CANU-ReID: A Conditional Adversarial Network for Unsupervised person Re-IDentification Guillaume Delorme¹, Yihong Xu¹, Stéphane Lathuilière², Radu Horaud¹, Xavier Alameda-Pineda¹

¹Inria, LJK, Univ. Grenoble Alpes, France ² LTCI, Télécom Paris, IP Paris, France

MOTIVATION

Ínría

We adress the problem of unsupervised person Re-ID in the context of the Clustering and Finetuning framework via a Camera adversarially-guided clustering, highlight and adress the problem of **negative transfer** via a **conditioned adversarial** approach.

CLUSTERING AND FINETUNING FOR UNSUPERVISED PERSON RE-ID

Unsupervised Person Re-ID: Domain Adaptation setting for Person Re-ID.

Clustering and Finetuning: Recent works in Unsupervised Person Re-ID are based on this framework (SSG[1], MMT[2]):

0 - Source Pretraining: ϕ is pretrained using source S in a supervised fashion. S is then discarded.

1 - Clustering step: runs a clustering algorithm on \mathcal{T} in the embedding of ϕ (frozen). Generates pseudo-ID labels on \mathcal{T} : $\tilde{p}^{\mathcal{T}}$.

2 - Finetuning step: ϕ is finetuned for a few epochs suppervised by \mathcal{L}_{PS-ID} and using pseudo-ID labels $\tilde{p}^{\mathcal{T}}$ as ID-annotation.

3 - Return to 1 Clustering/Finetuning steps alternate until we reach convergence.

TRAINING PIPELINE

COMPARISON TO STATE OF THE ART

Method	Mkt ► Duke		Duke ► Mkt	
	R1	mAP	R1	mAP
SPGAN	41.1	22.3	51.5	22.8
Co-teaching	77.6	61.7	87.8	71.7
SSG [1]	73.0	53.4	80.0	58.3
CANU-SSG (ours)	76.1	57.0	83.3	61.9
MMT [2]	80.2	67.2	91.7	79.3
CANU-MMT (ours)	83.3	70.3	94.2	83.0

Method	Mkt ► MSMT		Duke ► MSMT	
	R1	mAP	R1	mAP
PTGAN	10.2	2.9	11.8	3.3
ENC	25.3	8.5	30.2	10.2
SSG [1]	31.6	13.2	32.2	13.3
CANU-SSG (ours)	45.5	19.1	43.3	17.9
MMT [2]	51.6	26.6	59.0	32.0
CANU-MMT (ours)	61.7	34.6	66.9	38.3
			1 7	

CANU on the Mkt \blacktriangleright MSMT and Duke \blacktriangleright MSMT.

IMPACT OF NEGATIVE TRANSFER

Conditioned **CANU** compared with standard camera adversarial implementation:

Method	Mkt 🛙	Mkt ► Duke		Duke ► Mkt	
	R1	mAP	R1	mAP	
SSG [1]	73.0	53.4	80.0	58.3	
SSG+Adv.	75.4	56.4	83.8	62.7	
CANU-SSG	76.1	57.0	83.3	61.9	
MMT [2]	80.2	67.2	91.7	79.3	
MMT+Adv.	82.6	70.3	93.6	82.2	
CANU-MMT	83.3	70.3	94.2	83.0	

CAMERA AND PSEUDO-ID LABELS MUTUAL INFORMATION

Mkt ► Duke

REFERENCES

[1] Yang Fu, Yunchao Wei, Guanshuo Wang, Yuqian Zhou, Honghui Shi, and Thomas S Huang. Self-similarity grouping: A simple unsupervised cross domain adapt. approach for person re-id. In ICCV, 2019.

Yixiao Ge, Dapeng Chen, and Hongsheng Li. Mutual mean-teaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification. ICLR, 2020.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural nets. JMLR, 2016.

ACKNOWLEDGEMENT

We acknowledge support from the ML3RI project grant # ANR-19-CE33-0008-01 and from the Multidisciplinary Institute of AI grant # ANR-19-P3IA-0003.

CONTACT INFORMATION

Web https://team.inria.fr/perception/research/canu-reid/ Email guillaume.delorme@inria.fr