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The perspective n-point (PnP) problem is the problem of finding the position and orienta-
tion of a camera with respect to a scene object from » correspondence points. In this paper we
propose an analytic solution for the perspective 4-point problem. The solution is found by
replacing the four points with a pencil of three lines and by exploring the geometric constraints
available with the perspective camera model. We show how the P4P problem is cast into the
problem of solving a biquadratic polynomial equation in one unknown. Although developed as
part of an object recognition from a single view system [6], the solution might well be used for
hand-eye coordination, landmark-guided navigation, and for fast determination of exterior
camera parameters in general. © 1989 Academic Press, Inc.

1. INTRODUCTION

One of the fundamental goals of computer vision is to discover properties that are
intrinsic to a scene by analyzing one or several images of this scene. Within this
paradigm, an essential process is the determination of the position and orientation
of the sensing device (the camera) with respect to objects in the scene. This problem
is known as the exterior camera calibration problem and it has many interesting
applications in robotics and cartography. Important applications in robotics are:
sensor calibration [12], object recognition and localization from a single view
[6, 9, 2], stereo sensor calibration [3], hand /eye coordination [13], and sensory based
navigation [1].

In cartography the problem is to determine the location in space from which an
image or a photograph was obtained by recognizing a set of landmarks appearing in
the image [4].

More formally, the problem may be stated as follows: Given a set of points with
their coordinates in an object-centered frame and their corresponding projections
onto an image plane and given the intrinsic camera parameters, find the transforma-
tion matrix (three rotations and three translations) between the object frame and the
camera frame (see Fig. 1).

This problem is referred to as the perspective n-point problem and is usually solved
using least-squares techniques. An elegant least-squares solution has recently been
proposed [9]. Least-squares techniques require the computation of numerical solu-
tions. For these solutions to be stable a large set of data points are needed which
inherently augments the complexity of the computation. This is not desirable
especially when the computation resides in the inner loop of a recognition /localiza-
tion process [6, 9, 5, 11, 7, 8, 2].
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camera

FI1G. 1. The transformation matrix between an object-centered frame and a camera-centered frame.

For these reasons a certain number of researchers have tried to determine the
minimum number of points necessary to find a solution, and associated with each
set of points they have tried to find a closed form expression of the problem. A finite
number of solutions is available only when the number of points is equal or greater
than 3. The following is a brief review of the suggested solutions.

e Three points. Rives et al. [10] derive a set of three quadratic equations with
three unknowns. These unknowns are the distances from the optical center of the
camera to the three points. In theory there are eight solutions. Fischler and Bolles
[4] notice that for every real positive solution there is a real negative solution and
hence a maximum of four solutions are in fact possible. They derive a closed form
expression, namely, a biquadratic polynomial in one unknown.

e Four points. When the points are coplanar a set of solutions can be found by
considering any three among the four points and verifying the solution with the
fourth point: A unique solution is thus found in [4]. When the points are not
coplanar a closed form expression does not appear to have been derived. Rives et al.
[10] solve a set of six quadratic equations with four unknowns. Fischler and Bolles
[4] attack the problem by finding solutions associated with subsets of three points
and selecting the solutions that they have in common. They provide a geometric
construction which shows that unlike the coplanar case, two solutions may be
available.

e Five points. For five points in general position the strategy mentioned above
can as well be applied: Compare the solutions obtained with subsets of three or four
points.

e Six points or more will always produce a unique solution: For six points we
obtain 12 linear equations which are enough to determine the 12 coefficients of the
transformation matrix, nine for the rotations and three for the translations.
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object frame

camera frame

F1G. 2. The decomposition of the transformation matrix A into two matrices: A, which maps the
image frame into the camera frame and A, which maps the object frame into the image frame.

® Three lines. An alternative solution is to use lines instead of points. Horaud
[6] suggests a constructive method for the case of a pencil of three non-coplanar
lines. Dhome et al. [2] solve for the general case of three arbitrary lines. The
solutions are given by the roots of a polynomial of order 8 in one unknown.

