
Litbot documentation

Guillaume Sarrazin - Bastien Mourgue

May 2019

Contents

1 ROS introduction 3
1.1 Install and set ROS environment 3
1.2 Compile ROS packages . 3
1.3 Launch roscore . 4
1.4 Launch a node . 6
1.5 ROS tutorial to learn more . 6

2 Litbot repository manipulation 7
2.1 Cloning and initialising the repository 7
2.2 Litbot repository structure . 7
2.3 Git annex manipulation . 8
2.4 Important git-annex files in litbot 11

3 Litbot compilation 12

4 Litbot runtime architecture 12
4.1 Main principles . 12
4.2 Different configurations . 13

5 Litbot nodes description 15
5.1 audio dereverberation . 15
5.2 audio dereverberation test 16
5.3 control synchro . 16
5.4 demo maker . 17
5.5 demo maker external launcher 19

1

5.6 distance estimation . 20
5.7 external process notify end 20
5.8 facedetection . 20
5.9 features compute . 21
5.10 fusion . 21
5.11 mssl generate grid . 22
5.12 mssl ros . 23
5.13 mssl visual . 25
5.14 name assignment . 26
5.15 position3d . 26
5.16 robot fsm . 27
5.17 test coordinate transformation 29
5.18 tracker3d . 29
5.19 tracker control . 31
5.20 visualisation . 32
5.21 main dialog name system.py 33
5.22 main speaker charac.py . 34
5.23 face detection ros.py . 35
5.24 main sentence activity detector.py 36
5.25 main speech recognition.py 37
5.26 robot communication.py . 38
5.27 speaker charac test.py . 39
5.28 ros communication example.py 39
5.29 resample.py . 39

6 Robots tricks 40
6.1 Local link connection to Lito 40
6.2 Lito drivers errors . 40

A RMP compilation 41
A.1 Old RMP compilation . 41
A.2 New RMP . 41

2

1 ROS introduction

ROS is a middleware which provides communications API between applica-
tions.

With ROS, an application is called a node. The applications can com-
municate in a typical server/client way, or they can send messages through
topics. A topic is a communication canal, identified by a unique name, on
which nodes can publish messages or receive messages after a subscription to
the topic.

ROS uses the notion of package. A ROS package regroups a set of nodes
and messages definitions to fulfill a certain goal.

1.1 Install and set ROS environment

To install ROS on your computer, follow this link: http://wiki.ros.org/

Installation. After the installation, do not forget to source ROS setup in
every terminal you want to use ROS, or write this line in your .bashrc:

$ source /opt/ros/<ros_version_name>/setup.[bash|sh|zsh]

1.2 Compile ROS packages

ROS uses an overlay above CMake called catkin make.
A package is defined by one main CMakeLists.txt and one package.xml.

Read ROS tutorial to learn how to write a CMakeLists.txt and a package.xml
for catkin make.

All the packages should be group under a common src directory. Let’s
say the tree is as follow:

ros_workspace

src

package1

CMakeLists.txt

package.xml

package2

CMakeLists.txt

package.xml

package3

3

http://wiki.ros.org/Installation
http://wiki.ros.org/Installation

CMakeLists.txt

package.xml

To compile the 3 packages, you only have to type catkin_make in ros_workspace

directory.

$ cd ros_workspace

$ catkin_make

It will generate 2 directories:

• build: it contains the intermediate build files.

• devel: it contains the final libraries, executables, messages headers,
etc.

To use the new build packages, source the setup file located in devel

directory:

$ source devel/setup.[bash|sh|zsh]

If you want to install the package, type:

$ catkin_make install

It will generate a third directory: install. Use the variable CMAKE_INSTALL_PREFIX
to install in a specific directory:

$ catkin_make install -DCMAKE_INSTALL_PREFIX=<your_specific_directory>

1.3 Launch roscore

To manage communication between nodes, ROS needs a main server, called
roscore, ROS master or ROS server. The first thing to do is to start roscore.
For that, open a new terminal and type roscore:

$ roscore

... logging to /home/gsarrazi/.ros/log/1c7ff9e2-7275-11e9-a098-\

54bf6463303e/roslaunch-ursa-26924.log

Checking log directory for disk usage. This may take awhile.

Press Ctrl-C to interrupt

Done checking log file disk usage. Usage is <1GB.

4

started roslaunch server http://ursa:41667/

ros_comm version 1.14.3

SUMMARY

========

PARAMETERS

* /rosdistro: melodic

* /rosversion: 1.14.3

NODES

auto-starting new master

process[master]: started with pid [26951]

ROS_MASTER_URI=http://ursa:11311/

setting /run_id to 1c7ff9e2-7275-11e9-a098-54bf6463303e

process[rosout-1]: started with pid [26962]

started core service [/rosout]

Based on your network connection, some manipulation could be requiered.
If the name of your machine is not register in the DNS database (like

laptop-pollux) or if you build a local network, your server address will come
back to localhost. It leads generally to communication problems between
nodes if you use multiple computers. In this case, you should set the envi-
ronment variable ROS_IP based on your IP before launching roscore. Use for
example ifconfig command to find your IP, then type in your terminal:

$ export ROS_IP=<your_ip>

$ roscore

A good clue to know if there is a problem with roscore is to look to
the ROS_MASTER_URI line in the message printed by roscore. It contains
the address/port to use to communicate with the server. If the address is
localhost like that:

ROS_MASTER_URI=http://localhost:11311/

5

you need to add configuration information for ROS.
An other solution is to ping the name of your machine. If it does not

work, then you have to set ROS_IP.

1.4 Launch a node

For all terminals which will launch a ros node, you should:

• export ROS_IP environment variable if the name is not known in the
DNS database. For Inria Montbonnot, machines registers in the DNS
have a fixe IP. The ones not registers in the DNS have a floating IP (as
laptop-pollux).

$ export ROS_IP=<your_ip>

• export ROS_MASTER_URI if the terminal is not running on the same
computer than roscore. Copy/paste the ROS_MASTER_URI line printed
by roscore.

$ export ROS_MASTER_URI=http://machine_name:11311/

• source setup.[sh/bash/zsh] of litbot project. The extension depends on
the shell you are using.

