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I. SUPPLEMENTAL MATERIAL
We provide four appendices that are referenced in the paper.
APPENDIX A
DERIVATION OF THE E-S STEP

In order to obtain the formulae for the E-S step, we start
from its definition in (9):

q(s¢) o< exp (Eq(z,,) log p(st, Zt|y1:t))‘ (20)
We now use the decomposition in (1) to write:
q(s1) o exp (Eq<z,,> log p(y,|st, Zt))p(stkyl:tfl)' 1)

Let us now develop the expectation:
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where 2 denotes the equality up to an additive constant that
does not depend on s;. Such a constant would become a
multiplicative constant after the exponentiation in (21), and
therefore can be ignored.

By replacing the developed expectation together with (12)
we obtain:
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which can be rewritten as:
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(23) is important since it demonstrates that the a posteriori
pdf of s; is separable on n and therefore independent for each
speaker. In addition, it allows us to rewrite the a posteriori pdf
for each speaker, i.e., of s;, as a von Mises distribution by
using the harmonic addition theorem, thus obtaining
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with ., and k4, defined as in (14) and (15).

APPENDIX B
DERIVATION OF THE E-Z STEP

Similarly to the previous section, and in order to obtain
the closed-form solution of the E-Z step, we start from its
definition in (8):

q(zt) o< exp (Eq(St) log p(s¢, zt|y1:t)>7 (25)
and we use the decomposition in (1),
q(z¢) x exp (Eq(St) log p(y,|st, zt))p(zt). (26)

Since both the observation likelihood and the prior distri-
bution are separable on z;,,, we can write:

M
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proving that the a posteriori pdf is also separable on m.
We can thus analyze the posterior of each z;,, separately,

by computing ¢(z¢, = n):

q(2tm =n) xexp (Eq(st) log p(Yem|St, 2tm = n))p(ztm =n)



Let us first compute the expectation for n # 0:

Ey(s,) log p(ytm|st, 2tm = n)
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where for the last line we used the following variable change
§ = Stn, — Wtn and the definition of I; and A.

The case n = 0 is even easier since the observation
distribution is a uniform: E,, ) 1og p(yeml|Sin, 2em = n) =
Eq(s,n) — log2m = —log(27).

By using the fact that the prior distribution on 2z, is denoted
by p(ztm = m) = m,, we can now write the a posteriori
distribution as ¢(z¢ym = n) X T Bemn With:

Btmn = {

thus leading to the results in (16) and (3).
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APPENDIX C
DERIVATION OF THE M STEP

In order to derive the M step, we need first to compute the
Q@ function in (10),
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where each parameter is show below the corresponding term
of the @ function. Let us develop each term separately.

A. Optimizing ky
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and by taking the derivative with respect to k, we obtain:
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which corresponds to what was announced in the manuscript.

B. Optimizing m,’s
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This is the same formulae that is correct for any mixture
model, and therefore the solution is standard and corresponds
to the one reported in the manuscript.



C. Optimizing Kq Now we can effectively compute the marginalization. The
two terms involving s;_j, are:
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Therefore, the marginalization with respect to s;_; yields
the following result:
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where the dependency on kg is implicit in ki1, =
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) Since we have already seen that p(s;_ry1) is also a
where A(a) =dA™(a)/da = (2 — a® + a*)/(1 — a?)% von Mises distribution, we can use the same reasoning to
marginalize with respecto to s;_r1. This strategy yields to
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By denoting the previous derivative as B(xq) = Btﬁd > the recursion presented in the main text.
we obtain the expression in the manuscript.
APPENDIX E
APPENDIX D RESULTS WITH ERRORS

DERIVATION OF THE BIRTH PROBABILITY
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In this section we derive the expression for 7; by computing

the integral (17). Using the probabilistic model defined, we can g mf\: L g0 M"'\\ s wl
write (the index j is omitted): EpE \ \ gso LCIERN
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We will first marginalize s;_r. To do that, we notice that if R, =t 2o
p(s¢_r) follows a von Mises with mean /i;_;, and concentra- 5 R"\. 5 /\ |
tion K4_r, then we can write: ' % '
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P(Ge-rlsi-r)p(si-1) (c) vM-VEM (proposed) (d) ground-truth trajectories
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— M(8tp; fit—1, Rt—1) Io(Re—1.) Fig. 1: Results obtained with recording #3 from Task 6 of the

’ ’ 2o (Di—pky) o (Ri—1) LOCATA dataset. Different colors represent different audio

with sources. .Note that vM-PHD is unable to associate sources with
trajectories.
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where we used the harmonic addition theorem.



