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Human-Computer Interaction

Single user that can control the device.
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Human-Robot Interaction

The robot must take decisions!
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Outline

Audio, vision, and audio-visual challenges

Datasets

Supervised sound-source localization

Mapping sounds onto images

Clustering audio and visual features

Multiple-person visual tracking

Tracking a single speaker

Tracking multiple speakers

Conclusions and future work

Radu Horaud Audio-Visual Fusion



Visual Processing
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Audio Processing
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Audio-visual Scene Analysis
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A Single Audio-Visual Object
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Several Audio-Visual Objects
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Audio-visual Recordings

Audio: two omnidirectional microphones, 44100 Hz, acoustic
dummy head.

Vision: two 2MP cameras, 25 FPS, 97◦ × 80◦ field of view.

Room: “natural” acoustic and lighting conditions.
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Audio-visual Dataset

People wander around, turn their faces towards the speaker
(and not facing the camera!).

Casual dialogue, speech turns with overlap, background noise.
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Problems to be addressed

Person detection and pose estimation (head, body, posture,
etc.)

Head orientation, gaze (who looks at whom/what?)

Tracking persons over long periods of time

Audio-source localization and separation

Speech activity detection and speaker diarization (who speaks
when?)

Audio-visual association

Human-robot dialogue

etc.
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Outline

Binaural audition

Supervised sound-source localization

Mapping sounds onto images

Audio-visual clustering

Multiple person tracking

Speaker diarization
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Sound Propagation Model

Two microphones (m), a single sound source (s), room
impulse response (h), noise (n):

m1(t) = h1 ? s(t)︸ ︷︷ ︸
convolution

+n1(t) ∈ R

m2(t) = h2 ? s(t) + n2(t) ∈ R

Representation in the spectral domain with the short-time
Fourier transform (STFT):

M1,f l = H1,fSfl +N1,f ∈ C
M2,f l = H2,fSfl +N2,f ∈ C

f (frequency bin) and l (time) are the indexes of a
spectrogram point.
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The Short-time Fourier Transform
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Spectrogram: A Sequence of Overlapping Frames
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Binaural Features for a Single Source

Noise-free binaural signals:

m1(t+ τ1) = h1 ? s(t)

m2(t+ τ2) = h2 ? s(t)

In the STFT domain:

M1,f le
−2πjfτ1 = H1,fS1,f l

M2,f le
−2πjfτ2 = H2,fS1,f l

Relative transfer function (a Fourier coefficient):

Hbin
f =

H1,f

H2,f
=
|M1,f l|
|M2,f l|

e2πjfτ ∈ C

Time difference of arrival (TDOA): τ = τ2 − τ1.
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Power Spectral Density (PSD)

cross-PSD : Φ1,2,f l = M1,f lM
∗
2,f l

auto-PSD : Φ2,2,f l = M2,f lM
∗
2,f l

Average Cross- and auto-PSD:

Φ1,2,f =
1

L

L∑
l=1

M1,f lM
∗
2,f l

Φ2,2,f =
1

L

L∑
l=1

M2,f lM
∗
2,f l

By averaging over several frames, the content of a
non-stationary speech source is cancelled out!

Radu Horaud Audio-Visual Fusion



Estimation of the Relative Transfer Function

Power spectral density estimates, Φ̃, can be computed for
non-stationary speech signals in the presence of either stationary or
non-stationary noise, then:

Hbin
f ≈

Φ̃1,2,f

Φ̃2,2,f

[X. Li et al 2015] IEEE ICASSP 2015

[X. Li et al 2016] IEEE ICASSP 2016
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Binaural Vector over L Frames

white noise speech

Hbin =



|Hbin
1 |
...

|Hbin
F |

Re(Hbin
1 )

Im(Hbin
1 )

...
Re(Hbin

F )
Im(Hbin

F )


∈ R1536



•
...
•
...
•
•
•
...
•
•





•
...
×
...
•
×
×
...
•
•


• - observed, × - missing (absent)
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Supervised Sound-source Localization

Training Localization

white noise ↔ direction speech → direction

•
•
•
•
•
•
•
•
•


=⇒

?

(
•
•

)


•
×
•
×
•
×
×
•
×


=⇒

(
?
?