$ cd <path_to_litbot>

$ source ros_workspace/devel/setup.[sh/bash/zsh]

1.5 ROS tutorial to learn more

If you want to learn more about ROS, you can read the following tutorial:
http://wiki.ros.org/ROS/Tutorials

6

http://wiki.ros.org/ROS/Tutorials

2 Litbot repository manipulation

2.1 Cloning and initialising the repository

The repository called litbot is stored in Inria gitlab at url https://gitlab.
inria.fr/perception-ral/litbot. It contains a git submodule rmp (at
url https://gitlab.inria.fr/perception-ral/rmp)A.

To initialize it, you need to clone and then to initialize the submodule.

$ git clone git@gitlab.inria.fr:perception-ral/litbot.git

$ cd litbot

$ git submodule update --init

You can find more information on git submodule on internet. For exam-
ple: https://git-scm.com/book/en/v2/Git-Tools-Submodules.

2.2 Litbot repository structure

Separation of ros workspace and code The ROS related part is in
directory ros_workspace. As a normal ros workspace, it contains a src

directory. There is no package inside this directory but only symbolics links
to the true implementation of the packages. The symbolics links can be set
through the script pre_compile_script.sh.

All the code of litbot package is located in global_workspace.

Structure of global workspace

• audio: all the code related with audio: multiple sound source localiza-
tion (mssl), speech recognition, dereverberation, speacher characterisa-
tion.

• demo_config: configuration files of the different panels for demo_maker.

• dialog: all code related to dialog. There are a look up table to asso-
ciate a name with a tracked identity and code to manage a short dialog
to ask people name.

• doc: old report for Samsung which were never really used.

• external_independant_libraries: contains code develop in others
repositories (as RMP) or others libraries developed outside litbot.

7

https://gitlab.inria.fr/perception-ral/litbot
https://gitlab.inria.fr/perception-ral/litbot
https://gitlab.inria.fr/perception-ral/rmp
https://git-scm.com/book/en/v2/Git-Tools-Submodules

• fusion: code to fusion audio sound source detection and tracked faces.

• global_utils: general code which could be used in all others libraries
or nodes.

• launch: launch script. They can be used to start different nodes in
one command lines. They are not used since a while because we use
demo_maker now to start nodes.

• msg: ros messages for litbot package.

• robot_config: configuration files. It contains constant parameters
used in litbot nodes as tracker, mssl, etc. The parameters can change
according to the robot used. We tried to regroup all the parameters
here for clarity.

• robot_fsm: code which manage robot behavior.

• script: scripts.

• srv: ros request/reply definitions for the services.

• vision: all code related to vision: face detection, position 3d esti-
mation, appearance model (to improve the face features already com-
puted) and the tracker.

• visualisation: visualisation tools. mssl_visualisation and opencv_visu

are too old tools in OpenCV to draw the results of our algorithm.
qt_visu is the new tool to see them demo_make node.

2.3 Git annex manipulation

Git-annex is used to version big files with git repository. But the files are not
stored in the git repository as usual files. In fact they are stored separatly
and git uses references to the big files.

More information are available here: https://writequit.org/articles/
getting-started-with-git-annex.html or https://git-annex.branchable.
com/walkthrough/.

8

https://writequit.org/articles/getting-started-with-git-annex.html
https://writequit.org/articles/getting-started-with-git-annex.html
https://git-annex.branchable.com/walkthrough/
https://git-annex.branchable.com/walkthrough/

We use git-annex in litbot for big files as neural network models, python
serialize output (pickel files), etc. Each git repository can store all the git-
annex files we want, but by convention, we put at least one copy on the git-
annex repository located at ursa:/local scratch2/git-annex/litbot and
we call it main annex ursa (again by presonnal convention).

To add, remove or get files from git-annex, follow the following instruc-
tions which are a quick start on git-annex.

• First install git-annex:

sudo apt-get update && sudo apt-get install git-annex

• Then go in litbot repository and initialise the current repository as a
git-annex repository:

$ cd litbot

$ git annex init "a_unique_name"

By convention, I replaced a_unique_name by myLogin_nameOfTheMachine.
For example: gsarrazi_auriga

• Then add at least one remote git-annex repository. Here we add the
git-annex repository which centralized all the git-annex files.

$ git remote add main_annex_ursa \

ssh://ursa/local_scratch2/git-annex/litbot

It is supposed that your ssh access is correctly set.

• To find where are located the git-annex files:

$ git annex whereis

• To add a file toto.h5 to git-annex:

$ git annex add toto.h5

$ git commit -m "Add toto.h5 file in the git-annex"

$ git push #if you want to push of course

9

• To send the file toto.h5 to git-annex remote main_annex_ursa:

$ git annex copy toto.h5 --to main_annex_ursa

• To copy the file toto.h5 from git-annex remote main_annex_ursa:

$ git annex copy toto.h5 --from main_annex_ursa

• To synchronize git-annex meta-data:

$ git annex sync

This command is required to get the last information about: where are
located the files, if there are new files, modified files, removed files, etc.

WARNING: this command does an automatic commit of all your
modified files, even the submodules. You must be in a clean repository
before executing it if you do not want your git history become dirty!
Think to use git stash if needed.

• To get ALL git-annex files:

$ git annex sync --content

WARNING: this command does an automatic commit of all your
modified files, even the submodules. You must be in a clean repository
before executing it if you do not want your git history become dirty!
Think to use git stash if needed.

So when you clone litbot, you will typically type:

$ cd litbot

$ git annex init "a_unique_name"

$ git remote add main_annex_ursa ssh://ursa/local_scratch2/git-annex/litbot

$ git annex sync

$ git annex sync --content #if you want to get all the git-annex files

$ git annex copy path_to_the_file --from main_annex_ursa #if you want to \

get only the files you need

10

2.4 Important git-annex files in litbot

To see all the files present in git-annex, you can type:

$ git annex list

here

|main_annex_ursa

||origin

|||web

||||bittorrent

|||||

XX___ global_workspace/audio/speaker_charac/cnn_voxceleb_weights/L11_b.npy

XX___ global_workspace/audio/speaker_charac/cnn_voxceleb_weights/L11_w.npy

XX___ global_workspace/audio/speaker_charac/cnn_voxceleb_weights/L14_b.npy

XX___ global_workspace/audio/speaker_charac/cnn_voxceleb_weights/L14_w.npy

XX___ global_workspace/audio/speaker_charac/cnn_voxceleb_weights/L1_b.npy

XX___ global_workspace/audio/speaker_charac/cnn_voxceleb_weights/L1_w.npy

XX___ global_workspace/audio/speaker_charac/cnn_voxceleb_weights/L3_b.npy

XX___ global_workspace/audio/speaker_charac/cnn_voxceleb_weights/L3_w.npy

XX___ global_workspace/audio/speaker_charac/cnn_voxceleb_weights/L5_b.npy

XX___ global_workspace/audio/speaker_charac/cnn_voxceleb_weights/L5_w.npy

XX___ global_workspace/audio/speaker_charac/cnn_voxceleb_weights/L6_b.npy

XX___ global_workspace/audio/speaker_charac/cnn_voxceleb_weights/L6_w.npy

XX___ global_workspace/audio/speaker_charac/cnn_voxceleb_weights/L7_b.npy

XX___ global_workspace/audio/speaker_charac/cnn_voxceleb_weights/L7_w.npy

XX___ global_workspace/audio/speaker_charac/cnn_voxceleb_weights/L9_b.npy

XX___ global_workspace/audio/speaker_charac/cnn_voxceleb_weights/L9_w.npy

XX___ global_workspace/audio/speaker_charac/weights-best-8x1.hdf5

XX___ global_workspace/vision/appearance_model/model/IDE_ad_20180828.h5

XX___ global_workspace/vision/appearance_model/model/IDE_ad_20180828.pb

XX___ global_workspace/vision/appearance_model/model/IDE_ad_20180828.uff

XX___ global_workspace/vision/appearance_model/model/IDE_ad_641065.h5

_X___ global_workspace/vision/appearance_model/model/IDE_ad_783652_30.h5

XX___ global_workspace/vision/appearance_model/model/IDE_ad_783652_30_LMP.h5

XX___ global_workspace/vision/appearance_model/model/IDE_ad_783652_30_max.h5

XX___ global_workspace/vision/appearance_model/model/IDE_ad_828530.h5

XX___ global_workspace/vision/appearance_model/model/IDE_ad_828530.pb

XX___ global_workspace/vision/appearance_model/model/IDE_ad_828530.uff

XX___ global_workspace/vision/appearance_model/python/generate_database/\

11

default_database.pkl

The files which are currently required to run the demonstration are:

• for tracker3d with the appearance model using the siamese netwok:

global_workspace/vision/appearance_model/python/generate_database/\

default_database.pkl

• for speaker_charac:

global_workspace/audio/speaker_charac/cnn_voxceleb_weights/*

3 Litbot compilation

Litbot needs 4 differents packages to be fully compiled: robot_com, nao_driver,
lito_driver and litbot packages. They will be located in ros_workspace/src,
but only as symbolic link. The following script located in ros_workspace

does it automatically.

$ cd <path_to_ros_workspace>

$./pre_compile_script.sh

If you use Ubuntu 18.04, naoqi-libqi ros package does not exists yet.
Remove nao_driver ros package.

$ cd <litbot_dir>/ros_workspace

$ catkin_make

Read README.txt at the root of litbot repository for more information.

4 Litbot runtime architecture

4.1 Main principles

The principles of litbot workflow can be summarise in the figure ??.
There are the robot specific nodes which extract the raw data from the

sensors. These raw data are:

12

Robot Dependant

Audio

Motors

Image
(video) Face Tracker

Fusion MSSL

&

Tracked Faces

Speech
Recognition

Sentence
DetectorMSSL

Face
Detector

(GPU)

FSM

Position 3D

(Google Speech)*

*

ROS Node ROS Messages Exchanged

Figure 1: Global ROS Data flow

• audio raw data from 4 microphones

• mono or stereo images and their calibration

• yaw and pitch motors position

The others nodes do not communicate with the robot. When some com-
mands should be performed, they are first send to the node handling the
motors which is motors specific.

4.2 Different configurations

In the following paragraphs, different possibles nodes combinations will be
shown, each combination corresponds to a specific demonstration. Of course,

13

once you understand them, you can mixe them as you want.

Face tracking only No audio is used in this case. The robot behavior is
active in order the robot follow the person it sees: figure 2.

It is better to start:

• face detector ros.py with option --with-face-features in order
to have a better appearance model.

• tracker3d with option --appearance-model-dir in order to increase
again the robustness of the appearance model.

MSSL only No vision is used. The image grabber node can be on for
demo visualisation, but it is not mandatory. The robot behavior is active in
order the robot turns its head to the person it hears: figure 3.

MSSL and face tracking The robot turns its head to the person it hears
and follows the person it sees: figure 4.

MSSL, face tracking and fusion The robot turns its head to the person
it hears and follows the person it sees. A fusion between the person speaking
and the face tracked is done. It means that the sound source detected is
associated with one tracked identity.

There are 2 ways to do the fusion:

• it is done in a separate node and associates the sound source direction to
the clothest tracked identity (according to the yaw angle). A threhold
is used to avoid association if the sound source direction and tracked
identity are too far. The ros graph is represented in figure 5.

• it is done inside the tracker node. The EM step of the tracking algo-
rithm associates sound source directions and tracked identities. The
ros graph is represented in figure 6. The tracker must be launch with
the mode VisualWithPartialAudio.

Speech recognition When people speak to the robot, it associates the
audio sentences to a tracked identity and translate it to text. The behavior is
not used to avoid motors movement which could decrease the audio sentence
recognition or translation. It is represented in the figure 7.

14

Dialog system The tracking, MSSl, speech recognition, fusion (the one
you prefer) are used. We add a node which manage a small dialog system
(warning: this node is not tested since a while). It asks the name of persons
for which there is no name associated with their tracked identity. The ros
graph is represented in figure 8 (the fusion used is the basic one).

Audio-visual tracking Audio sound source directions and detected faces
are tracked in the same tracking algorithm. It allows to track person outside
the field of view, based only on the speech sound they emit. The ros graph
of this demonstration is represented in figure 9. Warning: the audio features
which characterise the voice of a person are not robust for the moment, so
identity switch when a person is outside the field of view can easily occure.

The tracker must be launch with the Mode Full.

5 Litbot nodes description

In this section, we will briefly describe each nodes available in litbot package.

5.1 audio dereverberation

This node implements an algorithm used to remove the reverberation of the
audio signal. This is based on the estimation of the convolutive transfer
function (CTF) to generate the inverse filter of the room impulse response.
This algorithm is adapted to a single speaker case (no overlap between speech
turns). The clean speech signal is mono-channel.

The CTF is computed in the frequency domain (STFT), and the spectral
representation of the audio signal is published into the topic signal fft.

This node could be used as input of the speech recognition system.

