CANU-ReID: A Conditional Adversarial Network for Unsupervised person Re-IDentification

Guillaume Delorme¹, Yihong Xu¹, Stéphane Lathuilière², Radu Horaud¹, Xavier Alameda-Pineda¹

¹Inria, LJK, Univ. Grenoble Alpes, France
²LTIC, Télécom Paris, IP Paris, France

Motivation

We address the problem of unsupervised person Re-ID in the context of the Clustering and Finetuning framework via a Camera adversarially-guided clustering, highlight and address the problem of negative transfer via a conditioned adversarial approach.

Clustering and Finetuning for Unsupervised Person Re-ID

Unsupervised Person Re-ID: Domain Adaptation setting for Person Re-ID.

Clustering and Finetuning: Recent works in Unsupervised Person Re-ID are based on this framework (SSG¹, MMT²):

0 - Source Pretraining: \(\phi \) is pretrained using source \(S \) in a supervised fashion. \(S \) is then discarded.

1 - Clustering step: runs a clustering algorithm on \(T \) in the embedding of \(\phi \) (frozen). Generates pseudo-ID labels on \(T : p' \).

2 - Finetuning step: \(\phi \) is finetuned for a few epochs supppervised by \(L_{\text{ID}-\text{ID}} \) and using pseudo-ID labels \(p' \) as ID-annotation.

3 - Return to 1 Clustering/Finetuning steps alternate until we reach convergence.

Adversarial Domain Adaptation (DA)

Adversarial DA introduced to reduce domain gap between \(S \) and \(T \) [3].

Adversarial training:

\[
\min \max_{\phi,C} \mathbb{L}_{\text{ID}}(\phi, C_{\text{ID}}) - \mu p_{\text{ID}}(D_{\text{ID}})
\]

Training Pipeline

1. Clustering of target's embedding vectors \(\{\epsilon_{p}\} \).
2. Conditional Adversarial Training steps.

Comparison to State of the Art

<table>
<thead>
<tr>
<th>Method</th>
<th>Mkt</th>
<th>Duke</th>
<th>Mkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 mAP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPCGAN</td>
<td>41.1</td>
<td>22.3</td>
<td>51.2</td>
</tr>
<tr>
<td>Co-teaching</td>
<td>77.6</td>
<td>61.7</td>
<td>87.8</td>
</tr>
<tr>
<td>SSG [1]</td>
<td>73.0</td>
<td>53.4</td>
<td>80.0</td>
</tr>
<tr>
<td>CANU-SSG (ours)</td>
<td>76.1</td>
<td>57.0</td>
<td>83.3</td>
</tr>
<tr>
<td>MMT [2]</td>
<td>80.2</td>
<td>67.2</td>
<td>91.7</td>
</tr>
<tr>
<td>CANU-MMT (ours)</td>
<td>83.3</td>
<td>70.3</td>
<td>94.2</td>
</tr>
</tbody>
</table>

CANU on the Mkt ▶ Duke and Duke ▶ Mkt.

Impact of Negative Transfer

Conditioned CANU compared with standard camera adversarial implementation:

\[
\min \max_{\phi,C} \mathbb{L}_{\text{ID}-\text{ID}}(\phi, C_{\text{ID}}) - \mu p_{\text{ID}}(D_{\text{ID}})
\]

Camera and pseudo-ID labels mutual information

<table>
<thead>
<tr>
<th>Method</th>
<th>Mkt</th>
<th>Duke</th>
<th>Mkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 mAP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGG [1]</td>
<td>31.6</td>
<td>13.2</td>
<td>32.2</td>
</tr>
<tr>
<td>CANU-SSG (ours)</td>
<td>45.5</td>
<td>19.1</td>
<td>43.3</td>
</tr>
<tr>
<td>MMT [2]</td>
<td>51.6</td>
<td>26.6</td>
<td>59.0</td>
</tr>
<tr>
<td>CANU-MMT (ours)</td>
<td>61.7</td>
<td>34.6</td>
<td>66.9</td>
</tr>
</tbody>
</table>

CANU on the Mkt ▶ MSMT and Duke ▶ MSMT.

Negative Transfer

Adversarial framework → Negative Transfer:

Discriminator learns ID-related instead of domain-related features, and degrades \(\phi \) discriminative power.

Happens with different ID prior distributions across domains (cameras in our case).

Camera adversarially guided clustering

Camera adversarially-guided clustering: the discriminator is trained to retrieve camera info.

Conditioned adversarial strategy: pseudo-ID information is provided to \(D_{\text{CAM}} \) to handle negative transfer:

\[
\min \max_{\phi,C} \mathbb{L}_{\text{ID}-\text{ID}}(\phi, C_{\text{ID}}) - \mu p_{\text{ID}}(D_{\text{ID}})
\]

Can be used with any Clustering and Finetuning method: CANU-SSG, CANU-MMT.

References

Contact Information

We acknowledge support from the ML4RI project grant # ANR-19-CE33-0008-01 and from the Multidisciplinary Institute of AI grant # ANR-19-P3IA-0003.

Email: guillaume.delorme@inria.fr