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Person Re-ldentification



Supervised/Unsupervised Person Re-ldentification
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e Supervised Re-ID: large annotated datasets and poor generalization.



Supervised/Unsupervised Person Re-ldentification
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e Supervised Re-ID: large annotated datasets and poor generalization.
e Unsupervised Re-ID: Labeled source S, unlabeled target 7 optimizes re-1D
performance on 7T .
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Clustering and Finetuning

Recent works in Unsupervised Person Re-ID are based on the Clustering and
Finetuning framework (SSG!, MMT?):

Source Pretraining ¢ pretrained on source S in a supervised setting.
Alternates between:

Yang Fu et al. “Self-similarity grouping: A simple unsupervised cross domain adapt. approach for person

re-ID". In: ICCV. 2019.
2Yixiao Ge, Dapeng Chen, and Hongsheng Li. “Mutual Mean-Teaching: Pseudo Label Refinery for
Unsupervised Domain Adaptation on Person Re-identification”. In: /CLR (2020).



Clustering and Finetuning

Recent works in Unsupervised Person Re-ID are based on the Clustering and
Finetuning framework (SSG!, MMT?):

Source Pretraining ¢ pretrained on source S in a supervised setting.
Alternates between:

1 - Clustering step runs clustering on 7 — pseudo-ID labels p” .

2 - Finetuning step ¢ finetuned using p” .

Yang Fu et al. “Self-similarity grouping: A simple unsupervised cross domain adapt. approach for person
re-ID". In: ICCV. 2019.

2Yixiao Ge, Dapeng Chen, and Hongsheng Li. “Mutual Mean-Teaching: Pseudo Label Refinery for
Unsupervised Domain Adaptation on Person Re-identification”. In: /CLR (2020).



Adversarial Domain Adaptation

Adversarial Domain adaptation strategies® train a discriminator distinguishing
target & source domain.
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X,: person detection

3Yaroslav Ganin et al. “Domain-adversarial training of neural nets”. In: JVLR (2016).



Adversarial Domain Adaptation

Adversarial Domain adaptation strategies® train a discriminator distinguishing
target & source domain.
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Domain Generalization*: Adversarial framework — Negative Transfer:
discriminator learns ID-related instead of domain-related features. Happens
when different ID prior distributions across domains.

X,: person detection

3Yaroslav Ganin et al. “Domain-adversarial training of neural nets”. In: JVLR (2016).
“Ya Li et al. “Deep Domain Generalization via Conditional Invariant Adversarial Networks”. In: ECCV. 2018. 4



Contributions

From this analysis we derive the following strategy:

e Camera adversarial-guided clustering: in Clustering step,
viewpoint/camera variability drives pseudo-label errors.
e Conditioned adversarial networks: different ID prior distributions on different

cameras lead to negative transfer.



Conditional Camera Adversarial Learning




Conditional camera adversarial training pipeline

1- Clustering of target’s embedding vectors ¢(x;,)
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Conditional camera adversarial training pipeline
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Conditional camera adversarial training pipeline

1- Clustering of target’s embedding vectors ¢(x;,) 2-Conditional Adversarial Training stage

» b, "
-
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¢ F
—> Feature extractor ¢ { ..
= D mmitollil] Lls ~<—DPy,: pseudo-label ID

classifier Cpgp

Adversarial training

Y
Computes embedding controids ¢, - )
and psendo-label ID B, Xn: person detection,

l from p-th ID cluster T

Tackling Negative Transfer
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Camera adversarial training

Advantages:

e Can be plugged into any clustering and finetuning strategy — CANU-MMT,
CANU-SSG



Camera adversarial training

Advantages:

e Can be plugged into any clustering and finetuning strategy — CANU-MMT,
CANU-SSG

e Explicitely reduces errors in pseudo-ID labels by making embedding space
invariant to camera information



Experimental Evaluation




Experimental Setup

e Evaluated using Market-1501 (Mkt), DukeMTMC-relD (Duke) and MSMT17
(MSMT) datasets.

e Standard Re-ID metrics (R11 and mAPT) reported.



Comparison with State of the Art

Table 1: CANU on the Mkt » Duke and Table 2: CANU on the Mkt » MSMT and

Duke » Mkt settings. Duke » MSMT settings.
Method Mkt » Duke Duke » Mkt Method Mkt » MSMT  Duke » MSMT
Rl mAP Rl mAP R1 mAP R1 mAP
SSG [1] 73.0 534 800 583  SSG [1] 31.6 132 322 133
CANU-SSG (ours) 76.1 57.0 83.3 61.9 CANU-SSG (ours) 45.5 19.1 433 17.9
MMT [2] 80.2 672 91.7 793 MMT [2] 51.6 26.6 59.0 32.0

CANU-MMT (ours) 83.3 70.3 94.2 83.0  CANU-MMT (ours) 61.7 34.6 66.9 38.3




Conclusion




Conclusion

Merges finetuning and clustering with a camera-based adversarial strategy.
Solves the negative transfer problem with a conditioned approach.

Demonstrates its performance on two state of the art methods.
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Supplementary Material




Camera adversarial vs Conditional camera adversarial

Table 3: Impact of the conditional strategy on baselines.

Mkt » Duke Duke » Mkt
Rl mAP Rl mAP

SSG[1]  73.0 534 800 583
SSG+Adv. 754 564 83.8 62.7
CANU-SSG 76.1 57.0 833 619

MMT [2] 802 672 917 793
MMT-+Adv. 826 703 93.6 822
CANU-MMT 83.3 70.3 94.2 83.0

Method
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Camera & Pseudo-ID dependancy analysis
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Figure 1: Mutual information between pseudo labels and camera index evolution for the MMT

baseline. Ground-truth ID comparison is displayed in dashed lines for both datasets. 12



Clustering and Finetuning - examples

e Self-similarity grouping (SSG)?® clusters on 3 visual subdomains (full body,
upper/lower body),and rely on self-consistency to reduce clustering mistakes.

—— TrletLoss
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5Yang Fu et al. “Self-similarity grouping: A simple unsupervised cross domain adapt. approach for person
re-ID". In: ICCV. 2019.
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Clustering and Finetuning - examples

e Mutual mean-teaching (MMT)® uses teacher-student models, trained with
hard pseudo-ID based loss and soft losses supervised by each other’s predictions.
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Yixiao Ge, Dapeng Chen, and Hongsheng Li. “Mutual Mean-Teaching: Pseudo Label Refinery for
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Unsupervised Domain Adaptation on Person Re-identification”. In: /CLR (2020).
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