In this paper we derive an analytic solution for the case of four non-coplanar
points, namely a biquadratic polynomial in one unknown. Roots of such an
equation can be found in closed form or by an iterative method. Finding a solution
for four non-coplanar points is equivalent to finding a solution for a pencil of three
non-coplanar lines: The three lines share one of the four points. Notice that these
lines may or may not correspond to physical linear edges in the scene. Finding a
closed form solution for four non-coplanar points is important for several reasons.
First, they provide fewer solutions than three points. Second, the solutions are more
stable when the points are not coplanar, because they do not depend on the relative
orientation of the image plane with respect to the scene plane containing the points.
Third, the computation of such a solution is very fast and therefore it can be
included in a runtime visual process.

2. THE SOLUTION

In order to compute the transformation matrix A of Fig. 1 we decompose it into
two matrices, A; and A,, and we define three frames; a camera-centered frame, an
image-centered frame, and an object-centered frame, e.g., Fig. 2. A, is the transforma-
tion matrix from the image frame to the camera frame and A, is the transformation
matrix from the object frame (Fig. 3) to the image frame. Therefore we have:

A=AA,. (1)

The four non-coplanar points are replaced by a pencil of three non-coplanar line
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FI1G. 3. An “object frame” is associated with the four points.

segments, as shown on Fig. 4. We denote by L;, L,, and L; the unit vectors
associated with the directions of these lines and let /, /,, and /, be the unit vectors
associated with their projections onto the image plane. The three frames used
throughout the paper are defined as follows:

e The object coordinate system is defined as follows (see Fig. 3). L; is the
x-axis. Let P; be a unit vector in the plane perpendicular to L;. The geometric
meaning of P, will soon be made clear. Let P; be the y-axis of the object frame; the

Fi16. 4. The geometry of the 4-point perspective problem.
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z-axis is defined by the cross product L, X P;. It is easy to determine the object
frame coordinates of L, and L,, e.g., Fig. 3:

L, = sine Ly + cosaycos(B + )P, = cosaysin( B + )L, X P, (2)
L, = sina,L, + cosa,cos(B — §) Py + cosa, sin(B — 0)L, X P,. (3)

In these formulas e is the value of the angle between L; and Lj (the projection of
L, onto the yz-plane). The value of the angle between L{ and L} is 28. Notice that
in these formulas 8 is an unknown which will be determined.

® The camera coordinate system has its origin at the focal point F. The z-axis
is the optical axis of the camera and the xy-plane is parallel to the image plane. The
image is at distance f (the focal length) from the origin along the z-axis.

* We define now an image coordinate system which is rigidly attached to the
projections of the object features, i.e., the image features. The projection of L; onto
the image plane is /;. The focal point F and /; define a plane called the interpreta-
tion plane. Notice that this plane is rigidly attached to the camera frame since the
coordinates of /; are measured in this frame. All the spatial interpretations of /,
and hence L, belong to this plane. Let P, be the normal unit vector associated with
this plane. Hence P, mentioned above is the unit vector normal to the interpretation
plane associated with /;. Let J be the point of intersection of the image lines /;, /,,
and /.

We are now ready to define the image coordinate system. The x-axis lies along the
line from F to J. Let k’ be the unit vector associated with this line. &k’ belongs to
the three interpretation planes and hence k' is perpendicular to P,, P,, and P,.
Hence these vectors are coplanar. The image frame is defined by k’, P,, and their
cross product, &’ X P,.

A transformation between any two frames is defined by three rotations and three
translations. Such a transformation may be represented by a 4 by 4 matrix (standard
homogeneous coordinates). There are nine coefficients that specify the three rota-
tions and three coefficients that specify the three translations. Next we determine
the coefficients of A; and A,.

2.1. The Matrix A,

In order to determine the coefficients of this matrix one has to express k', P;, and
k' X P; in the camera frame. We have:

) FJ
[IEJ|
L, Xk
Pp= — (4)
113 X k)]
kKX (I, Xk’ L — (k- 1)k
v KX XKD bt
113 X k7] 15 X k'l

The translational parameters are given by the coordinates of J in the camera frame.
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F1G6. 5. The interpretation plane associated with F and /;.

