Binaural Hearing for Robots

Methodological Foundations
Binaural Hearing for Robots

1. Introduction to Robot Hearing
2. Methodological Foundations
3. Sound-Source Localization
4. Machine Learning and Binaural Hearing
5. Fusion of Audio and Vision
2. Methodological Foundations

1. Robot heads and acoustic laboratories
2. Binaural Processing Pipeline
3. Continuous-time Fourier transform
4. Continuous short-time Fourier transform
5. Discrete-time signals
6. Discrete short-time Fourier transform
7. Spectrogram of an acoustic signal
8. Cross-correlation
9. Relative transfer function
10. Binaural features
2. Methodological Foundations

1. Robot heads and acoustic laboratories
2. Binaural Processing Pipeline
3. Continuous-time Fourier transform
4. Continuous short-time Fourier transform
5. Discrete-time signals
6. Discrete short-time Fourier transform
7. Spectrogram of an acoustic signal
8. Cross-correlation
9. Relative transfer function
10. Binaural features
Acoustic Dummy Heads
Acoustic Head and Torso
Audio-Visual Robot Heads

Binaural & binocular heads mounted onto a pan-tilt device
Sound Sources

Sound sources: loudspeaker & people
An Acoustic Laboratory

Acoustic laboratory at Bar Ilan University
Anechoic Laboratories

Anechoic laboratories allow advanced acoustic experiments
Session Summary

- Robot heads
- Acoustic heads
- Acoustic laboratories
- Anechoic rooms
2. Methodological Foundations

1. Robot heads and acoustic laboratories
2. Binaural Processing Pipeline
3. Continuous-time Fourier transform
4. Continuous short-time Fourier transform
5. Discrete-time signals
6. Discrete short-time Fourier transform
7. Spectrogram of an acoustic signal
8. Cross-correlation
9. Relative transfer function
10. Binaural features
From the Source to the Microphones

Standard robotic laboratory
Binaural Processing Pipeline

1. Sound propagation
2. Analog-to-digital conversion
3. Binaural processing
4. STFT
5. Left & right spectrograms
6. Binaural features
The Popeye Head
Fundamental Signal Processing

- Signal sampling (analog to digital conversion)
- Convolution (filtering)
- Correlation of two signals
- Fourier transforms
- Filtering and correlation in the Fourier domain
Session Summary

- Realistic laboratories
- The binaural pipeline
- Hardware components
2. Methodological Foundations

1. Robot heads and acoustic laboratories
2. Binaural Processing Pipeline
3. **Continuous-time Fourier transform**
4. Continuous short-time Fourier transform
5. Discrete-time signals
6. Discrete short-time Fourier transform
7. Spectrogram of an acoustic signal
8. Cross-correlation
9. Relative transfer function
10. Binaural features
Continuous Source and Microphone Signals

- Signal emitted by a sound-source: $s(t) : \mathbb{R} \to \mathbb{R}$.
- Signal received by a microphone: $x(t) : \mathbb{R} \to \mathbb{R}$.
- In general $s(t)$ and $x(t)$ are **different**: The acoustic wave travels from source to microphone, hence the signal is modified.
Direct Sound Propagation Model

- Suppose that the wave travels from source to microphone along a straight line and that the wave is not perturbed by room reverberations:

\[x(t) = s(t) + n(t) \]

- \(n(t) \) is an additive noise.
More Realistic Sound Propagation Model

- When the signal (an acoustic wave) travels from source to microphone, it is filtered by an unknown room impulse response (RIR) denoted by $h(t)$:

$$x(t) = \int_{-\infty}^{+\infty} h(t - \tau)s(\tau)d\tau$$

- This operation is called convolution, denoted by "\(\star\)" and:

$$x(t) = h(t) \star s(t)$$
Continuous-time Fourier Transform

- A fundamental concept in signal processing is the Fourier transform (FT) of a continuous signal $x(t)$:

$$X(f) = \int_{-\infty}^{+\infty} x(t) e^{-2\pi jft} dt = \langle x, g^* \rangle, \text{ with } g = e^{2\pi jft}$$