Short descriptions of inputs and outputs:

15

• It takes as input:

1. the audio signal (4 channels, 16000Hz).
Topic: audio_raw_16000_hz.
Message type: robot_com::AudioRaw.

• And outputs:

– Reverberation free audio signal (1 channel, 16000Hz).
Topic: dereverberation/audio_raw

Message type: robot_com::AudioRaw

– Original fft signal (4 channels, 16000Hz, 768 samples).
Topic: signal_fft

Message type: litbot::AudioFft

– Dereverberate fft signal (1 channels, 16000Hz, 768 samples).
Topic: dereverberation/signal_fft

Message type: litbot::AudioFft

5.2 audio dereverberation test

This node is just here to test some part of the dereverberation algorithm.

5.3 control synchro

This node was used to control the synchronisation between MSSl output and
tracker output. It is no more used since a while. Now, we prefer check
that the frame per second (fps) output of MSSL is enough high with the
command: rostopic hz -w 250 mssl.

Short descriptions of options, inputs and outputs:

• The command lines options are:

-h --help ”Display the current message.”
-mf --mssl-fps value ”Multiple sound sources locali-

sation output rate. (Default is
125)”

-r --robot value (required) ”Select the robot”
-vf --vision-fps value ”Multiple objects tracker out-

put rate. (Default is 15)”

16

• It takes as input:

– the tracked faces.
Topic: tracked_faces.
Message type: litbot::TrackedFaces.

– the MSSL output
Topic: mssl

Message type: litbot::MSSL.

• Output messages on terminal. The message indicates the framerate of
tracked_faces. If it is less than the one expected, it means the tracker
or the MSSL is going slower than it should be.

5.4 demo maker

Demo-maker is a GUI for managing live demonstrations of the litbot projet.
It lets you configure and launch the different nodes defined in the projet,
and display the output of the different algorithms. The display environment
contains a scene that is composed of several panels. A panel contains a set
of visual elements which are combined to display some results.

By default, the interface provides all the elements required to configure,
start, stop the demonstration and manage the visualization of the scene.
Some other features, disabled by default, could be add to perform specific
tasks :

• Designer Features : allows user to modify the scene of the display
environment : user can create new panel or remove an existing panel.

• Recording Features : allows user to generate video directly from the
demo-maker GUI. The video use the scene as images input and an audio
ros topic (robot microphones) as audio input.

Before starting the demo-maker, you need to define some environment
variables :

• DEMOMAKER PLUGINS PATH : this environment variable should
contained the path of the folder where the plugins libraries are stored.

• DEMOMAKER PATH : this environment variable should contained
the path of the base folder of the interface (global workspace/visualization/qt visu).

17

Nodes of the litbot project may need to be launched in a specific computer
(GPU, robot drivers, ...). For that, you can start in the target computer the
node demo maker external launcher. When the communication between the
external launcher and the demo-maker GUI is established, you can launch the
node in the remote computer by selecting the name its name in the launcher
configuration (field launch device).

In the demo-maker GUI, you can found different configuration files. The
.demo file contains the state of the display environment. It configures the
display environment and associate each element of visualization to its region
in the scene... Usually, we use the file litbot new debug.demo. The node
configuration file sets the options of each node in order to configure the com-
mand line command used to start it. It is computer dependant because some
nodes require absolute path as option.

Ros is not directly initialized by default, in order to configure the middle-
ware using the GUI (master URI, Ros IP, Ros hostname...). These param-
eters are pre-set using the ros environment variable (ROS MASTER URI,
ROS IP, ROS HOSTNAME) as initializer.

For a complete guide of how to configure and use the demo-maker inter-
face, you can read the QuickStartGuide.

Short description of options:

18

-d or –enable-designer ”Enable designer features”
-df or –demo-file param value ”Load the demo configura-

tion file when opening the
application”

-h or –help ”Display the current mes-
sage”

-i or –ros-auto-init ”Initialize ros when opening
the application”

-nc or –node-configuration param value ”Load the node configu-
ration file (.config) when
opening the application”

-ns or –namespace param value ”Global namespace used for
all the node”

-rec or –enable-recorder ”Enable recording features”

5.5 demo maker external launcher

This node is a part of the demo-maker GUI. It lets user launch nodes on
remote computer directly from the demo-maker.

This node should be launched in the target computer. The ROS master URI
should be set before running the node. The demo maker external launcher
should be associated to an unique name (usually we use the name of the
machine) passed in the command line. This name is the one used in the GUI
to choose between the remote launchers. When the node is started, it send a
message over ROS to notify that it exists and waits for an invitation from the
demo-maker GUI. During this waiting state, nothing is displayed in the con-
sole. Once the connection with the demo-maker is established, you can see
the message ”Receive Invite from master”. When the nodes are launched in
the remote launcher, you can see in the console that the program start/stop
a given process.

The command line used to run the node is :

$ rosrun litbot demo maker external launcher name.

19

5.6 distance estimation

This node estimates the distance between detected faces and the camera
based on the size of the detection. It was used only to control the result of
the estimation, not in a demonstration scenario.

Short descriptions of options, inputs and outputs:

• It takes no option.

• It takes as input:

– the detected faces.
Topic: facedetection.
Message type: robot_com::FaceDetection.

– the camera calibration. It is needed only at the beginning.
Topic: camera_info

Message type: sensor_msgs::CameraInfo.

• And outputs:

– the distance of each detected faces.
Topic: distance_estimation.
Message type: litbot::DistanceEstimation.

5.7 external process notify end

This node is an internal process used by the demo maker when running node
using the external launcher.

5.8 facedetection

This node detects faces in an image.
Per default it uses the pico face detector, but it can also use the one

provided by OpenCV. It can run in real time on a cpu with pico face detector.
Its drawback is that it can detect only frontal faces. The code do not handle
stereo camera case.

The face detector descriptor file needed for pico is named ”facefinder”
in our repository.

Short descriptions of options, inputs and outputs:

20

• The command lines options are:

-d --display ”Display the images stream
with the faces detected.”

-f --face-detector-xml value (required) ”Path to the face detector
descriptor file.”

-h --help ”Display the current mes-
sage.”

-np --no-pico ”Do not use pico facede-
tection. Use the default
OpenCV facedetection.”

-r --robot value (required) ”Select the robot”

• It takes as input:

– an image
Topic: image_raw

Message type: sensor_msgs::Image.