Matrix A, is

ki (P), (K'xP), (FJ),
ky (Py), (K'xPy), (FJ),
ki (P, (KxP), (F)).|
0 0 0 1

(5)

2.2. The Matrix A,

We recall that A, is the transformation matrix from the object frame (defined by
L,, P,, and L, X Py) to the image frame (defined by k', P;, and k' X P;). From
Fig. 5 which shows the interpretation plane associated with F and /; it is easy to
derive an expression for L;:

L,=cos¢k’ +sinpk’ X P,  with the constraint 0 < ¢ < . (6)

The rotational coefficients of A, are the coordinates of L, in the image centered
frame, i.e., Eq. (6), the coordinates of P, i.e., 0, 1, and 0, and the coordinates of
L, X P;. The translational coefficients are the coordinates of the vector JM, e.g,
Fig. 4. Since the direction of this last vector is the direction of k’, the matrix A, is

cos¢g 0 —sing d

X

_ 0 1 0 0
2 sing O cos¢ O (7)
0 0 0 1

The perspective 4-point problem is reduced now to the problem of determining
values for @ (present in Egs. (2) and (3)), ¢, and d,. Next we derive closed form
expressions for these three unknowns.

2.3. Analytic Expressions for 8 and ¢

Two more geometric constraints are available: L, belongs to the interpretation
plane associated with /;. Hence L, is orthogonal to P;:

L -P =0, (8)
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Similarly, we have
L,-P,=0. 9)

We express L, L,, P, and P, in the image coordinate frame. By applying the
transformation given by (7) to L, and L, (which are given by Egs. (2) and (3)) we
obtain (the k’-components are not relevant for this computation):

Ly =( )k’ + cosa,cos(8 + 8) P,

+(sin ¢ sina; < cos ¢ cos a sin( B + )k’ X P, (10)
L, =( )k’ + cosa,cos(B — 0) P,

+(sin ¢ sin @, + cos ¢ cos &, sin(B ~ 8))k’ X P,. (11)

We have already noticed that P, and P, are perpendicular to k’. We have

P =cosy, Py +siny k' X P, (12)
P, =cosy, P, + siny, k' X P,. (13)

Where vy, and vy, are given by (the unit vector normal to any interpretation plane, P,
can be determined using Eq. (4)):

cosy, =P, - P, (14)
siny, = P - (&xP,) (15)
cosy, = P, - P, (16)
siny, = ‘DL . (fgl;(%) (17)

We inject the expressions of L,, L,, P,, and P, in Eqgs. (8) and (9) and obtain

(cos y, cos B ~ siny, sin B cos ¢ )cos 8
+(—cosy, sin B ~ siny, cos B cos ¢)sin § = —siny, sin ¢ tan g,
(cos y,cos B + siny, sin B cos ¢ )cos 8

+(cos y,sin B ~ siny,cos Bcos ¢)sinf = —siny, sin ¢ tan a,.

We determine sin 6 and cos § as a function of ¢:

sin ¢
cosf = —D—(-\‘—K1 cosd + K,) (18)

sin ¢

sinf = —D—(K3cos¢+K4) (19)
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D =K, — Kgcos® ¢+ K;cos ¢
K, = siny, sin y,cos f(tan o, — tana,)

K, =[-siny, cos v, tan a; + cos y; sin v, tan &, )sin 8

i
I

= siny, siny, sin B(tan oy — tan a;,)

=
!

= (siny,cos y, tan a; — cos y, sin v, tan a, )cos B

K = cos y, cos v, sin 23

=
I

= giny, siny, sin2f

=
I

= sin(y, + y,)cos2B.

Finally, using the constraint cos? @ + sin®§ = 1, we obtain

with

The roots of Eq. (20) can be found in closed form or by an iterative method. For
its real roots verifying the obvious constraint [cos¢$| <1, we can compute 0.
through the formulas given by Egs. (18) and (19). With the values of ¢ and 8 thus
obtained we can compute L, L,, and L, using Egs. (10), (11), and (6). The
following constraint guarantees that L, lies in between FM and FM, (Fig. 5):

All these constraints allow us to eliminate roots which do not correspond to an

Iycos*¢ + Iycos’ ¢ + Iycos’ ¢ + I,cos ¢ + Is= 0

I =K}+ K} +K?

I = 2(K,K, + K;K, + K(K;)

I, = K2+ K}~ K} — Ki + K} + 2K K
I,= —2(K,K, + K;K, — KsK,)

I, =K}~ K}~ K}.

L-(k"xP)>0 fori=1,23.

admissible geometric configuration.

2.4. An Expression for d,

From Fig. 5 it is easy to determine the length of FM. We have

IMM,,|| = |[FMlicos &, + |[FM ]icos 5,
IIFMjsin 8, = [IFM ,jsin 8;.