- $f \in \mathbb{R}$ is called the frequency and is measured in Hertz (Hz)
- $X(f) \in \mathbb{C}$: complex function that encodes both the amplitude and phase of a sinusoidal component of $x(t)$.
Convolution in the Spectral Domain

- Signal can be processed in the temporal or frequency (or spectral) domains.
- Temporal convolution becomes a product in the spectral domain. The equation $x(t) = h(t) \ast s(t)$ becomes:

$$X(f) = H(f)S(f)$$
The Inverse Fourier Transform

- A signal can be **reconstructed** from its spectrum:

 \[\tilde{x}(t) = \int_{-\infty}^{+\infty} X(f) e^{2\pi jft} df \]

- \(\tilde{x}(t) \) is the reconstruction of \(x(t) \) in the basis formed by the complex sinusoidal functions \(\{ e^{2\pi jft} \}_{f \in \mathbb{R}} \).
Session Summary

- Continuous signals
- Propagation models
- Fourier transform
- Convolution
- Inverse Fourier transform
2. Methodological Foundations

1. Robot heads and acoustic laboratories
2. Binaural Processing Pipeline
3. Continuous-time Fourier transform
4. Continuous short-time Fourier transform
5. Discrete-time signals
6. Discrete short-time Fourier transform
7. Spectrogram of an acoustic signal
8. Cross-correlation
9. Relative transfer function
10. Binaural features
Short Time Fourier Transform (I)

- In practice, the Fourier transform is not very useful.
- The **short time Fourier transform** (STFT) is applied to the signal multiplied with a window function.
- This yields a two-dimensional representation or a *time-frequency* representation of the signal.
Windowing a Signal

Signal amplitude: $x(t)$

τ
short time

$w(t-\tau)$
Short Time Fourier Transform (II)

- The signal is multiplied with a **window function** which is non-zero for a short period of time:

 \[X(f, \tau) = \int_{-\infty}^{+\infty} x(t)w(t - \tau)e^{-2\pi jft} dt \]

- The window function, centered at \(\tau \) can be slid along the time axis.
- This yields a two-dimensional representation or a **time-frequency** representation of the signal.
Convolution with the STFT

- Using the short-time Fourier transform the temporal convolution

\[x(t) = h(t) \ast s(t) \]

- becomes:

\[X(f, \tau) = H(f)S(f, \tau) \]

- The filter is constant over time, hence \(H(f, \tau) = H(f) \).

Very important:

- \(t \) (time index) is not the same as \(\tau \) (slid index).
The Inverse STFT

- The signal can be recovered from the time-frequency representation:

\[
\tilde{x}(t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} X(f, \tau) e^{2\pi j ft} \, d\tau \, df
\]
Session Summary

- Windowing a signal
- STFT
- Convolution with the STFT
- Inverse STFT
2. Methodological Foundations

1. Robot heads and acoustic laboratories
2. Binaural Processing Pipeline
3. Continuous-time Fourier transform
4. Continuous short-time Fourier transform
5. Discrete-time signals
6. Discrete short-time Fourier transform
7. Spectrogram of an acoustic signal
8. Cross-correlation
9. Relative transfer function
10. Binaural features
Discrete-time Signals

- So far we considered continuous-time (analog) signals as they appear in nature.
- These signals must be sampled such that they can be processed by a computer.
- Sampling acoustic signals: 16,000 samples/second.
- The amplitude is also quantized such that the signal becomes digital.
A Digital Signal

Signal amplitude

16000 samples/second

discrete time
Notation

In many signal processing textbooks:

- The notation $x(t)$ is used for continuous signals, with $t \in \mathbb{R}$.
- The notation $x[n]$ is used for digital signals, with $n \in \mathbb{Z}$ (relative integer numbers).

For simplicity we will use the notation $x(t)$ for digital signals, with $t \in \mathbb{Z}$.
Discrete-time Fourier Transform (DFT)

- The Fourier transform can be written for digital signals:

$$X(f) = \frac{1}{N} \sum_{t=1}^{N} x(t)e^{-2\pi jft/N}$$

- f is an integer, for example 1, \ldots, f, \ldots, F.

