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➢ Have different statistical patterns 2. From a technological perspective:

➢ Sensors are mature
➢ Embedded in numerous devices
➢ Cheap perception solution

4. Potential impact:
➢ Behavior analysis
➢ Robotic social interaction
➢ Healthcare, training, security, ...

3. Probabilistic Learning:
➢ Usually unsupervised
➢ Learn properties of noise/clutter
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Probabilistic Audio-Visual Learning Setting

Picture a social scene with multiple people 
chatting and interacting.

A device observes de scene with 
microphones and cameras.

We obtain auditory (sounds) and 
visual (images) features.

We would like to infer latent 
variables (position, speaking status).
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Well, OK, but how?

What is the methodology?

(Apologies if the next slides are a bit dense)
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Unsupervised Probabilistic Learning

Observations will be denoted by
Latent variables by

We need to set up a probabilistic 
model parametrised by the set 

Learning ↔ maximum likelihood:

Inference  expected value (or mode)↔

Examples: Gaussian mixture models, hidden Markov models, conditional random 
fields, linear dynamical systems (Kalman filter), probabilistic PCA, variational 
autoencoders (and dynamical ones), normalising flow, diffusion models, ...
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EM Algorithms for Weighted-Data Clustering for AV Scene Analysis, TPAMI 2016.

Acoustic Space Learning for Sound-source Separation and Localization 
on Binaural Manifolds, Neural Systems, 2015 – Hojjat Adeli Award for 
Outstanding Contributions in Neural Systems

What if we cannot compute the posterior?
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Variational Bayesian Inference for Audio-Visual Tracking of Multiple Speakers, 
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How is all this possible?
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Scientific life lessons

(Leçons de vie scientifique)
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Back to 2009, Barcelona...

La paciència és la mare de la ciència. (catalan proverb)
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Perseverance is key.
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Writing is 1/3 of your research time.
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...yeah, sure, but focus.
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Merci beaucoup, Radu !

Its the not the Destination,
it's the journey.
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