– the camera calibration. It is needed only at the beginning.
Topic: camera_info

Message type: sensor_msgs::CameraInfo.

• And outputs:

– the detected faces with the fields face and upper body filled.
Topic: persons_detection.
Message type: robot_com::PersonsDetection.

– the detected faces.
Topic: facedetection.
Message type: robot_com::FaceDetection.

5.9 features compute

This node was used to test if class PersonFeaturesExtractorKeras works cor-
rectly. It was done only for debug.

5.10 fusion

This node associates the sound source direction detected (MSSL output)
with the closest tracked faces identities. The yaw angle distance is used for

21

association. A threshold defines when 2 detections are too far to be fused.
Short descriptions of options, inputs and outputs:

• The command lines options are:

-h --help ”Display the current message.”
-r --robot value (required) ”Select the robot”

• It takes as input:

– the tracked faces.
Topic: tracked_faces.
Message type: litbot::TrackedFaces.

– the MSSL output
Topic: mssl

Message type: litbot::MSSL.

• And outputs:

– the list of all tracked objects which are associated with a sound
source localisation (SSL) and the corresponding SSL list.
Topic: fusion_data

Message type: litbot::FusionData

5.11 mssl generate grid

This node lets user generate the callibration file of the mssl. It relies on the
direct-path relative transfer function estimation (the same one implemented
in mssl ros node). These features are stored into a text file. The node follows
the same steps than the mssl algorithm but does not use the EM algorithm
and the peak detection.

The grid generator uses a set of wave files as input. Each wave file is
generated from the playback of a white noise signal (sampled at 48000Hz)
from the different candidates position (distance : 1m). This can be easily
done using the audio callibration platform. The file name should respect
the following name pattern :”X.wav” with X corresponding to the angle in
degrees. The input files should contains 4 channels and have a frequency
sampling of 16000Hz or 48000Hz.

22

If the generated grid file path already exists, the old version of the file is
removed except if the option -a is activated. In this case, the new features
are append at the end of the existing file.

Short descriptions of options, inputs and outputs:

-a or –append-to-file ”Append the new generated
candidates at the end of the
file”

-d or –file-directory param value (required) ”Path to the directory
which contains the white
noise recordings”

-f or –grid-file param value (required) ”File where the grid will be
written”

-h or –help ”Display the current mes-
sage”

-r or –robot param value (required) ”Select the robot”

5.12 mssl ros

This node implements the Multiple Sound Sources Localization (MSSL) al-
gorithm. It computes the direct path relative transfer function (DP-RTF) of
the sound based on the Convolutive Transfer Function and compares these
features with a set of candidates using a recursive EM algorithm. Once the
probabilities of belonging to each candidates of the grid is computed, we
perform a peak detection to find the dominant peaks. A grid contains the
DP-RTF features in an azimutal plan (step 5 degrees) and is specific to a
robot.

The algorithm is designed to deal with multiple grids, corresponding to
different elevations. In this case, the EM algorithm compares the computed
features with each candidates of each grids and gets the highest probability
for each azimutal direction. The output vector is composed by one of the
elevation candidate for each azimutal direction. Then the classic peak detec-

23

tion is performed on this vector.

To activate the elevation part of the algorithm, you have to give as input
the folder which contains the grids. To be valid, the grid folder should
contains the different grids ordered by their elevation, and a config file. Each
line of this file is composed of the name of the grid and the elevation angle
relative to robot’s head (in degrees).

If the elevation is not active, the algorithm will return a default eleva-
tion for each angle. This default elevation is controled by the ros parameter:
default pitch.

By default, the algorithm use the audio signal from the resample ROS
node. It should be composed of 4 channels and sampled at 16000Hz. If you
want to use a file as input instead of ROS topic, use the option -f with the
wave file path. A resampling step is performed when the file is reading, but
only works for a 48000Hz audio signal. If your input file has not a good
sample rate, you have to use the fileplayer node. This node replaces the au-
dio driver and publish the audio signal in the audio raw topic (the resample
node should be launched).

When the robot’s head is moving, the probabilities should be align with
the current head position. This is performed when the motors position are
published in the motors position topic.

Short descriptions of options, inputs and outputs:

• The command lines options are:

24

-ca or –calib-audio param value (required) ”Path to the audio grid cal-
ibration file/directory”

-d or –display ”Display the selected peaks
in the console”

-f or –file param value ”Use wave file as input of
the algorithm”

-h or –help ”Display the current mes-
sage”

-r or –robot param value (required) ”Select the robot”

• It takes as input:

1. the audio signal (4 channels, 16000Hz).
Topic: audio_raw_16000_hz.
Message type: robot_com::AudioRaw.

2. the motor’s position.
Topic: motors_position

Message type: robot_com::MotorsPosition.

• And outputs:

– the sound source localization results.
Topic: mssl

Message type: litbot::Mssl

5.13 mssl visual

This node draws the probability histogram of sound source localisation. The
graphical output is generated with OpenCV.

Short descriptions of options, inputs and outputs:

• The command lines options are:

-h --help ”Display the current message.”
-r --robot value (required) ”Select the robot”

• It takes as input:

– the MSSL output
Topic: mssl

Message type: litbot::MSSL.

• There is no output.

25

5.14 name assignment

This node maintains a lookup table with the correspondence between names
and tracked object identities. The correspondances are provided through a
ros service.

Short descriptions of options, inputs and outputs:

• There is not command lines options.

• It takes as input:

– the tracked faces.
Topic: tracked_faces.
Message type: litbot::TrackedFaces.

• It provides a service:

– the request contains the name and its associated identity. There
is nothing in the answer.
Service name: name_label_association.
Service type: litbot::NameLabelAssociation.

• And outputs:

– the named tracked faces. The field name is completed with the
corresponding name if there is one.
Topic: named_tracked_faces.
Message type: litbot::TrackedFaces.

5.15 position3d

This node computes the distance between the camera(s) and the detected
faces. There are 2 cases:

• mono camera: based on the face detected size and a reference face size,
an estimation of the distance is computed.

• stereo camera: perform triangulation to compute the distance of the
detected face. Rectification of left and right image is computed. Then
the face is searched in the right image (the face detection should be
done on the left image in the previous node). Then triangulation is
computed based on the face position in the left and right image and
the stereo camera calibration.

26

Short descriptions of options, inputs and outputs:

• The command lines options are:

-cc --calib-camera value ”Path to the camera calib file”
-h --help ”Display the current message.”
-r --robot value (required) ”Select the robot”

• It takes as input:

1. the detected faces.
Topic: persons_detection.
Message type: robot_com::PersonsDetection.

