Audio-Visual Fusion for Human-Robot Interaction

Radu Horaud PERCEPTION team INRIA Grenoble Rhône-Alpes Radu.Horaud@inria.fr

Human-Computer Interaction

Single user that can control the device.

Human-Robot Interaction

The robot must take decisions!

Outline

- Audio, vision, and audio-visual challenges
- Datasets
- Supervised sound-source localization
- Mapping sounds onto images
- Clustering audio and visual features
- Multiple-person visual tracking
- Tracking a single speaker
- Tracking multiple speakers
- Conclusions and future work

Visual Processing

Audio Processing

Audio-visual Scene Analysis

A Single Audio-Visual Object

Several Audio-Visual Objects

Audio-visual Recordings

- Audio: two omnidirectional microphones, 44100 Hz, acoustic dummy head.
- Vision: two 2MP cameras, 25 FPS, $97^{\circ} \times 80^{\circ}$ field of view.
- Room: "natural" acoustic and lighting conditions.

Audio-visual Dataset

- People wander around, turn their faces towards the speaker (and not facing the camera!).
- Casual dialogue, speech turns with overlap, background noise.

Problems to be addressed

- Person detection and pose estimation (head, body, posture, etc.)
- Head orientation, gaze (who looks at whom/what?)
- Tracking persons over long periods of time
- Audio-source localization and separation
- Speech activity detection and speaker diarization (who speaks when?)
- Audio-visual association
- Human-robot dialogue
- etc.

Outline

- Binaural audition
- Supervised sound-source localization
- Mapping sounds onto images
- Audio-visual clustering
- Multiple person tracking
- Speaker diarization

Sound Propagation Model

• Two microphones (m), a single sound source (s), room impulse response (h), noise (n):

$$m_1(t) = \underbrace{h_1 \star s(t)}_{\text{convolution}} + n_1(t) \in \mathbb{R}$$
$$m_2(t) = h_2 \star s(t) + n_2(t) \in \mathbb{R}$$

• Representation in the spectral domain with the short-time Fourier transform (STFT):

$$\begin{split} M_{1,fl} &= H_{1,f}S_{fl} + N_{1,f} \in \mathbb{C} \\ M_{2,fl} &= H_{2,f}S_{fl} + N_{2,f} \in \mathbb{C} \end{split}$$

• *f* (frequency bin) and *l* (time) are the indexes of a spectrogram point.

The Short-time Fourier Transform

Spectrogram: A Sequence of Overlapping Frames

Binaural Features for a Single Source

• Noise-free binaural signals:

$$m_1(t+\tau_1) = h_1 \star s(t)$$
$$m_2(t+\tau_2) = h_2 \star s(t)$$

In the STFT domain:

$$M_{1,fl}e^{-2\pi jf\tau_1} = H_{1,f}S_{1,fl}$$
$$M_{2,fl}e^{-2\pi jf\tau_2} = H_{2,f}S_{1,fl}$$

• Relative transfer function (a Fourier coefficient):

$$H_{f}^{\text{bin}} = \frac{H_{1,f}}{H_{2,f}} = \frac{|M_{1,fl}|}{|M_{2,fl}|} e^{2\pi j f \tau} \in \mathbb{C}$$

• Time difference of arrival (TDOA): $\tau = \tau_2 - \tau_1$.

Power Spectral Density (PSD)

cross-PSD :
$$\Phi_{1,2,fl} = M_{1,fl} M_{2,fl}^*$$

auto-PSD : $\Phi_{2,2,fl} = M_{2,fl} M_{2,fl}^*$

• Average Cross- and auto-PSD:

$$\Phi_{1,2,f} = \frac{1}{L} \sum_{l=1}^{L} M_{1,fl} M_{2,fl}^*$$
$$\Phi_{2,2,f} = \frac{1}{L} \sum_{l=1}^{L} M_{2,fl} M_{2,fl}^*$$

• By averaging over several frames, the content of a **non-stationary** speech source is cancelled out!

Estimation of the Relative Transfer Function

Power spectral density estimates, $\tilde{\Phi}$, can be computed for non-stationary speech signals in the presence of either stationary or non-stationary noise, then:

$$H_f^{\rm bin} \approx rac{ ilde{\Phi}_{1,2,f}}{ ilde{\Phi}_{2,2,f}}$$

[X. Li et al 2015] IEEE ICASSP 2015 [X. Li et al 2016] IEEE ICASSP 2016

Binaural Vector over L Frames

• - observed, \times - missing (absent)

Supervised Sound-source Localization

 \bullet - observed, \times - missing

Gaussian Locally-Linear Mapping (GLLiM)