)

• - observed, × - missing
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Gaussian Locally-Linear Mapping (GLLiM)

Y ∈ RD (high-dimensional space)

X ∈ RL (L� D)

Piecewise linear mapping:

Y =

K∑
k=1

I(Z = k)(AkX + bk + ek),
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Mixture of Piecewise-linear Inverse Regressions

Low-dimensional to high-dimensional model:

p(y,x;θ) =

K∑
k=1

p(y|x, Z = k;θ)p(x|Z = k;θ)p(Z = k;θ),

with:

p(y|x, Z = k;θ) = N (y; Akx+ bk,Σk)

p(x|Z = k;θ) = N (x; ck,Γk)

p(Z = k;θ) = πk

Σk = Diag(σk1, . . . , σkD) ∈ RD×D
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Expectation-Maximization Algorithm

E-step:

r
(i)
Z = p(Z1:N |(y,x)1:N ;θ(i−1))

M-step:

θ(i) = argmax
θ

(
EZ [log p((x,y, Z)1:N ;θ|(x,y)1:N ;θ(i−1))]

)
.
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Generative Manifold Learning

[Deleforge, Forbes, Horaud 2015] Statistics and Computing
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Inverse and Forward Predictive Distributions

Inverse predictive distribution (low-to-high):

p(y|x;θ) =

K∑
k=1

νkN (y; Akx+ bk,Σk),

with νk =
πkN (x; ck,Γk)∑K
j=1 πjN (x; cj ,Γj)

Forward predictive distribution (high-to-low):

p(x|y;θ∗) =

K∑
k=1

ν∗kN (x; A∗ky + b∗k,Σ
∗
k)

with ν∗k =
π∗kN (y; c∗k,Γ

∗
k)

K∑
j=1

π∗jN (y; c∗j ,Γ
∗
j )
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Audio-visual Localization

[Deleforge et al. 2015] IEEE Trans. Audio, Speech & Lang. Proc.
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Audio-visual Training Dataset
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Audio-visual Alignment Pipeline
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Spatial Alignment

audio (green) & visual (blue) clustering result
ground truth (yellow square) active speaker (blue disk)
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Weighted-Data Gaussian Mixture Model

A weight wi > 0 is associated with each observation xi (audio
or visual) and plugged into a GMM:

P (xi|wi;Θk) =

K∑
k=1

πkN
(
xi;µk,

1

wi
Σk

)
A high weight corresponds to a reliable data point.

[Gebru, Alameda, Forbes, Horaud 2016] IEEE TPAMI

http://arxiv.org/abs/1509.01509
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Weight Model

The weights are random variables drawn from a Gamma
distribution:

P (w;φ) = G (w;α, β)

= Γ (α)−1 βαwα−1e−βw,

E[w] = α/β,

var[w] = α/β2.
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Expectation

The marginal posteriors have closed-form expressions:

P (zi = k|xi;θ,φi) ∝ πk P(xi;µk,Σk, αi, βi)

with P(x;µ,Σ, α, β) =

Γ(α+ d/2)

|Σ|1/2 Γ(α) (2πβ)d/2

(
1 +
‖x− µ‖2Σ

2β

)−(α+ d
2
)

.

and:

P (wi|zi = k,xi;θ,φi) = G(wi; ai, bik)

ai = αi +
d

2

bik = βi +
1

2
‖xi − µk‖2Σk
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Maximization

πk =
1

n

n∑
i=1

ηik

µk =

n∑
i=1

wikηikxi

n∑
i=1

wikηik

,

Σk =

n∑
i=1

ηikwik (xi − µk) (xi − µk)
>

n∑
i=1

ηik

.
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Weight Initialisation

The weight of an audio observation (green) or of a visual
observation (blue):

wi =
∑
j∈N(i)

exp−d
2(xi,xj)
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Audio-visual Clustering Results
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Comparison Table

Seq. # Seg. WD-EM GMM-U FM-uMST
Banfield&Raftery’93 Lee&McLachlan’14

FS 28 100.00% 100.00% 71.43%

MS 43 83.87% 61.90% 72.22%

CP 115 65.66% 52.48% 49.57%
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Visual Tracking

A well investigated topic in computer vision

Multiple-person tracking is still challenging:

People detection is challenging (no universal method)
Robustness to changes in appearance, occlusions, etc.
Most methods use time-consuming sampling, e.g. Monte
Carlo, techniques.
Most state-of-the-art methods are not causal (use of past,
present and future frames).

We proposed a dynamic Bayesian graphical model and an
associated variational EM algorithm.

[Ba, Alameda, Xompero, Horaud 2016] Computer Vision and
Image Understanding
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Visual-tracking Principle
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Online Variational Bayesian Model

Variational approximation of the multi-person filtering
distribution

State space of fixed dimension with an existence variable
specifying targets that are visible or not visible

Exploits observations from multiple detectors, e.g. face, upper
body, skin, etc.