2. the mono or stereo image(s).
Topic: image_raw or stereo/left/image_raw and

stereo/right/image_raw.
Message type: sensor_msgs::Image.

3. the camera calibration. It is needed only at the beginning.
Topic: camera_info

Message type: sensor_msgs::CameraInfo.

• And outputs:

– the detected faces with the fields face3d and face3d present filled.
Topic: persons3d_detection

Message type: robot_com::PersonsDetection

5.16 robot fsm

This node controls the behavior of the robot. It gets the results of other
nodes and mixes then to decide which motor commands it should send. It is
implemented as a finite state machine.

• If there is tracked object information, the robot will follow a tracked
object. It takes the first one it sees.

• If there is MSSL input, the robot will turn its head to the main peak
provided by MSSL.

27

• If there is tracked object information, MSSL input and fusion, a combi-
naison of both behavior arrives. Moreover there is a weight mechanism
which avoid switching to a new audio source if a followed tracked object
has enough weight. To gain weight, a tracked object must be detected
as speaking in the fusion node. A tracked object loss weight regularly
if it is not speaking.

• There is also states to request names if the dialog node is started.

Short descriptions of options, inputs and outputs:

• The command lines options are:

-h --help ”Display the current mes-
sage.”

-nm --no-movement ”With this option, the robot
does not move.”

-r --robot value (required) ”Select the robot”
-vf --vision-fps value ”Multiple objects tracker

output rate. (Default is
15)”

• It takes as input:

– the list of all tracked objects which are associated with a sound
source localisation (SSL) and the corresponding SSL list.
Topic: fusion_data

Message type: litbot::FusionData

– the tracked faces completed with names by name assignment

node.
Topic: named_tracked_faces.
Message type: litbot::TrackedFaces.

– the motors position.
Topic: motors_position

Message type: robot_com::MotorsPosition.

– the MSSL output
Topic: mssl

Message type: litbot::MSSL.

• And outputs:

28

– the motors commands to follow a tracked object.
Topic: motors_control

Message type: robot_com::MotorsCmd

5.17 test coordinate transformation

This node is just here to test the coordinate transformation library.

5.18 tracker3d

The node implements a tracking algorithm developed by Yutong Ban, a for-
mer PhD student of Perception team. The node has 3 possible modes:

• Visual: only face tracking is performed. It is the original mode and
the most tested one.

• VisualWithPartialAudio: face tracking is performed but audio sources
detected by the MSSL are also assigned to the tracked faces inside the
EM algorithm. This mode allows to do the fusion inside the tracking
algorithm. The node fusion is no more needed.

• Full: face and speaker tracking is performed in the same algorithm.
This mode is not very robust because the speaker features are not
robust. When a speaker is outside field of view, a lot of identity switchs
occur.

There is a variable inside the tracking algorithm which defines the maxi-
mum tracks it can manage: litbot::config::MAX_TRACKED_OBJ. It is cur-
rently set to 20. A mechanism to destroy completly old track was written
a long time ago (do not mix up with the dead process of Yutong tracking
algorithm). It was not tested recently and I think it does not work properly
anymore.

To activate the appearance model based on a siamese network developped
by Guillaume Delorme, the option --appearance-model-dir must be given.
It should point to the appearance model directory:

• inside the repository, it is located in:
<litbot_dir>/global_workspace/vision/appearance_model

• inside the install directory, it is located in:
<install_dir>/lib/python2.7/dist-packages/litbot/appearance_model

29

Do not forget to set the option --with-face-features of face detection ros.py

node to increase the robustness of the appearance model.
The node gets the calibration file through topic camera_info by default,

but it is also possible to give it in command line.
When debugging, it is quiet hard to follow what happens inside the

tracker. To ease this task, a specific log file can be created by each instance
of the tracker. The file is named: .<date>_<time>_tracker_log.txt. To
force the log output, the variable litbot::config::WRITE_LOG must be set
to true inside the file tracker_robot_config.h.

Short descriptions of options, inputs and outputs:

• The command lines options are:

-am --appearance-model-dir value ”Path to the appearance
model directory”

-cc --calib-camera value ”Path to the camera calib
file”

-h --help ”Display the current mes-
sage.”

-r --robot value (required) ”Select the robot”
-tm --tracking-mode value (required) ”Select the tracking mode.

Could be ”Visual”, ”Vi-
sualWithPartialAudio” or
”Full””

• It takes as input:

– the mono or stereo image(s).
Topic: image_raw or stereo/left/image_raw
Message type: sensor_msgs::Image.

– the detected faces.
the detected faces with the fields face3d and face3d present

filled.
Topic: persons3d_detection.
Message type: robot_com::PersonsDetection.

– the motors position.
Topic: motors_position

Message type: robot_com::MotorsPosition.

30

– when the mode VisualWithPartialAudio is activated: the MSSL
output
Topic: mssl

Message type: litbot::MSSL.

– when the mode Full is activated: the extracted speaker features.
Topic: speakers_detection.
Message type: litbot::SpeakersDetection,.

– the camera calibration. It is needed only at the beginning.
Topic: camera_info

Message type: sensor_msgs::CameraInfo.

• And outputs:

– the tracked faces.
Topic: tracked_faces.
Message type: litbot::TrackedFaces.

5.19 tracker control

This node controls the motors in order to follow tracked object. If the object
is loosed, it follows the object with the smaller identity. It is an old node no
more use since a while.

Short descriptions of options, inputs and outputs:

• There is no command line option.

• It takes as input:

1. the tracked faces.
Topic: tracked_faces.
Message type: litbot::TrackedFaces.

2. the motors position.
Topic: motors_position

Message type: robot_com::MotorsPosition.

• And outputs:

– the motors commands to follow a tracked object.
Topic: motors_control

Message type: robot_com::MotorsCmd

31

5.20 visualisation

This node draws the tracking results, the peaks detected with the MSSL,
and node fusion results on the camera image (left camera for stereo vision)
and on a top view. A synchronisation is performed on data to display data
with close timestamp. The graphical output is generated with OpenCV.

Short descriptions of options, inputs and outputs:

• The command lines options are:

-h --help ”Display the current message.”
-r --robot value (required) ”Select the robot”

• It takes as input:

– the mono or the left image of stereo camera.
Topic: image_raw or stereo/left/image_raw
Message type: sensor_msgs::Image.