- $oldsymbol{Y} \in \mathbb{R}^D$ (high-dimensional space)
- $\boldsymbol{X} \in \mathbb{R}^L \ (L \ll D)$
- Piecewise linear mapping:

$$\boldsymbol{Y} = \sum_{k=1}^{K} \mathbb{I}(Z = k) (\boldsymbol{A}_k \boldsymbol{X} + \boldsymbol{b}_k + \boldsymbol{e}_k),$$

Mixture of Piecewise-linear Inverse Regressions

• Low-dimensional to high-dimensional model:

$$p(\boldsymbol{y}, \boldsymbol{x}; \boldsymbol{\theta}) = \sum_{k=1}^{K} p(\boldsymbol{y} | \boldsymbol{x}, Z = k; \boldsymbol{\theta}) p(\boldsymbol{x} | Z = k; \boldsymbol{\theta}) p(Z = k; \boldsymbol{\theta}),$$

• with:

$$p(\boldsymbol{y}|\boldsymbol{x}, Z = k; \boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{y}; \boldsymbol{A}_k \boldsymbol{x} + \boldsymbol{b}_k, \boldsymbol{\Sigma}_k)$$
$$p(\boldsymbol{x}|Z = k; \boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{x}; \boldsymbol{c}_k, \boldsymbol{\Gamma}_k)$$
$$p(Z = k; \boldsymbol{\theta}) = \pi_k$$

 $\boldsymbol{\Sigma}_k = \operatorname{Diag}(\sigma_{k1}, \dots, \sigma_{kD}) \in \mathbb{R}^{D \times D}$

Expectation-Maximization Algorithm

E-step:

$$r_Z^{(i)} = p(\mathbf{Z}_{1:N}|(\boldsymbol{y}, \boldsymbol{x})_{1:N}; \boldsymbol{\theta}^{(i-1)})$$

M-step:

$$\boldsymbol{\theta}^{(i)} = \operatorname*{argmax}_{\boldsymbol{\theta}} \left(\mathbb{E}_{Z}[\log p((\boldsymbol{x}, \boldsymbol{y}, Z)_{1:N}; \boldsymbol{\theta} | (\boldsymbol{x}, \boldsymbol{y})_{1:N}; \boldsymbol{\theta}^{(i-1)})] \right).$$

Generative Manifold Learning

[Deleforge, Forbes, Horaud 2015] Statistics and Computing

Inverse and Forward Predictive Distributions

Inverse predictive distribution (low-to-high):

$$p(\boldsymbol{y}|\boldsymbol{x};\boldsymbol{\theta}) = \sum_{k=1}^{K} \nu_k \mathcal{N}(\boldsymbol{y}; \boldsymbol{A}_k \boldsymbol{x} + \boldsymbol{b}_k, \boldsymbol{\Sigma}_k),$$

with $\nu_k = \frac{\pi_k \mathcal{N}(\boldsymbol{x}; \boldsymbol{c}_k, \boldsymbol{\Gamma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\boldsymbol{x}; \boldsymbol{c}_j, \boldsymbol{\Gamma}_j)}$

Forward predictive distribution (high-to-low):

$$p(\boldsymbol{x}|\boldsymbol{y};\boldsymbol{\theta}^*) = \sum_{k=1}^{K} \nu_k^* \mathcal{N}(\boldsymbol{x}; \mathbf{A}_k^* \boldsymbol{y} + \boldsymbol{b}_k^*, \boldsymbol{\Sigma}_k^*)$$

with $\nu_k^* = \frac{\pi_k^* \mathcal{N}(\boldsymbol{y}; \boldsymbol{c}_k^*, \boldsymbol{\Gamma}_k^*)}{\sum\limits_{j=1}^{K} \pi_j^* \mathcal{N}(\boldsymbol{y}; \boldsymbol{c}_j^*, \boldsymbol{\Gamma}_j^*)}$

Audio-visual Localization

Audio-visual Training Dataset

Audio-visual Alignment Pipeline

Spatial Alignment

clustering result active speaker (blue disk)

audio (green) & visual (blue) ground truth (yellow square)

Weighted-Data Gaussian Mixture Model

 A weight w_i > 0 is associated with each observation x_i (audio or visual) and plugged into a GMM:

$$P(\boldsymbol{x}_i|w_i;\boldsymbol{\Theta}_k) = \sum_{k=1}^{K} \pi_k \mathcal{N}\left(\boldsymbol{x}_i; \boldsymbol{\mu}_k, \frac{1}{w_i} \boldsymbol{\Sigma}_k\right)$$

• A high weight corresponds to a reliable data point.

