes this benefit function (not 
necessari ly among  the largest maximal cl iques) is said to 
be  the best available correspondence.  

One  fundamental  contribution of our  approach is a  tech- 
n ique which allows the construction of the correspon- 
dence  graph from two relational graphs which, in the par- 
ticular context of stereo vision are quite different. This 
discrepancy reflects imperfect similarities between the two 
images due  to occlusions, accidental al ignment, feature 
inversion (local violation of the ordering constraint), and/  
or failures of the feature extraction process. 

Our  approach is best shown on  the following figures. 
Fig. 6  shows two relational graphs obtained from the im- 
ages  of Fig. 5  and  which have to be  matched. Our  algo- 
rithm found 9  solutions corresponding to 9  maximal cli- 
ques  in the cor respondence graph. These solutions are 
shown in Fig. 9. In this case the best solution cor responds 
to the unique largest maximal clique. This solution is 
shown in Fig. 9(a). 

C. Related Work 
Linear segment  matching in conjunct ion with graph 

search is used both by  Medioni and  Nevatia [ 161,  and  by  
Ayache and  Faver jon [3]. However,  these approaches 
have considered image features individually. Relation- 
ships between these features have been  used only weakly. 
Ayache and  Faver jon propose a  method which first selects 
a  small set of left-to-right matches and  second attempts to 
grow this match to include nearby features2 with the heu-  
ristic that for neighbor ing image features the disparity 
varies only slowly. This method is implemented as  a  
depth-first tree search associated with a  hypothesize-and- 
test strategy. The  method is elegant because it avoids ex- 
haust ive search but there is no  guarantee that it f inds nei- 
ther the largest nor  the best set of available matches. The  
method of Ayache and  Faver jon matches straight lines. 
Our  method matches straight lines and  relationships be-  
tween them. These relationships are useful both for stereo 
(as advocated in this paper)  and  for constructing a  sym- 
bolic scene description and  hence  they need  to be  ex- 
tracted anyway.  

Lim and  Binford [ 151  and  Herman and  Kanade [ 141  per- 
form junction matching. The  space of potential matches 
contains a  set of nodes  where each node  represents a  left- 
junction-to-right-junction assignment.  In [14] each  node  
has  a  cost associated with it. To  arrive to a  unique set of 
junction matches, the set of potential matches is searched 
for a  minimum-cost path. The  cost of a  path is the sum of 

‘In fact, an  exception to this uniqueness condit ion is al lowed as it is 
explained in Section IV-B. 

‘In Ayache and Faverjon’s work, 
are close to each other. 

nearby features means features that 
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its nodes’ costs. The implemented algorithm does not 
guarantee to result in the lowest cost path. 

Moreover, the stereo matching method proposed in [ 141 
takes into account geometric knowledge available with the 
processed scenes. For example, the fact that in urban 
scenes the buildings’ roofs tend to be parallel to the ground 
plane, while walls tend to be perpendicular to this plane. 
Our stereo matcher is more general since it does not make 
use of this kind of domain-dependent knowledge. 

These stereo techniques do not explore constraints that 
allow to assert mutual compatibilities between matches. 
With respect to these approaches we use a larger set of 
feature relationships and we build a correspondence graph 
in which a node represents a left-line-to-right-line assign- 
ment; the belonging of a line to a feature group is used to 
explicitly establish direct compatibility (or incompatibil- 
ity) between nodes. 

Recently, a structural stereo matching method was de- 
scribed by Boyer and Kak [9]. They propose a cost func- 
tion derived from information theory which they use in 
conjunction with heuristic tree search. They obtain good 
results with matching skeletal primitives extracted from 
elongated objects. Although they define structural match- 
ing mathematically they never make explicit what they 
really mean by structure from a computer vision view- 
point and it is not clear what structural properties are to 
be used. 

In the past, feature grouping and maximal cliques have 
been used for matching a geometric model to either 2-D 
data [ 11, [7] or 3-D data [8]. We appear to be the first to 
apply maximal-clique graph search to stereo matching. 
However, we do not have the luxury of a perfect geomet- 
ric model. In our case, no rigidity assumption is made on 
the relational structures to be matched as is the case with 
the object recognition methods mentioned above. 

D. Paper Organization 
The remainder of this paper is organized as follows. 

Section II describes the monocular analysis which is ap- 
plied simultaneously to both images. Section III describes 
the geometry of the stereo sensor and the constraints as- 
sociated with it. Section IV describes a graph represen- 
tation as well as the construction of this graph that is well 
suited for stereo matching. Section V describes an imple- 
mentation of the proposed algorithm and shows some ex- 
perimental results obtained with indoor and outdoor 
scenes. Finally, Section VI discusses the main advantages 
and-limitations of the proposed method and indicates di- 
rections for future work. 

II. FEATURE EXTRACTION, GROUPING, AND 
MONOCULAR DESCRIPTION 

This section presents the monocular structural descrip- 
tion used by the stereo matcher, as well as how this de- 
scription is extracted from the raw intensity data. 