– the detected faces. (No more used in the code.)
Topic: facedetection.
Message type: robot_com::FaceDetection.

– the detected faces with the fields face and upper body filled.
Topic: persons_detection.
Message type: robot_com::PersonsDetection.

– the list of all tracked objects which are associated with a sound
source localisation (SSL) and the corresponding SSL list.
Topic: fusion_data

Message type: litbot::FusionData

– the tracked faces.
Topic: tracked_faces.
Message type: litbot::TrackedFaces.

– the motors position.
Topic: motors_position

Message type: robot_com::MotorsPosition.

– the MSSL output
Topic: mssl

Message type: litbot::MSSL.

• There is no output.

32

5.21 main dialog name system.py

This node implements a dialog system to get the name of the person present
in the scene. When the robot sees a track which have no name associated to
it, the dialog system start. The dialog system follows this basic scenario:

• Robot asks the name of the person.

• The speaker answers its name.

• The robot repeates the name and asks for a confirmation

• The speaker say Yes if the name is correct, No otherwise.

The dialog system can adapt to different cases.

• User response does not correspond to predefined possibilities. The
robot says that it do not understand and repeat the last question.

• Another person gives the response of the question. The robot gives a
warning that it is not the right speaker who answered.

• The target person goes outside the field of view of the robot. The
dialog system stop directly.

User can change the language of the dialog system between french (fr-FR)
and english(en-US).

The dialog system is started from the FSM and it use the results of the
speech recognition system to get the answers of the speakers. The name is
sent using ros services to the name lookup table node.

Short descriptions of options, inputs and outputs:

• The command lines options are:

-l param value ”Language of the dialog sys-
tem (fr-FR / en-US). De-
fault : fr-FR”

33

• It takes as input:

1. Speech transcription.
Topic: speech.
Message type: litbot::SpeechResult.

5.22 main speaker charac.py

This node provides speaker features. It extracts them from sentences de-
tected thanks to MSSL and audio data energy. Different speaker features
extractor was tested: features based on MFCC, a CNN neural network build
by an intern (Caroline) and an other neural network learned on VoxCeleb
and recover under python code by an other intern (Elsa). The last one is
the most accurate even if the results are not very good. This poor results
comes from the fact we do not use the network as expected by its creators.
Normaly it should take as input a whole sentence, but we give them only a
short sliding time window (to get regularly outputs).

This node needs a good GPU to run at 10/12 fps. We use to launch this
node on auriga with GeForce GTX 1070 GPU.

To maintain a stable output rate, the time window is slided of 3 audio
input buffers when we use Lito robot. With Nao, the audio output rate is
less high, so the time window is slided of only 1 buffer. But if it is launched
in the same time as face detection ros.py, even on different computers,
we observe a decrease of output frequency for both nodes when features are
extracted from a sentence.

Short descriptions of options, inputs and outputs:

• The command lines options are:

-n --network value (required) ”Path to neural network
weight and biais files, or
model file.”

-h --help ”Display the current mes-
sage.”

-r --robot value (required) ”Select the robot”

With

Elsa neural network, --network must indicate the path to cnn voxceleb
weights which is typically:

<litbot_dir>/global_workspace/audio/speaker_charac/\

cnn_voxceleb_weights

34

• It takes as input:

– audio raw data after resampling to 16000 hz.
Topic: audio_raw_16000_hz

Message type: robot_com::AudioData.

– the MSSL output
Topic: mssl

Message type: litbot::MSSL.

• And outputs:

– the extracted speaker features.
Topic: speakers_detection.
Message type: litbot::SpeakersDetection,.

5.23 face detection ros.py

This node detects faces in an image.
It can detect frontal faces, but also side faces, almost rotated faces and

even almost occluted faces. It must be run on a GPU to be executed in real
time. Generaly we execute it on alya with a GeForce GTX 980 GPU. The
GPU must be completly free in order it works in real time (10 fps).

To active the face features extraction, the option -wf must be set. It
increases significantly the appearance model stability of the tracker.

Short descriptions of options, inputs and outputs:

• The command lines options are:

-r --robot value (required) ”Select the robot”
-h --help ”Display the current mes-

sage.”
-wf --with-face-features ”Active the face extraction

features”

• It takes as input:

– the mono or the left image of stereo camera.
Topic: image_raw or stereo/left/image_raw
Message type: sensor_msgs::Image.

• And outputs:

35

– the detected faces with the fields face and upper body filled.
Topic: persons_detection.
Message type: robot_com::PersonsDetection.

– the detected faces.
Topic: facedetection.
Message type: robot_com::FaceDetection.

5.24 main sentence activity detector.py

The sentence activity detector splits the input audio signal into segments.
One segment corresponds to a sentence. The segment separation is based on
two indicators :

• A voice activity detection

• Sources meta information (azimutal angle, id).

The voice activity detection computes the energy of the signal and com-
pares it to a threshold. The sources labelling information comes from the
multiple sound source localization (MSSL) for angle, and the fusion node (for
id of of the dominant speaker). The fusion could come from the fusion node
or the tracker2d node (mode VisualWithPartialAudio or Full).

By default, the sentence is composed of three parts. It starts with some
silent chunks, then the interresting speech signal, and ends with other silent
chunks. The sentence is considered as finished when the pause duration reach
0 second. This process is interrupted when the meta information of the cur-
rent audio chunk is incompatible with the current sentence. In this case, the
current sentence is notified as finished and a new one are created with the
new meta information. If the sound comes from a non tracked person, then
the id is set to -1.

The sentence segment only contains one channel. We select the one with
the highest energy.

36

By default, the input audio signal comes from the audio raw topic. But
you may need to use another topic (such as the dereverberate signal). In
this case, use the option -t. If you want to run multiple time the sentence
activity detector, you have to change the name of the node (the one use to
register to ROS server) using the option -n.

This node published the sentences one by one and does not publish any-
thing when no sentence is detected.

Short descriptions of options, inputs and outputs:

• The command lines options are:

-r param value (required) ”Select the robot.”
-t param value ”Input audio data topic (de-

fault audio raw).”
-n param value ”Name of the ros node.”

• It takes as input:

1. Audio raw signal.
Topic: audio_raw or topic given in command line.
Message type: robot_com::AudioRaw.

• And outputs:

– Sentence segment chunk.
Topic: speech_audio_raw

Message type: litbot::SentenceAudioData

5.25 main speech recognition.py

This node performs the transcription of the sentence segment into text. It
uses a speech recognition system (ASR). The current implementation uses
Google Speech API and request an internet connection and a credentials as-
sociated to the project.