[Gebru, Alameda, Forbes, Horaud 2016] IEEE TPAMI http://arxiv.org/abs/1509.01509

Weight Model

The weights are random variables drawn from a Gamma distribution:

$$\begin{split} P(w; \phi) &= \mathcal{G} \left(w; \alpha, \beta \right) \\ &= \Gamma \left(\alpha \right)^{-1} \beta^{\alpha} w^{\alpha - 1} e^{-\beta w}, \\ \mathrm{E}[w] &= \alpha / \beta, \\ \mathrm{var}[w] &= \alpha / \beta^2. \end{split}$$

Expectation

The marginal posteriors have closed-form expressions:

$$P(z_i = k | \boldsymbol{x}_i; \boldsymbol{\theta}, \boldsymbol{\phi}_i) \propto \pi_k \ \mathcal{P}(\boldsymbol{x}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \alpha_i, \beta_i)$$
with $\mathcal{P}(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}, \alpha, \beta) = \frac{\Gamma(\alpha + d/2)}{|\boldsymbol{\Sigma}|^{1/2} \ \Gamma(\alpha) \ (2\pi\beta)^{d/2}} \left(1 + \frac{\|\boldsymbol{x} - \boldsymbol{\mu}\|_{\boldsymbol{\Sigma}}^2}{2\beta}\right)^{-(\alpha + \frac{d}{2})}$

and:

$$P(w_i|z_i = k, \boldsymbol{x}_i; \boldsymbol{\theta}, \boldsymbol{\phi}_i) = \mathcal{G}(w_i; a_i, b_{ik})$$
$$a_i = \alpha_i + \frac{d}{2}$$
$$b_{ik} = \beta_i + \frac{1}{2} \|\boldsymbol{x}_i - \boldsymbol{\mu}_k\|_{\boldsymbol{\Sigma}_k}^2$$

Maximization

$$\boldsymbol{\Sigma}_k = \frac{\overline{i=1}}{\sum_{i=1}^n \eta_{ik}}.$$

Weight Initialisation

The weight of an audio observation (green) or of a visual observation (blue):

$$w_i = \sum_{j \in \mathsf{N}(i)} \exp^{-d^2(\boldsymbol{x}_i, \boldsymbol{x}_j)}$$

Audio-visual Clustering Results

Comparison Table

Seq.	# Seg.	WD-EM	GMM-U	FM-uMST
			Banfield&Raftery'93	Lee&McLachlan'14
FS	28	100.00%	100.00%	71.43%
MS	43	83.87%	61.90%	72.22%
СР	115	65.66%	52.48%	49.57%

Visual Tracking

- A well investigated topic in computer vision
- Multiple-person tracking is still challenging:
 - People detection is challenging (no universal method)
 - Robustness to changes in appearance, occlusions, etc.
 - Most methods use time-consuming sampling, e.g. Monte Carlo, techniques.
 - Most state-of-the-art methods are not causal (use of past, present and future frames).
- We proposed a dynamic Bayesian graphical model and an associated variational EM algorithm.

[Ba, Alameda, Xompero, Horaud 2016] Computer Vision and Image Understanding

Visual-tracking Principle

Online Variational Bayesian Model

- Variational approximation of the multi-person filtering distribution
- State space of fixed dimension with an existence variable specifying targets that are visible or not visible
- Exploits observations from multiple detectors, e.g. face, upper body, skin, etc.
- Birth and visibility processes for people coming and and out of the field of view.

Temporal Alignment: Single Speaker

MAP formulation

$$\hat{s}_t = \operatorname*{argmax}_{s_t} P(S_t = s_t | \boldsymbol{X}_{1:t}, \boldsymbol{V}_{1:t}, \boldsymbol{Y}_{1:t}, \boldsymbol{A}_{1:t}).$$

- Active-speaker latent variables S_{1:t}. At frame index t: S_t = n, n ∈ {1,...,N} if person n is both visible and emits speech at t, S_t = 0 if no visible person speaks at t.
- $X_{tn} \in \mathbb{R}^2$ is the location of person n at frame t; $V_{tn} = 1$ if person n is detected at t, and 0 otherwise;
- $Y_{tk} \in \mathbb{R}^2$ is the direction (image location) of sound-source k at t; $A_t \in \{0, 1\}$ is the output of a voice activity detection (VAD).