(20)

(21)

(22)

(23)

P
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From these equations we obtain

FM| = |MM in 24
[EM]| = || 3llm- (24)
We also have
IFJ; X MM,;||
ind, = ———— (25)
IEJs]| MM |
(8 5 ) (FJ X FJy| (26)
Sin + sin = e
2 ST ST S T
Finally, we obtain
M| = [IEJ || |[FJ; X MM | (27)
[[FJ x FJy)| ’
The translation vector d, is
d, = |JM|| = |[FM|| — |[FJ||. (28)

3. SPECIAL CONFIGURATIONS

In the previous section we derived an analytical solution for the perspective
4-point problem in the general case. It is interesting to study some particular
configurations associated with these four points.

3.1. Four Coplanar Points

In this section we show that the general formulation applies to four coplanar
points. This situation corresponds to 28 = (8 + 8) + (8 — 6) = =, e.g., Fig. 3. In
this case we obtain

Ki=K,=K;=Ks=0

L=1,=0

I = K}

I = K- K2 + K2
Iy = —K3.

The solution is given by the equation
Iycos* ¢ + I,cos? ¢ + I = 0. (29)
It is worth noticing that the discriminant of this equation is always positive:

A=1}— 4Ll = (K2 - K2+ K2)' + 4K 3K 2.
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3.2. Three Colinear Image Points

Another particular situation is due to an accidental alignment: The image
projections of three among the four points are colinear. Let us suppose, for instance,
that the image points J, J;, and J; are colinear. In this case the interpretation
planes P, and P, are identical. Hence we have: cosy,; = 1 and siny, = 0. We
obtain -

K,=K,=Kg=0

L =1,=0
I, =KX+ K}~ K?
I, = —2KK,

I;=K2- K} - K.
The solution is given by
I;cos? ¢ + Iycos ¢ + Is = 0. (30)
Real roots exist for this equation if and only if its discriminant is positive:
A = sin? y,(tan® a, — cos?2B) — cos’ v, = 0.

The accidental alignment described here may correspond to a 3-line spatial vertex
being projected onto the image as a T-junction. The result of this section is that
such a T-junction may have a unique 3-dimensional interpretation.

3.3. A Right Vertex

Another particular case occurs when the four points form a right vertex, ie., L,
L,, and L, are mutually orthogonal:

L-L,=0 fori=+j. (31)

In this case a simpler solution than the general case can be derived. Notice first that
Eq. (6) can also be written for L; and L;:

L, =cos¢ k' + sing k' X Py withi=1,2,3. (32)
For notation homogeneity ¢ is replaced by ¢,. We obtain
L,- L= cosdcos ¢, + sing,sing, (P, P;)  fori#]. (33)

We have already mentioned that P;, P,, and P; are coplanar (they are all
orthogonal to k’). Hence the three dot products P, - P; cannot be simultaneously
null. There are three possible situations:

1. P,-P,=0, P,- P;#0, and P2-P3#=O.Weobtajn¢1=¢2=0whichis
impossible because it corresponds to two space points which project onto the image
at the same location, e.g., Fig. 5;
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2. Pp-P,=0, Pp-P,=0,and P,- P, # 0. P, is perpendicular to both P,
and Py, hence they are colinear, |P, - P,| = 1. We obtain

Cos ¢, cosd, = 0 (34)
COS ¢, COS Pp; = 0 (35)
sin ¢, sin ¢; + cos ¢, cos ¢, = 0, (36)

which gives the solutions ¢, = 7/2 and ¢, + ¢, = /2, and
3. P -Pp#0, P - P+ 0,and P,- P, #+ 0. We obtain

tan ¢, = tan %iﬁ (37)
Py - Py
tan ¢, = tan ¢3~2'—5 (38)
Py - P,
Py - P,

(39)

tan’¢, = — )
* (Pl'P3)(P2'P3)

In this case solutions exist under the constraint: (P, - Py)( P - PyY(P, - Py) <0,

4. DISCUSSION

In this paper we derived an analytic solution for computing the exterior camera
parameters from four correspondence points in general positions. This solution is of
the same complexity as for three points and is particularly simple for such
configurations as four coplanar points or four points forming a right vertex. Such an
analytic formulation allows fast numerical computation which is desirable in many
applications such as on line calibration (hand /eye coordination, navigation) and /or
object recognition and positioning from a single view.
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