37

Different language is available for Google Speech ASR. We use only french
and english languages.

This node uses the information contained in the SentenceAudioData mes-
sage. You can run several instance of this node by setting the -t and -n options
to define respectively topic and name information.

• The command lines options are:

-c param value (required) ”Path to google creden-
tials.”

-l param value ”Language used for ASR
system fr-FR/en-US (de-
fault en-US).”

-t param value ”Additional input sentence
audio data topic names-
pace.”

-n param value ”Name of the ros node.”

• It takes as input:

1. Sentence audio data.
Topic: speech_audio_raw or topic given in command line.
Message type: litbot::SentenceAudioData.

• And outputs:

– Speech transcription.
Topic: speech

Message type: litbot::SpeechResult

5.26 robot communication.py

This node targets new developer which are looking for python code examples.
It provides code to grab data from the robot, synchronise with ROS the
message arrival, and send motor command to the robot.

38

5.27 speaker charac test.py

The aim of this node is to test the features extracted by main_speaker_charac.py.
It contains different functions to do classification on the features. The ground
true is given by the angle position of the speakers. This node is only used
for development of main_speaker_charac.py.

Short descriptions of options, inputs and outputs:

• There is no command lines options.

• It takes as input:

– the mono or the left image of stereo camera.
Topic: image_raw or stereo/left/image_raw
Message type: sensor_msgs::Image.

• And outputs:

– the speaker audio features extracted by main speaker charac.py.
Topic: speakers_detection.
Message type: litbot::SpeakersDetection,.

5.28 ros communication example.py

This node targets new developer which are looking for python code examples.
It provides code which show how to connect to topics and set callbacks inside
or outside a class.

5.29 resample.py

This node resamples the audio signal at the specified frequency sampling. If
the sampling rate of the audio signal is the target one, then the signal is just
forwarded.

Short descriptions of options, inputs and outputs:

• The command lines options are:

-r param value (required) ”Target output sampling rate.”

• It takes as input:

39

1. Audio raw signal.
Topic: audio_raw.
Message type: robot_com::AudioRaw.

• And outputs:

– the resampled signal.
Topic: audio_raw_16000_hz

Message type: robot_com::AudioRaw

6 Robots tricks

6.1 Local link connection to Lito

If you are connected in local link with Lito robot and not on Inria network,
you must set correctly Lito network configuration.

On lito, type:

$ sudo ip ad add 192.168.1.3/24 dev eth0 valid_lft forever

It will set the ip adress of Lito to 192.168.1.3.
To remove this ip, type:

$ sudo ip ad del 192.168.1.3/24 dev eth0

Because this ip does not stay eternally, you can repeat automatically this
command every second with watch:

$ watch -n1 "sudo ip ad add 192.168.1.3/24 dev eth0 valid_lft forever"

6.2 Lito drivers errors

First, to avoid some errors in drivers on lito, you must be login. For that
connect a keyboard to Lito computer (unplug and replug it if it was connected
at lito boot time - it generally does not see it at boot time), type Ctrl+Alt+F1
and then login. The login is inria and the password is the same as the login.

If some sensor is not recognize, unplug and replug it could help. Else
reboot lito computer help also.

40

A RMP compilation

There are 2 main part in RMP.

• The old part which uses shared memory for messages exchanges be-
tween applications.

• The new part based on ROS.

A.1 Old RMP compilation

Information on packages dependancies are available in README.txt at the
root of the git repository. For the compilation, type the following command:

$ mkdir <rmp_dir>/buid

$ cd <rmp_dir>/build

$ cmake .. \

-DNAOQI_SDK_DIRECTORY=<path_to_naoqisdk> \

[-DOpenCV_DIR=<path_to_openCV>]

One important tools in the old RMP is the audio calibration platform. It
handles the rotating circular platform and play white nose to do the robot
audio calibration. It is located in: Toolboxes/AudioCalibPlatform.

A.2 New RMP

The new RMP part is located in ROSWrapper. In ROSWrapper/src/, there
are:

• cmake: cmake instruction to find old RMP shared libraries. It could be
used if you want to have communication between old RMP applications
and ROS node.

• lito_driver: audio and motor driver of lito. It contains also code for
old RMP drivers but it is no more compiled since a while.

• nao_driver: nao driver (audio, motion, video, video and face detection
together).

• recorder: tools to record drivers messages. There are a GUI if needed.

41

• robot_com: global ROS messages definition.

• sound: tools useful for sound manipulation like recording in a wav, or
reading a wav file and output it the audio topic.

To do a classic compilation, type:

$ cd ROSWrapper

$ catkin_make

Or read ROSWrapper/README.txt for more details.

42

Figure 2: Tracking only

43

Figure 3: Audio sound source localisation only

44

Figure 4: MSSL and face tracking

45

Figure 5: MSSL, face tracking and a basic fusion

46

Figure 6: MSSL, face tracking and fusion inside the tracking algorithm

47

Figure 7: Speech recognition

48

Figure 8: Dialog system

49

Figure 9: Audio visual tracking

50

	ROS introduction
	Install and set ROS environment
	Compile ROS packages
	Launch roscore
	Launch a node
	ROS tutorial to learn more

	Litbot repository manipulation
	Cloning and initialising the repository
	Litbot repository structure
	Git annex manipulation
	Important git-annex files in litbot

	Litbot compilation
	Litbot runtime architecture
	Main principles
	Different configurations

	Litbot nodes description
	audio_dereverberation
	audio_dereverberation_test
	control_synchro
	demo_maker
	demo_maker_external_launcher
	distance_estimation
	external_process_notify_end
	facedetection
	features_compute
	fusion
	mssl_generate_grid
	mssl_ros
	mssl_visual
	name_assignment
	position3d
	robot_fsm
	test_coordinate_transformation
	tracker3d
	tracker_control
	visualisation
	main_dialog_name_system.py
	main_speaker_charac.py
	face_detection_ros.py
	main_sentence_activity_detector.py
	main_speech_recognition.py
	robot_communication.py
	speaker_charac_test.py
	ros_communication_example.py
	resample.py

	Robots tricks
	Local link connection to Lito
	Lito drivers errors

	RMP compilation
	Old RMP compilation
	New RMP