Temporal Alignment: Multiple Speakers

Multiple Speech Sources

$$M_{1,fl} = H_{11,fl}S_{1,fl} + \dots + H_{1K,fl}S_{K,fl} + N_{1,f}$$

$$M_{2,fl} = H_{21,fl}S_{1,fl} + \dots + H_{2K,fl}S_{K,fl} + N_{2,f}$$

• We make the assumption that at each frequency-frame point (f,l), only one of the sources is active

cross-PSD :
$$\Phi_{1,2,fl} = M_{1,fl} M_{2,fl}^*$$

auto-PSD : $\Phi_{2,2,fl} = M_{2,fl} M_{2,fl}^*$
 $H_{fl}^{\text{bin}} = \frac{\Phi_{1,2,fl}}{\Phi_{2,2,fl}} \approx \frac{|H_{1k,fl}|}{|H_{2k,fl}|} e^{2\pi j f \tau} \in \mathbb{C}$

Supervised Localization of Multiple Speech Sources

• Complex-valued binaural spectrogram: $\mathbf{H}^{\text{bin}} = \left\{ H_{fl}^{\text{bin}} \right\}_{f=1,l=1}^{f=F,l=L}$

• Training audio-visual dataset of M binaural feature vectors:

$$\widetilde{\mathbf{W}} = \{\widetilde{\mathbf{W}}_1, \dots, \widetilde{\mathbf{W}}_m, \dots \widetilde{\mathbf{W}}_M\} \in \mathbb{C}^{F \times M}$$

• and associated M sound directions (or image locations):

$$\widetilde{\mathbf{X}} = \{\widetilde{\mathbf{X}}_1, \dots, \widetilde{\mathbf{X}}_m, \dots \widetilde{\mathbf{X}}_M\} \in \mathbb{R}^{2 \times M}$$

• Each binaural observation is drawn from a complex-Gaussian distribution centered at \widetilde{W}_{mf} :

$$P(H_{fl}^{\text{bin}}; \boldsymbol{\theta}) = \mathcal{N}_c(H_{fl}^{\text{bin}}; \widetilde{W}_{mf}, \sigma_f) \quad \forall \ 1 \le f \le F$$

with $(\widetilde{W}_{m1}, \dots, \widetilde{W}_{mf}, \dots, \widetilde{W}_{mF}) \leftrightarrow \widetilde{\boldsymbol{X}}_m$

Spatiotemporal Alignment of Sound-Sources and Persons

- $\bullet\,$ Binaural features are clustered using F complex-Gaussian mixture models
- The single-source temporal model has been extended to multiple sources / multiple persons
- Diarization is estimated via a MAP formulation

[Gebru, Ba, Li and Horaud 2017] IEEE TPAMI http://arxiv.org/abs/1603.09725

Example with Multiple Speakers

Vision vs. Audio

• The two modalities are different:

Visual data (rays of light) are dense both in the spatial and temporal domains, are corrupted by photometric effects, occlusions, foreshortening, depth ambiguities, limited field of view, limited range, etc.

 \longrightarrow We seek illuminant-invariant features.

Auditory data (acoustic waves) are sparse in the spectral and temporal domains, corrupted by overlapping (mixed) signals, background noise, reverberations, room acoustics, etc.

 \longrightarrow We seek environment-invariant features.

Our Robots

NAO with stereo vision

12 microphones

PEPPER

HRI Distributed Software Architecture

https://team.inria.fr/perception/research/naolab/

Conclusions

- Auditory and visual data cannot be combined in their original formats.
- We addressed spatial and spatiotemporal alignment, and diarization
- Unconstrained scenarios, robot-centric sensors, no wearable devices

Next Steps

- Combine sound separation with sound localization, such at to assign speech-sources to people, not just source locations (on its way).
- Incorporate visual gaze and visual focus of attention, i.e. who is looking at whom/what [Massé, Ba and Horaud 2016] IEEE ICMI.
- Audio-visual attention strategies [Lathuilière, Massé, Mesejo and Horaud 2017] submitted to Pattern Recognition Letters.
- Understanding turn-taking, robot pops into the conversation, etc.
- Speech recognition, natural language processing and dialogue (currently not addressed in our group).

Collaborators & Funding

Joint work with:

 Antoine Deleforge, Florence Forbes, Laurent Girin, Sileye Ba, Israel Gebru, Xavier Alameda-Pineda, Xiaofei Li, Sharon Gannot, Stéphane Lathuilière, Benoit Massé, Pablo Mesejo, etc.

Funding:

- EU project HUMAVIPS (2010-2013) "HUManoids with Audio-VIsual abilities in Populated Spaces",
- EU project EARS (2014-2017) "Embedded Audition for RobotS"
- ERC VHIA (2014-2019) "Vision and Hearing In Action"
- Samsung Electronics (2016-2017) "Live Together with Robots"
- ERC Proof of Concept VHIALab (2017-2018)

Publications, research pages, datasets, software, etc.

https://team.inria.fr/perception

Observations:

Observations:

Problems and Difficulties

- Visual tracking of multiple persons
 - How many people?
 - Occlusions
- Associate visual tracks to Sound Source Localisation (SSL)
 - Unknown number of speakers at each time step
 - Noisy SSL

Evaluation

- Tracking metric: Multi-object tracking accuracy (MOTA)
- Speaker detection: diarization error rate (DER)