- $X(1), \ldots, X(f), \ldots, X(F)$ are complex numbers that encode the amplitude and phase of the signal for each frequency.
Session Summary

- Discrete signals
- Notation conventions
- Discrete Fourier transform
2. Methodological Foundations

1. Robot heads and acoustic laboratories
2. Binaural Processing Pipeline
3. Continuous-time Fourier transform
4. Continuous short-time Fourier transform
5. Discrete-time signals
6. **Discrete short-time Fourier transform**
7. Spectrogram of an acoustic signal
8. Cross-correlation
9. Relative transfer function
10. Binaural features
Digital Signal in a Temporal Window

Signal amplitude

frame or window
(1024 samples in 64 ms)
The Discrete-time Fourier transform is applied to a temporal window, or a frame:

\[X(f, \tau) = \frac{1}{N} \sum_{t=1}^{N} x(t) w(t - \tau) e^{-2\pi j ft/N} \]

- \(\tau \) is the frame index.
- The frequency \(f \), time \(t \), and shift \(\tau \) are discrete.
- \(X(f, \tau) \) is a complex-valued Fourier coefficient.
The Time-Shfit Theorem

- Let $X(f, \tau)$ be the STFT of $x(t)$.
- The STFT of x, shifted by t', is circularly shifted by a phase:
 \[x(t - t') \Rightarrow X(f, \tau)e^{2\pi jft'/N} \]
- Notice that this phase shift $\alpha = 2\pi jft'/N$ depends on the frequency f and on the time-shift t'.
The STFT for One Frame

Frame i

STFT

512 complex Fourier coefficients (0 to 8000 Hz)
Session Summary

- Windowing a discrete signal
- Discrete STFT
- Time-shift theorem
- The notion of frame
2. Methodological Foundations

1. Robot heads and acoustic laboratories
2. Binaural Processing Pipeline
3. Continuous-time Fourier transform
4. Continuous short-time Fourier transform
5. Discrete-time signals
6. Discrete short-time Fourier transform
7. **Spectrogram of an acoustic signal**
8. Cross-correlation
9. Relative transfer function
10. Binaural features
Building a Spectrogram

- We consider a frame of size 64 ms (or 1024 samples).
- The frame is slid along time with an 128 sample shift, (or 8 ms): \(\tau_1 = 128, \tau_2 = 256, \ldots, \tau_8 = 1024 \), etc.
Shifting the Frames Along the Signal

Signal amplitude

discrete time

shift (8 ms)
128 samples

frame (64 ms)
1024 samples
Spectrogram

In this way we can build a complex-valued spectrogram of a signal $x(t)$:

- $X(f, \tau) \in \mathbb{C}$ is also called a frequency-time coefficient with coordinates f and τ.
- $1 \leq f \leq F$ ($F = 512$ for a frequency range between 0 Hz and 8000 Hz).
- $1 \leq \tau \leq L$ (there are 126 frames for a signal of one second).
- Spectrogram visualization, the module: $\mathcal{X}(f, \tau) = |X(f, \tau)|$.

49
The Spectrogram of a Speech Signal
Session Summary

- How to build a spectrogram
- Spectrogram structure
- Spectrogram of speech
2. Methodological Foundations

1. Robot heads and acoustic laboratories
2. Binaural Processing Pipeline
3. Continuous-time Fourier transform
4. Continuous short-time Fourier transform
5. Discrete-time signals
6. Discrete short-time Fourier transform
7. Spectrogram of an acoustic signal
8. **Cross-correlation**
9. Relative transfer function
10. Binaural features
Cross-Correlation of Two Signals

- The cross-correlation (CC) function is a fundamental tool for comparing two signals:

\[
r_{x_1,x_2}(\tau) = \sum_{t=1}^{T} x_1(t)x_2(t - \tau)
\]

