Long story short: the summary of (more than) a
decade of probabilistic audio-visual learning
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(and a long list of great people)
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> Sensors are mature
> Embedded in numerous devices

3. Probabilistic Learning: » Cheap perception solution

> Usually unsupervised
> Learn properties of noise/clutter

> Infer latent variables 4. Potential impact:

> Behavior analysis
> Robotic social interaction
> Healthcare, training, security, ...

2. From a technological perspective:
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Probabilistic Audio-Visual Learning Setting

Picture a social scene with multiple people We obtain auditory (sounds) and
chatting and interacting. visual (images) features.

A device observes de scene with We would like to infer latent
microphones and cameras. variables (position, speaking status).
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Well, OK, but how?

What is the methodology?

(Apologies if the next slides are a bit dense)
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Unsupervised Probabilistic Learning

Observations will be denoted by x“ and x"
Latent variables by z

We need to set up a probabilistic
model parametrised by the set 9

pe(x*,x"|z)pe(2)
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Unsupervised Probabilistic Learning

Observations will be denoted by x“ and x" Learning « maximum likelihood:
Latent variables by z 0" — arg mgx log pe (Xa’ Xv)

We need to set up a probabilistic
model parametrised by the set 0 Inference & expected value (or mode)

2" = Ep,. (z1x xv) 12}

pe(x*,x"|z)pe(2)

Examples: Gaussian mixture models, hidden Markov models, conditional random
fields, linear dynamical systems (Kalman filter), probabilistic PCA, variational
autoencoders (and dynamical ones), normalising flow, diffusion models, ...
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Direct optimisation not analytically solvable: Expectation: given 8%, compute:
arg max log p (x) Q(0,07) = Ep, oflogpe(x,2) }

What if we cannot compute the posterior?

Optimise the expected complete-data log-like: | Maximisation: set up the new 9* to:

argmaxE, . ,x)1logpe(x,2)} 0" + arg max Q(6,0%)

0
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Scientific life lessons

(Lecons de vie scientifique)
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Back to 2009, Barcelona...
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Back to 2009, Barcelona...

La paciéncia és la mare de la ciencia. (catalan proverb)
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Masters Thesis

Safe environment!
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Masters Thesis

Safe environment!

Take pride in what you do, but
don't let your pride guide you.
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PhD Thesis — 1% Submission

Want to do things on your
own, but perhaps not ready ;)

Perseverance is key.
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PhD Thesis -
Paper Writing

“Writing” journal paper by
concatenating two short papers | O
(obtaining a long complex paper) (R EAMES

o i
ST

Writing is 1/3 of your research time.
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PhD Thesis — Focus

We could do that, and that, and that, ...

...yeah, sure, but focus.
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PhD Thesis —  with highiights,
Defence

unexpected features, SEEE
Tell a story... 3

...and be proud of your work!
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Its the not the Destination,
it's the journey.

Merci beaucoup, Radu !
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