An image array contains two pieces of information: 
Light intensity changes and local geometry. A rich de- 
scription must incorporate explicit representations of both 

these pieces of information. Feature extraction is a key 
process for many vision algorithms. Surprisingly enough, 
feature grouping has somehow been neglected. In partic- 
ular, as it was outlined in the previous section, only few 
stereo matching techniques use grouping. We believe that 
feature grouping is essential because it reduces the com- 
binatorial explosion of the search space associated with 
the stereo correspondence problem. 

It has long been argued that stereo correspondence al- 
gorithms should not rely on the presence of monocular 
cues. However, in practice any image, including random 
dots, does contain some kind of features. One has to se- 
lect the most appropriate features for matching. On one 
hand, very low-level features such as isolated edges in- 
crease the complexity of the search process. On the other 
hand, high-level features produce only a sparse depth map 
and limit the domain of applicability of the method to 
those scenes containing the selected features. Straight 
lines seem to be a good compromise and hence they have 
been selected as candidates for matching. Moreover, 
straight lines naturally incorporate the figural continuity 
constraint. 

Our analysis starts with a classical line detection pro- 
cess: Edge detection, edge linking [lo], and piecewise 
segmentation [ 181. This analysis is quickly expanded to 
include the adjoining regions and the connecting lines. 
The process of extracting these local image configurations 
is referred to as feature grouping and is described in detail 
in [20]. 

Each line has to adjoining regions, one on its left and 
one on its right. Such an adjoining region is a stripe along 
a straight line. The way such a stripe is detected guaran- 
tees that there is no edge (and hence no line) inside it. 
The detection of these stripes allows us: 

1) To compute a contrast associated with each line. 
This is a weak property (just like any other raw photo- 
metric feature) especially with respect to the presence of 
occlusions which may occur in the scene. Nevertheless, 
if properly combined with other constraints it allows the 
elimination of very unlikely match pairs; 

2) To orient the line up to 360”; and the most impor- 
tant 

3) To establish a list of lines immediately on the left 
side of the current line and another list of lines immedi- 
ately on its right side. 

These stripes are detected as follows. Consider a point 
belonging to the line under analysis. From this point, a 
pixel-by-pixel displacement is performed in a direction 
perpendicular to the line. This is done to the left and to 
the right, until an edge point is encountered. This proce- 
dure is repeated for every line point. Each stripe thus de- 
tected is bounded by the line itself on one side and by a 
set of edges on the opposite side. Each stripe is also char- 
acterized by the mean value of its pixels’ gray-levels. The 
line can now be oriented relatively to these stripes such 
that the darker stripe lies on its left side and the brighter 
stripe lies on its right side. This local structure is best 
shown in Fig. 1. 
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Fig. 1, A line and the detection of its adjoining regions (left), and the final 
local configuration associated with a line (right). 

Fig. 2. Edges extracted from curved objects (left) and the associated struc- 
tural description (right). The leff-ojand rig/r-ofrelations are not shown. 

Let us consider now the two sets of edge points just 
defined, i.e., bounding the left and right stripes, respec- 
tively. They may belong to lines previously found by the 
line detection process. Consequently, each line has a left 
stripe and associated with it, a set of left lines. Similarly, 
it has a right stripe and associated with it, a set of right 
lines. Notice however that one of these sets may be empty 
because the line is close to the image border. 

Each line has two sets of connecting lines (two junc- 
tions) which are associated with each one of its ends. See 
Fig. 1. A junction is defined as a set of at least two lines 
passing through a common point. Junction detection is 
thoroughly described elsewhere, [20]. Within a junction, 
two collinear lines play an important role. Collinearity is 
invariant under projection and hence it will not vary with 
the changing viewing position: It is therefore an interest- 
ing property to be used in stereo matching. 

In conclusion, the set of image lines may be represented 
by a set of nodes, where each node represents a line with 
its properties-position, orientation, length, and contrast,3 
and by a network of pointers, where each pointer repre- 
sents a relation between two nearby lines. These relations 
are left-of, right-of, collinear-with, and same- 
junction-as. It is worthwhile to notice that these relations 
are symmetric. We call this network a monocular descrip- 
tion. This description partially captures the image struc- 
ture. As an example, Fig. 5 shows two sets of lines (the 
arrows indicate the orientation), and Fig. 6 shows the 
structural descriptions derived for these sets of lines in 
terms of the relationships described above. In theory, this 
structure should not change too much with the viewing 

‘The contrast is defined by the difference between the mean gray-level 
values associated with the left and right stripes. 

point. In practice, for various reasons this is not true. It 
is therefore desirable to devise a matching strategy allow- 
ing for slight left/right dissimilarities. 

Finally, Fig. 2 shows that the structural description ad- 
vocated in this paper is not limited to the blocks’ world. 

III. GEOMETRIC CONSTRAINTS FOR MATCHING 

In this section we consider the geometry of the stereo 
sensor. For a line in one image we determine the range of 
possible positions and orientations of its potential matches 
(assignments) in the other image. Concerning the posi- 
tion, a constraint is derived from the geometry of the sen- 
sor. Concerning the orientation, we show that the results 
obtained by Arnold and Binford [2] can be extrapolated 
to deal with our more complex sensor geometry. 