- Cross-correlation is a fundamental tool in binaural hearing as it allows to estimate the time difference between two signals recorded with two microphones:

\[
\hat{\tau} = \arg\max_{\tau} r_{x_1,x_2}(\tau)
\]
The normalized cross-correlation (NCC) function varies between 0 (fully uncorrelated signals) and 1 (identical signals):

$$\rho_{x_1,x_2}(\tau) = \frac{r_{x_1,x_2}(\tau)}{(r_{x_1,x_1}(0)r_{x_2,x_2}(0))^{1/2}}$$

$r_{x,x}(0) = \sum_{t=1}^{T} |x(t)|^2$ is also called the power of the signal.
The Power Spectral Density (PSD)

- In the spectral domain, one can compute the signal power for each frequency.
- First, we compute the power over a frame \(l\)
 \[
 \phi_{x,x}(f, l) = X(f, l)X^*(f, l) = |X(f, l)|^2
 \]
- Second we compute the average power over several frames:
 \[
 \Phi_{x,x}(f) = \frac{1}{L} \sum_{l=1}^{L} \phi_{x,x}(f, l)
 \]
The Cross-Power Spectral Density

- We can also define the **cross-power** of two signals for a frame l:

$$\phi_{x_1,x_2}(f, l) = X_1(f, l)X_2^*(f, l),$$

- as well as the average power over several frames:

$$\Phi_{x_1,x_2}(f) = \frac{1}{L} \sum_{l=1}^{L} \phi_{x_1,x_2}(f, l)$$
Session Summary

- Correlating two signals
- Power spectral density
- Cross-correlation in the spectral domain
2. Methodological Foundations

1. Robot heads and acoustic laboratories
2. Binaural Processing Pipeline
3. Continuous-time Fourier transform
4. Continuous short-time Fourier transform
5. Discrete-time signals
6. Discrete short-time Fourier transform
7. Spectrogram of an acoustic signal
8. Cross-correlation
9. Relative transfer function
10. Binaural features
Using Two Microphones

- We now address the problem of defining some kind of **binaural features** that can be used to characterize sounds and to extract source parameters.
- Propagation model:

\[
\begin{align*}
x_1(t) &= h_1(t) \ast s(t) \\
x_2(t - t') &= h_2(t) \ast s(t)
\end{align*}
\]

- The signal \(x_2\) is delayed by \(t'\) with respect to \(x_1\).
- In the spectral domain we have:

\[
\begin{align*}
X_1(f, l) &= H_1(f)S(f, l) \\
X_2(f, l)e^{\alpha(f, l, t')} &= H_2(f)S(f, l)
\end{align*}
\]
The relative transfer function (RTF):

\[H_{\text{rel}}(f) = \frac{H_2(f)}{H_1(f)} \]

The RTF encodes binaural information:

\[H_{\text{rel}}(f) \approx \frac{|X_2(f, l)|}{|X_1(f, l)|} e^{\alpha(f, l', t')} \]
Relative Transfer Function

- The RTF is a complex-valued function.
- The magnitude of the RTF encodes the ratio of the left and right magnitudes for each frequency f and frame l.
- The argument of the RTF depends on the time-delay between the two microphone signals:

\[H_{\text{rel}}(f, l) = H_{\text{rel}}(f, l)e^{\alpha(f, l, t')} \]
Estimation of the RTF

- We consider the power spectral density and cross-power spectral density of the two microphone signals:

\[
\Phi_{x_1,x_1}(f) = \frac{1}{L} H_1(f) H_1^*(f) \sum_{l=1}^{L} |S(f, l)|^2
\]

\[
\Phi_{x_1,x_2}(f) = \frac{1}{L} H_1(f) H_2^*(f) \sum_{l=1}^{L} |S(f, l)|^2
\]

- The RTF can be estimated with:

\[
\hat{H}_{rel}(f) \approx \frac{\Phi_{x_1,x_2}(f)}{\Phi_{x_1,x_1}(f)}
\]
A Robot Head