Birth and visibility processes for people coming and and out of
the field of view.
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Temporal Alignment: Single Speaker
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MAP formulation

ŝt = argmax
st

P (St = st|X1:t,V 1:t,Y 1:t,A1:t).

Active-speaker latent variables S1:t. At frame index t:
St = n, n ∈ {1, . . . , N} if person n is both visible and emits
speech at t, St = 0 if no visible person speaks at t.

Xtn ∈ R2 is the location of person n at frame t; Vtn = 1 if
person n is detected at t, and 0 otherwise;

Y tk ∈ R2 is the direction (image location) of sound-source k
at t; At ∈ {0, 1} is the output of a voice activity detection
(VAD).
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Temporal Alignment: Multiple Speakers
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Multiple Speech Sources

M1,f l = H11,f lS1,f l + · · ·+H1K,flSK,fl +N1,f

M2,f l = H21,f lS1,f l + · · ·+H2K,flSK,fl +N2,f

We make the assumption that at each frequency-frame point
(f, l), only one of the sources is active

cross-PSD : Φ1,2,f l = M1,f lM
∗
2,f l

auto-PSD : Φ2,2,f l = M2,f lM
∗
2,f l

Hbin
fl =

Φ1,2,f l

Φ2,2,f l
≈
|H1k,fl|
|H2k,fl|

e2πjfτ ∈ C

Radu Horaud Audio-Visual Fusion



Supervised Localization of Multiple Speech Sources

Complex-valued binaural spectrogram:

Hbin =
{
Hbin
fl

}f=F,l=L
f=1,l=1

Training audio-visual dataset of M binaural feature vectors:

W̃ = {W̃1, . . . , W̃m, . . . W̃M} ∈ CF×M

and associated M sound directions (or image locations):

X̃ = {X̃1, . . . , X̃m, . . . X̃M} ∈ R2×M

Each binaural observation is drawn from a complex-Gaussian
distribution centered at W̃mf :

P (Hbin
fl ;θ) = Nc(Hbin

fl ; W̃mf , σf ) ∀ 1 ≤ f ≤ F

with (W̃m1, . . . , W̃mf , . . . , W̃mF )↔ X̃m
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Spatiotemporal Alignment of Sound-Sources and Persons

Binaural features are clustered using F complex-Gaussian
mixture models

The single-source temporal model has been extended to
multiple sources / multiple persons

Diarization is estimated via a MAP formulation

[Gebru, Ba, Li and Horaud 2017] IEEE TPAMI

http://arxiv.org/abs/1603.09725

Radu Horaud Audio-Visual Fusion

 http://arxiv.org/abs/1603.09725


Example with Multiple Speakers
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Vision vs. Audio

The two modalities are different:

Visual data (rays of light) are dense both in the spatial and
temporal domains, are corrupted by photometric effects,
occlusions, foreshortening, depth ambiguities, limited field of
view, limited range, etc.

−→ We seek illuminant-invariant features.

Auditory data (acoustic waves) are sparse in the spectral and
temporal domains, corrupted by overlapping (mixed) signals,
background noise, reverberations, room acoustics, etc.

−→ We seek environment-invariant features.
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Our Robots

NAO with stereo vision 12 microphones PEPPER
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HRI Distributed Software Architecture

https://team.inria.fr/perception/research/naolab/
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Conclusions

Auditory and visual data cannot be combined in their original
formats.

We addressed spatial and spatiotemporal alignment, and
diarization

Unconstrained scenarios, robot-centric sensors, no wearable
devices
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Next Steps

Combine sound separation with sound localization, such at to
assign speech-sources to people, not just source locations (on
its way).

Incorporate visual gaze and visual focus of attention, i.e. who
is looking at whom/what [Massé, Ba and Horaud 2016] IEEE
ICMI.

Audio-visual attention strategies [Lathuilière, Massé, Mesejo
and Horaud 2017] submitted to Pattern Recognition Letters.

Understanding turn-taking, robot pops into the conversation,
etc.

Speech recognition, natural language processing and dialogue
(currently not addressed in our group).
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Data Challenge: Audio-Visual Speaker Diarization
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Data Challenge: Audio-Visual Speaker Diarization
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Data Challenge: Audio-Visual Speaker Diarization

Observations:
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Data Challenge: Audio-Visual Speaker Diarization

Observations:
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Data Challenge: Audio-Visual Speaker Diarization

Problems and Difficulties

Visual tracking of multiple persons

How many people?
Occlusions

Associate visual tracks to Sound Source Localisation (SSL)

Unknown number of speakers at each time step
Noisy SSL

Evaluation

Tracking metric: Multi-object tracking accuracy (MOTA)

Speaker detection: diarization error rate (DER)
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