In the sequel we consider a line in the left image and 
derive constraints for its matching lines in the right im- 
age. This left-to-right process might well be applied right- 
to-left. 

The geometry of the sensor is shown in Fig. 3. There 
are two coordinate frames associated with the two cam- 
eras. The z-axis is the optical axis and the image plane is 
parallel to the xy-plane at a distancef = 1 from the origin. 
The right frame differs from the left frame by a rigid 
transform which is composed of a rotation of angle 4 
about the common y-axis and a translation of vector 00’ 
(the sensor’s baseline). This transform can be represented 
by a four by four matrix, A (homogeneous coordinates): 

cos t$ 0 sin $I b, 

0 100 
A= 

c ) 

’ -sin 4 0 cos 4 b; 
(1) 

0 001 

We consider a scene point P and let X, Y, Z be its left- 
frame coordinates. Similarly, X ’ , Y’ , Z ’ are its coordi- 
nates in the right frame. The two sets of coordinates are 
related by the formula: 

X’ X 

Y’ Y i) 0 Z’ = A z’ (2) 

1 1 
P projects onto the left image plane at p with coordinates 
x = X/Z, y  = Y/Z, and z = 1. Similarly, it projects onto 
the right image plane at p’ with coordinates x ’ = X ‘/Z ‘, 
y’ = Y’/Z’, and z’ = 1. By replacing X’, Y’, and Z’ by 
their expressions given by (2) and noticing that X = XZ 
and Y = yZ, we obtain the position of p’ as a function of 
x, y, Z, and the sensor’s parameters 4, b,, b;: 

x, = Z(x cos 4 + sin 4) + b, 
Z(cos qb - x  sin 4) + b, (3) 

and 

ZY 
” = Z(COS 4 - x  sin 4) + b,’ (4) 
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0 0’ Fig. 3. The geometry of the two cameras. 

A. The Epipolar Constraint 
We briefly recall the analytic formulation of the epi- 

polar constraint. We eliminate Z in between (3) and (4). 
For a fixed left point p, and for a given sensor geometry 
we obtain a linear relation between x’ and y’: 

yb,x’ + (b,(cos 4 - x sin 4) 

- bz(x cos 4 + sin 4))~’ - yb, = 0. (5) 
This is the locus of the right image matches for a left im- 
age point and is called the right epipolar line. Similarly, 
one can determine a left epipolar line. Geometrically, this 
line is the intersection of the right image (or left image) 
with the plane defined by the points p, 0, and 0’, i.e., 
the epipolar plane. 

B. The Position Constraint 
Now we analyze to what extent the location of p’ may 

be constrained to belong to a certain segment along the 
right epipolar line associated with a fixed left point p. This 
is best shown in Fig. 4 which is a top-view of the epipolar 
plane passing by p, 0, and 0’. Necessarily, both P and 
p’ belong to this plane. P is constrained to lie along the 
line Op. As P moves along this line, p’ must lie some- 
where in between a’ and q’, where a’ lies onto the left 
border of the right image and O’q ’ is parallel to Op. The 
position of q’ can be derived analytically by letting Z tend 

Fig. 4. A top view of the epipolar plane defined by p. 0, and 0’. 

C. The Orientation Constraint 
We consider a scene line passing through P with unit 

direction vector V. The coordinates of V are V,, VY, V, 
and Vi, V;, Vi, respectively. Let ZJ and ZJ’ be the left and 
right projections of V. The left projection is given by the 
formula 

v=kx(Vxis) (6) 
where k is the unit vector associated with the z-axis. We 
obtain for the image coordinates of v: 

u, = zv, - xv, = Z( v, - XV,) (7) 

z; = zvy - Yv, = Z( vy - yV,) (8) 

u, = 0. (9) 

The image slope of v  is the ratio of z; and v,: 

vy - Yv, 
tan e = ____ 

v, - xv, (10) 
where 8 is the angle made by ZJ with the x-axis. Similarly 
we can express the slope of v’, i.e., tan 8’ as a function 
of x  ‘, y’ , Vl, V; and Vi. Using matrix A, Vi, Vi, V; are 
expressed in terms of V,, VY, and V, . Replacing x’ and y ’ 
by their expressions given by (3) and (4) we finally obtain 
for the orientation of v’: 

tan 8’ = 
tan e (V, - XV,) cos 4 + (yV, - XV,) sin 4 + $ VY 

V, - XV, + V, $ cos 4 + 2 sin $I 
( > ( 

+ V, : sin 4 - $ cos 4 
)’ 

(11) 

to infinity in (3) and (4). Hence, the segment a ‘q ’ is the 
locus of possible positions of p’. When p is close to a, 
the segment a ‘q’ has its shortest length and when p is 
close to b, the segment a ‘q’ is as long as a ‘b ‘. This sug- 
gests that there are intrinsically less potential matches for 
left image points that are close to the left border than for 
points that are close to the right border! This is equally 
true for right image points close to the right border and it 
will have an important implication on the global strategy 
to be used for stereo. 