Binaural head

Sound sources
The Head Related Transfer Function

- If there are no reverberations (anechoic environment) the impulse responses h_1 and h_2 model the filtering effects of the head and of the pinnae.
- In this case, the RTF is called the **head related transfer function** (HRTF):

$$H_{\text{head}}(f) = \frac{H_2(f)}{H_1(f)}$$

- The HRTF can be estimated using the same principle as the RTF, for each frame l:

$$\hat{H}_{\text{head}}(f, l) \approx \frac{\phi_{x_1,x_2}(f, l)}{\phi_{x_1,x_1}(f, l)}$$
Session Summary

• Relative transfer function
• Estimation of RTF
• Back to a robot head
• Head-related transfer function
2. Methodological Foundations

1. Robot heads and acoustic laboratories
2. Binaural Processing Pipeline
3. Continuous-time Fourier transform
4. Continuous short-time Fourier transform
5. Discrete-time signals
6. Discrete short-time Fourier transform
7. Spectrogram of an acoustic signal
8. Cross-correlation
9. Relative transfer function
10. **Binaural features**
Binaural Cues

• The log-magnitude of HRTF is called the **interaural level difference** (ILD);
• The argument of HRTF is called the **interaural phase difference** (IPD):

\[
\text{ILD}(f, l) = 20 \log |\hat{H}_{\text{head}}(f, l)|
\]

\[
\text{IPD}(f, l) = \arg(\hat{H}_{\text{head}}(f, l))
\]

• The IPD is the equivalent of a time-delay, **interaural time difference** (ITD).
ILD Vector

- The ILD is the magnitude of the head-related transfer function:

\[
\text{ILD}(f, l) \in \mathbb{R}, \forall f, 1 \leq f \leq F, \forall l, 1 \leq l \leq L
\]

- The ILD values corresponding to the \(l \)-frame form a vector of dimension \(F \):

\[
\mathbf{ILD}(l) = (\text{ILD}(1, l), \ldots, \text{ILD}(f, l), \ldots, \text{ILD}(F, l))^\top \in \mathbb{R}^F
\]
IPD Vector

- The IPD is the phase of the head-related transfer function, and it can be represented by its real and imaginary parts:

\[
\text{ILD}(f, l) \in \mathbb{R}^2, \forall f, 1 \leq f \leq F, \forall l, 1 \leq l \leq L
\]

- The IPD values corresponding to the \(l\)-frame form a vector of dimension \(2F\):

\[
\text{IPD}(l) = (\text{IPD}(1, l), \ldots, \text{IPD}(f, l), \ldots, \text{IPD}(F, l))^\top \in \mathbb{R}^{2F}
\]
Binaural Spectrograms

- The ILD and IPD vectors can form spectrograms.
- A spectrogram can be viewed as a time-series of L vectors:
 - **ILD spectrogram**: $\text{ILD}(1), \ldots, \text{ILD}(l), \ldots, \text{ILD}(L)$
 - **IPD spectrogram**: $\text{IPD}(1), \ldots, \text{IPD}(l), \ldots, \text{IPD}(L)$
ILD and IPD Spectrograms of a Speech Signal

Speech (left microphone) ILD IPD
ILPD Vectors

- Concatenate ILD and IPD vectors for each frame I.
- We obtain **ILPD vectors** $y(1), \ldots, y(I), \ldots, y(L) \in \mathbb{R}^{3F}$.
- Example: $F = 512$ (number of frequencies used to represent the signal in the Fourier domain)
- $y(I) \in \mathbb{R}^{1536}$ is a **high-dimensional** vector.
Example of an ILPD Vector
How To Compute ILPD Vectors?

- Record a sound of length T with two microphones plugged in a robot head and discretize the signals at 16000 samples per second, $x_1(t), x_2(t)$.
- Compute the STFT representations of the two signals, L frames with 128 samples per frame, $X_1(l), X_2(l)$.
- Estimate the ILD and IPD for each frame.
- Concatenate the ILD and IPD.
Session Summary

- Binaural cues
- Interaural level difference (ILD)
- Interaural phase difference (IPD)
- Binaural spectrograms
- ILPD features
Week Summary

- Robot heads with ears, sound sources with known properties, acoustic laboratories.
- Binaural processing pipeline: from speakers to their locations and identity.
- Signal processing in the continuous and discrete domains.
- Spectrograms, transfer functions, binaural features.