This formula shows that the relation between 8’ and 0 
is parameterized by the position of the line in the left im- 
age, x, y, the orientation of the line in the scene V,, VY, 
and V,, the depth Z, and the parameters of the sensor b, , 
b,, and 4. The disparity in orientation ( 8’ - 8 1 is the 
smallest for x  + 0, y  -+ 0, and Z + 00: 

tan 8’ = tan e cos 4. (12) 
This equation determines a lower bound for the dispar- 

ity in orientation. Let us try to determine an upper bound 
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for this disparity. The bound thus determined will corre- 
spond to the most defavorable case-the line is the closest 
to the sensor. Without loss of generality we consider the 
case x = 0, y = 0, that is, the position of the line in the 
left image is around the optical axis. Our sensor has the 
following characteristics: 4 = 5.5”, b, = 2.5 cm, b, = 
1.6 cm. 

We can now define a continuous function which maps 
points over the domain I’, X I’? X Vz to pairs of image 
angles 19’ X 19. Given this mapping, we are able to trans- 
late probability distributions in one domain to the other 
domain. Assuming that the orientations of the scene lines 
have a uniform distribution (all orientations have equal 
likelihood) we want to establish whether some combina- 
tions of 8’ and 0 are more likely than others. Arnold and 
Binford [2] determined this probability distribution func- 
tion. Their experiments led to the following results: 

l For 4 = 0, b, = 0, and b,/Z = 0.7 they obtained a 
probability distribution function with a narrow saddle 
along the line 13’ = 8 and half width at half maximum 
(hwhm) at the center was 30”. 

l For 4 = 0, bZ = 0, and b,/Z = 0.07 the saddle was 
even narrower and hwhm at the center was 3’. 

0 0’ = 0 is the most likely combination. 
In our case b,T/Z = 0.7 corresponds to Z = 35 cm which 

is very close to the sensor. Given the characteristics of 
our sensor we can extrapolate Arnold and Binford’s re- 
sults. Hence, we have decided to bound the disparity in 
orientation by 0” and 30”. 

IV. MATCHING AS GRAPH SEARCH 

The main difficulty of stereo matching is that the two 
relational graphs derived from the two images are not 
identical. Indeed, the monocular structure described in 
Section II may change with the viewpoint for several rea- 
sons. 

l A scene line visible in one image may be partially 
seen or may not be seen at all in the other image. This is 
due to occlusions, photometric variations between the two 
images, or to failures of the feature extraction process. 

l A line in one image may appear broken in several 
pieces in the other image. 

l Two lines separated in space may form a junction or 
be collinear in one image, and not in the other image. 
This is due to accidental alignment. 

l The ordering constraint is sometimes violated. This 
may be due to transparent surfaces or to thin objects such 
as the legs of a chair. 

The consequence of representing each image by a re- 
lational graph is that the stereo correspondence problem 
becomes the problem of finding a match between these 
two graphs. Since, for the many reasons listed above, 
these two graphs are not identical, the problem of match- 
ing them is a double subgraph isomorphism problem [5]. 
That is, the problem is to find all isomorphisms between 
subgraphs of a graph and subgraphs of the other graph. 
An isomorphism is a mapping function between the nodes 

of the graphs which preserves internode compatibility. 
Such a mapping function has been defined in Section I-A. 

Given two relational graphs we construct a correspon- 
dence graph (also called association graph) as follows. 
For each line in the left relational graph and in the right 
relational graph we construct a left-line-to-right-line as- 
signment (node) in the correspondence graph. Then we 
connect two assignments whenever they are compatible. 
The best match could well be taken to be the largest set 
of assignments that were all mutually compatible under 
the relations. In the correspondence graph this is just a 
totally connected set of nodes-a clique. A clique in a 
graph is a completely connected subgraph, i.e., each node 
in the clique is directly connected to all the other nodes 
in the clique. A maximal clique is a clique that cannot be 
extended to include other nodes of the graph. The largest 
maximal clique is the maximal clique containing the larg- 
est number of nodes. 

Thus the best matches are determined by the largest 
maximal cliques in the correspondence graph. The advan- 
tage of forming this graph is that it is a simple pure graph- 
theoretic structure which is amenable to pure graph-the- 
oretic algorithms such as clique finding [5]. Nevertheless 
graph construction is domain-dependent and it constitutes 
the main body of this section. 

The graph construction method that we suggest starts 
with node building. Each node is classified according to 
its expected utility. This classification allows the elimi- 
nation of unlikely assignments without any further graph- 
search process. Arc building takes into account both com- 
patibilities and incompatibilities between nodes. One ma- 
jor difficulty with such a structural approach is the fact 
that some relations are missing from the relational graph. 
This is because the feature grouping process previously 
described is not perfect and because it is too costly to 
establish the relation between any two image features. 
Hence, it is not guaranteed that totally connected sets are 
systematically produced. In order to overcome this diffi- 
culty we suggest and implement a compatibility propa- 
gation technique. 

As already mentioned, the notion of best match is as- 
sociated with the largest maximal clique in the graph. 
There may be several largest maximal cliques in a graph. 
In practice we have noticed that a “large” maximal cli- 
que which is not necessarily among the largest ones, may 
sometimes correspond to the best match. Therefore we 
associate a benefit function with each maximal-clique 
candidate. The maximal clique which maximizes this 
benefit is selected as the best stereo correspondence. 

A. Building the Nodes 
The nodes of the correspondence graph are built on the 

basis of the geometric constraints presented in Section III. 
Each node has a benefit associated with it. This benefit 
plays two roles. The first role is to classify the nodes ac- 
cording to their expected utility. The second is to compute 
the benefit of a clique by summing up the benefits of the 
clique’s nodes. 
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We consider a line in the left image. The epipolar lines 
associated with its endpoints define a region in the right 
image. For lines which are almost parallel to their asso- 
ciated epipolar lines, this region is widened “artificially” 
in a direction perpendicular to the line. The potential can- 
didates to be assigned to this line must lie in this region 
and must satisfy the position constraint described in Sec- 
tion III-B. Moreover, for an assignment to be accepted, 
the orientation of the line candidates must lie within the 
limits derived in Section III-C (0’ and 30”). 

The benefit B associated with the assignment thus ob- 
tained captures a measure of similarity between the two 
lines within the assignment. This benefit sums up the dif- 
ference in contrast, the difference in length, and the dif- 
ference in orientation-e. g . , Section III-C, and the differ- 
ence in the number of relations that exist in between each 
line and the nearby lines. B is given by the formula 

B = l/4 min (G C,) 
ncde max (Cb C,) 

+ min (b, 4) 
max (b, L,) 

+ min (4, 0,) + min (4, N,) 
max (4, e,) max (N, N,) ’ 

(13) 

The number of relations between each line and its 
nearby lines is an important measure because it reflects 
the local density of the structural description. As already 
mentioned, the arcs in the correspondence graph are pro- 
duced directly by comparing interline relations, and in- 
directly (by propagation) whenever these relations are 
missing. A clique with many arcs produced directly is a 
better clique than one with many arcs produced indirectly. 

Experimentally we noticed that for a given left line, its 
assignment classified first using this benefit is the correct 
one in 75 percent of the cases. The assignment classified 
second is the correct one in 15 percent of the cases. Hence, 
the best two candidates contain 90 percent of the good 
assignments. 

B. Compatibility and Incompatibility 

We consider two assignments, ii/r, and Ij/rb. li and lj 
are lines from the left image and r, and rb are lines from 
the right image. We want to establish a set of rules which 
allows us to assert whether two such assignments are 
compatible or not. These rules are built on the basis of 
similarities between the left and right monocular descrip- 
tions produced by the feature grouping process. Let mi, 
= ii/r, and mjb = lj/rb, We have: 

Rule I (collinearity): m, is-compatible-with mjb if the 
following proposition is true: 

((i =j) and (u # b) and (r, collinear-with rb)) 

or 

((i + j) and (a = b) and (li collinear-with 1,)) 

or 

((i # j) and (u # b) and (Zi collinear-with 4) 

and (r, collinear- with rb)) 
Rule 2 (connectivity): mt, is-compatible-with mjb if the 

following proposition is true: 

(i #j)and(a # b)and 

( Zi same Junction -as lj ) 

and ( r, same junction-as rb) and 

(the angle made by li and lj has the same sign value as the 
angle made by r, and rb). 

Rule 3 (generalized ordering): mi, is-compatible-with 
mjb if the following proposition is true: 

(i # j) and (u # b) and 

(((E, lef-Of$) and (r, left-ofrb)) or ((li right-oflj) 

and (r, right-of rt,))). 
Rule 1 reflects the descriptive property that two colli- 

near space lines are collinear in both images. It also 
embeds the fact that a line in one image may match a line 
in the other image that has been broken into two’or more 
pieces. This is the only exception allowed with respect to 
the uniqueness-of-match constraint. 

Rule 2 reflects the descriptive property that two or more 
lines intersecting in space intersect in both images. 

Rule 3 is a generalization of the ordering constraint. 
Previous work has investigated this ordering constraint in 
conjunction with the epipolar constraint. Here, the order- 
ing is introduced as an inherent consequence of the local 
photometric and topological similarities between the two 
images on the premise that we deal with opaque surfaces. 

To summarize, these three rules express the compati- 
bility between assignments on the basis of three descrip- 
tive properties: collinearity, connectivity, and ordering. 
One may now formulate incompatibility between matches: 

Rule 4 (incompatibility): m, is-incompatible-with mjb 
if the following proposition is true: 

(li, Zj are linked by one relation, and r,, rb are linked 

by a different relation) or 

((i = j) and (a # b) and (r, not-collinear with rb)) or - 

((i # j ) and (u = b) and (r, not-collinear- with rt,)) 

This rule also guarantees uniqueness of assignments out- 
side the context of Rule 1. 

To those, one may add a fifth rule necessary for estab- 
lishing compatibility for node pairs whenever there is no 
direct relation: 

Rule 5 (propagation): mi, is-compatible-with mjb if 
there is a match mkc = lk/rc such that the fOIlOWing prop- 
osition is true: 

(mt, is-compatible- with mk,-) 
and ( mkc is- compatible _ with mjt, ) 
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To conclude, the first four rules express the compati-  
bility/incompatibility between matches establ ished on  the 
basis of the direct (measurable) relations between one  fea- 
ture and  its nearby features. The  fifth rule extends the lo- 
cal compatibilities to larger structures. 

C. The Matching Strategy 
W e  consider an  example and  show how the stereo cor- 

respondence problem is actually cast into a  graph repre- 
sentation and  how the best available solution is found. 
Fig. 5  shows a  set of six left image lines (1,-l,) and  a  set 
of nine right image lines (r,-ri). Fig. 6  shows the left and  
right associated structural descriptions. The  left and  right 
structures to be  matched are not identical. Part of the 
structure is occ luded on  the left side. Some lines are bro- 
ken into pieces in one  image and  not in the other image. 
Clearly, the two structures are not isomorphic. W e  de-  
scribe a  left-to-right matching process: 

1) Individual nodes  are built. This is done  by  estab- 
lishing a  list of matches for each  line in the left image. 
The  resulting nodes  are shown in Fig. 7, where mij cor- 
responds to li being matched with rj. A benefit B is com- 
puted for each  node.  This benefit takes the value 1  for a  
perfect match and  tends to 0  as  the dissimilarity increases. 
Moreover,  for each  left line, its associated assignments 
are classified on  the basis of the value of B. Among these 
nodes,  those with a  benefit which falls below a  locally 
computed threshold are eliminated. In any  case, the best 
two nodes  are always kept in the graph. 

2) Rules 1, 2, and  3  are applied. The  arcs linking com- 
patible nodes  are shown in Fig. 7. There are three isolated 
nodes  and  one  connected graph component .  This con-  
nected component  cannot  be  interpreted directly in terms 
of a  stereo cor respondence between the two structures. 
Indeed, one  can easily notice that within this connected 
component  a  left line still has  several right line matches. 
Hence,  the problem of stereo matching cannot  be  cast into 
the problem of f inding connected components  in a  graph.4 
A correct solution may be  found if one  goes  one  step fur- 
ther and  makes explicit the set of nodes  that are not com- 
patible before trying to produce completely connected 
subgraphs.  

3) Incompatibility is detected by  applying the fourth 
rule. First we consider an  example where the relation be-  
tween two lines in the left image is not the same as the 
relation between their matching lines in the right image. 
For example, 1, matches rf and  l4 matches r,. Neverthe- 
less, while II is left-of Z4, rf is right_of re. Hence,  the 
nodes  mlf and  mdc are incompatible. This is best shown in 
Fig. 8. In this f igure the dotted lines link incompatible 
nodes.  

W e  consider a  second example. There is a  relation in 
one  image but there is no  relation in the other image. For 
example l2 matches rR and  Z6 matches r,; Z2 belongs to the 
same- junction-as Z6 but there is no  detected relation be-  

4Searching for connected components is a  linear function of the number  
of nodes and the number  of edges of the graph being examined (2 11. 

Fig. 5. Two images to be  matched. 

Fig. 6. Two structural descriptions to be  matched. The interline relations 
are: left of (I), right of (2), same junction (3), and collinear (4). 

Fig. 7. The graph representation after node building and after applying the 
first three rules. 

tween rg and  r,. This relation was missed by  the feature 
grouping process. The  grouping process misses relations 
for two reasons:  1) grouping is concerned only with 
nearby features, and  2) it is inf luenced by  noise and  it may 
miss relations. 

Therefore, we attempt to group these two features with 
more relaxed parameters than the parameters required 
during initial grouping. In this example, this second at- 
tempt failed and  hence  the relation between nodes  m21: and  
mGa remains ambiguous.  This ambiguity will be  solved by  
the next step of the matching process. 

4) Rule 5  is applied. The  nodes  are considered pair- 
wise: if the pair is compatible or if it is incompatible, the 
graph is left unchanged.  Otherwise, the propagat ion rule 
is applied. 

5) Maximal cl iques are searched.  This is done  using an  
algorithm descr ibed by  Bolles and  Cain [7]. Fig. 9  shows 
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Fig. 8. The incompatible nodes found after applying the fourth rule. 
tial in complexity [7], [5]. One way to increase efficiency 
is to maintain the number of nodes and arcs in the graph 
as low as possible. This may be done through detecting 
all possible incompatible nodes as described above. The 
detection of incompatible node pairs inhibits the creation 
of new arcs when the arc propagation rule is applied. 
Aside from the fact that efficiency is increased, this will 
reduce the chances of detecting false matches. Indeed, in- 
direct compatibility created by propagation does not re- 
flect measured image properties and hence, false matches 
tend to appear when this fifth rule is applied abusively. 
Hence, the detection of incompatibilities appears to be a 
key process. 

c. d. 

V. COMPUTATIONAL EXPERIMENTS 

C’ 
bL4 t 

The stereo matching strategy just described has been 
applied to a series of image pairs obtained with two cam- 

3- eras mounted on the INRIA mobile robot. Calibration data 
e. f. are available with these image pairs [ 121. The images rep- 

I, 

resenting office scenes are shown in Figs. 10 (Office 1) 

+’ 4 t 
and 17 (Office 2). The lines extracted from these images 
are shown in Figs. 11 and 18. The monocular descriptions 46 resulting from the feature grouping processes are not 3 shown. It is not realistic to apply the matching strategy 

g. h. directly to the entire image structures. Instead, we apply 
it locally to windows. A global match is obtained by ap- 
plying the strategy to a partitioning of the images in terms 
of windows. Finally, the stereo matcher has been applied 
to an image pair representing a building roof, e.g., Fig. 
21. The straight lines extracted from these images are 
shown in Fig. 22. 

The evaluation of a maximal clique is simply the sum of 
its individual nodes’ benefits 

Bclique = c 8v3de. (14) 
In the example described here, the best match corresponds 
to the unique largest maximal clique found in the corre- 
spondence graph. 

D. Complexity 
The complexity of the graph building process is pro- 

portional to the number of node pairs. One way to reduce 
this complexity is to carefully take into account the geo- 
metric and photometric constraints in order to eliminate 
as many incorrect left-line-to-right-line matches as pos- 
sible. 

The process of listing all maximal cliques in an undi- 
rected graph is known to be an NP-hard problem. Hence, 
all known algorithms to list maximal cliques are exponen- 

Fig. 9. All the matches corresponding to nine maximal cliques. The best 
solution (a) is the unique largest maximal clique found in the graph. A. Local Matching 

We apply the matching strategy to two 64 by 64 win- 
all the matches corresponding to nine maximal cliques dows and to one 32 by 32 window. These windows are 
found by this algorithm when applied to the example just shown in Fig. 10 (left). Fig. 12 (left) shows 50 lines be- 
described. longing to the first window. Fig. 12 (right) shows the as- 

6) Each maximal clique is evaluated and the best one signments selected from the right image on the basis de- 
with respect to this evaluation (not necessarily the largest scribed in Section IV-A. There are approximately 3 right 
one) is equivalent to the best available stereo matching. assignments for each line in the window. Next a graph is 
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Fig. 10. The first image pair. The three windows on which the local 
matching is demonstrated are shown on the left image. 

Fig. 11. Lines extracted from the above images 

Fig. 12. First example: candidates for matching. 

built. After applying the five arc construction rules, we 
obtain a  graph with 89  nodes  and  1467  arcs (221 node  
pairs were found incompatible). Maximal-cl ique search is 
performed. Fig. 13  shows the best cor respondence (35 
left-line-to-right-line assignments) selected out of 4006  
maximal cliques. This matching process (graph construc- 
tion and  search) took 174  seconds on  a  1  l/780 VAX. 

W e  appl ied the same strategy to the two next windows. 
In the second window there are 34  lines. The  final g raph 
has  74  nodes,  804  arcs and  307  incompatible node-pairs.  
The  best cor respondence has  33  left-line-to-right-line as- 
s ignments selected out of 9  maximal cliques. See Fig. 14. 
This matching process took 14.5 seconds.  One  may notice 
that the computat ion time depends  neither on  the window 
size nor  on  the number  of lines in the window. It depends  
on  the local image structure and  on  the correctness with 
which this structure is detected. Table I summarizes the 
main results. 

The  final local matching example is shown in Fig. 15  
and  corresponds to a  32  by  32  window. In this case we 
obtain two disjoint graphs and  hence  two disjoint sets of 

Fig. 13. First example: the result of matching (35 lines). 

Fig. 14. Second example: the result of matching (33 lines). 

d  1  
L  
1 

fi 
I 

Fig. 15. Third example: the result of matching (10 lines). 

Fig. 16. The matched lines for the first image pair. 

maximal cliques. The  best cor respondence comprises a  
four-node and  a  six-node maximal cliques. 

B. Global Matching 
W e  consider an  image pair and  a  partit ioning of the left 

image in terms of windows. Our  current image size is 256  
by  256  pixels and  the current window size is 64  by  64  
pixels. These windows are scanned one  by  one.  Follow- 
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TABLE I 
LOCAL M-\TCHIVG 

Local Matching W m d o w  I Window 2  

Wlndou sire 
No. left lines 
No. nodes 
No. arcs 
No. maximal cliques 
No. tinal aaaignments 
CPU time (seconds) 

Fig. 17. The second Image pair. 

Fig. 18. Lines cxtractcd from the second image pair. 

ing the remark that the left side of the left image has  less 
intrinsic matching candidates than its right side (Section 
III-B), the left image is scanned top-to-bottom and  left- 
to-right. 

The  global matching strategy can be  paraphrased as  fol- 
lows. All the lines crossing the current window are con- 
s idered and  the right line assignments are selected among 
the right lines that have  not yet been  included in a  match. 
The  graph associated with this set of assignments is built 
and  all the maximal cl iques are searched.  The  maximal 
cl ique best suited to represent the local stereo correspon- 
dence  is selected. 

Notice that with this approach a  line may belong to two 
(or more) adjacent windows and  hence  it may have two 
different assignments:  one  assignment within the best 
maximal cl ique in one  window and  another  assignment 
within the best maximal cl ique in the other window. These 
conflicts occur  only for less than 10  percent of the lines 
which belong to several windows. W e  solve this type of 
conflict by  selecting the assignment associated with the 
best cor respondence.  

This global matching strategy has  been  appl ied to the 
three image oairs shown in Fies. 10. 17. and  21. In the 

Fig. 19. The matched l inea for the second image pair 

Fig. 20. The unmatched lines for the second image pair. 

Fig. 21. The third image pail 

first example (Office l), starting with 425  left l ines and  
44  1  right lines, the algorithm found 295  left-line-to-right- 
line assignments and  9  conflicts. It successfully matched 
70  percent of the lines in 26  minutes, e.g., Fig. 16. In the 
second example (Office 2), starting with 328  left l ines and  
316  right lines, the algorithm found 197  assignments and  
6  conflicts in 6.5 minutes, c.f. Fig. 19. The  unmatched 
lines are shown in Fig. 20. The  unmatched lines are either 
too short to be  significant or visible on  one  image and  
missing in the other image. In the third example (Roof) 
starting with 101  left l ines and  122  right lines (Fig. 22)  
the matcher found 78  assignments and  8  conflicts. Fig. 23  
shows the result of matching. In this f igure matched lines 
have identical labels. For example, line 25  in the left irn- 
age  matched two collinear lines (both labeled 25)  in the 
right image. These results are summarized in Table II. 

VI. DISCUSSION 

In this paper  we suggested a  method to solve for the 
stereo cor respondence problem. The method consists of 
extracting local image structures and  of matching similar 
such structures between two images. Previous approaches 
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Fig. 22. The lines extracted from the roof images 

Fig. 23. The matched lines for the roof images 

TABLE I1 
THE GLOBAL MATCHING 

Global Matching Office 1 Office 2 Roof 

Image size 256 x 256 256 x 256 240 x 240 
No. left lines 425 328 101 
No. right lines 441 316 122 
No. matches 295 197 78 
No. bad matches 4 2 8 
No. missed matches 26 36 15 
No. conflicts 9 6 8 
CPU time (minutes) 26.0 6.5 2.0 
Improved time 4.4 2.0 0.3 

have concentrated on matching individual features with- 
out exploring the constraints available with the relation- 
ships between them. 

The matching itself is carried out by building a graph 
(an interpretation space) and by searching for the maximal 
cliques the best suited to represent a correspondence be- 
tween the two images. This process is equivalent to look- 
ing for the best subgraph isomorphism between two re- 
lational graphs. 

We propose an algorithm which uses straight lines and 
their relationships. Straight lines should be regarded as 
simple generic features. The method can be easily ex- 
tended to other kind of features with their specific rela- 
tionships. The matching itself can be utilized in the con- 
text of other problems such as the problem of matching 
an object model with image data. 

The graph theoretic algorithm that we use guarantees 
that all the maximal cliques are found. This exhaustive 

search explains both the quality of the results and the rel- 
ative slowness of the method; it should not be compared 
to heuristic search methods. We prefer this algorithm be- 
cause it allows an indepth analysis of the matching prob- 
lem. One may solve for the maximal-clique finding prob- 
lem using heuristics. As an example, we experimented a 
simple heuristic which gave results comparable to ex- 
haustive search and which can be paraphrased as follows. 
The nodes of the correspondence graph are classified ac- 
cording to the number of their directly connected nodes. 
This strategy augments the chances of finding the largest 
maximal cliques before exploring the entire search space. 
Hence, one can stop the clique finding process once the 
algorithm has found a significantly large number of max- 
imal cliques. The last line of Table II (improved time) 
lists the computation times obtained with this heuristic.5 

Surprisingly enough, the method works well even if the 
images are “weakly” structured. The method fails to find 
the correct match when the real situation does not corre- 
spond to a situation predicted by the algorithm: violations 
of the orientation constraint, ordering constraint, acciden- 
tal alignments, etc. 

Our method is well suited for matching discontinuity 
edges and hence only a sparse depth map may be re- 
covered. Therefore it should not be regarded as the unique 
way to solve for the stereo correspondence problem. We 
believe that it could be beneficial to combine this method 

‘All the computation times mentioned in this paper are those obtained 
with a 111780 VAX. 
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with other methods which make use of different image 
cues such as texture, chromatic, and shading information. 

We also plan to devise and implement a reconstruction 
procedure which will take into account the image struc- 
ture and which will produce a 3-D description of the scene 
in terms of both a 3-D wireframe and piecewise continu- 
ous surfaces. The scene description thus obtained may 
constitute the input of higher level visual and action tasks. 
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