
Demo-maker Quick-start Guide

Bastien Mourgue

May 2019

1

Contents

1 Introduction 3

2 Configuration 3
2.1 Ros Server . 3
2.2 Demo-maker environment variables 4

3 Start demo-maker GUI 6
3.1 Open a demo in the demo-maker GUI 6
3.2 The command line options . 8

4 External Launcher 10

5 Configure nodes 11
5.1 Prepare launchers and subscribers 12

5.1.1 Launchers . 12
5.1.2 Subscribers . 19

5.2 Session configuration . 19
5.2.1 Predefined Selection 20
5.2.2 Global parameters . 20

6 Run the demonstration 21
6.1 Start/Stop the demonstration 21
6.2 Manage viewers . 22
6.3 ROS parameter control . 24

7 Visual element of litbot.demo panels 25
7.1 Speech panel . 25
7.2 Tracker panel . 26
7.3 Mssl panel . 27
7.4 Debug panel . 28
7.5 Top View panel . 30

2

1 Introduction

The intent of this guide is to quickly present the essential points for a live
demonstration of our algorithms using the demo-maker graphical user inter-
face.

The demo-maker is a software that allows user to create different rep-
resentations of the results, to configure and start the different algorithms
required for the live demonstration. The word representation means all the
panels which display the results of the different algorithms. In this guide,
we will use a predefined set of representation. The creation of a new repre-
sentation is not explained. All the algorithms and the demo-maker use ROS
middle-ware to communicate between each other. Some basic knowledge on
ROS are recommended.

2 Configuration

Before using ROS, the middle-ware should be initialized and the server should
be started. Then, the demo-maker need some environment variables to be
able to communicate with the middle-ware, and to configure correctly the
path required for the software.

2.1 Ros Server

The first thing to do is to start the ROS server, called roscore. For that, open
a new terminal and enter the command roscore. If everything goes well, you
should have something similar than:

$ roscore

Press Ctrl-C to interrupt

Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://<machine_name>:33919/

ros_comm version 1.4.7

SUMMARY

========

PARAMETERS

3

* /rosversion

* /rosdistro

NODES

auto-starting new master

process[master]: started with pid [13054]

ROS_MASTER_URI=http://<machine_name>:11311/

setting /run_id to 9cf88ce4-b14d-11df-8a75-00251148e8cf

process[rosout-1]: started with pid [13067]

started core service [/rosout]

The roscore can not boot if the network is badly configured (this is the
case when the DNS could not resolve autimatically the IP address of the
computer). In this case, you have to set the environment variable ROS_IP

to specify the IP address. This address could be found using the command
ifconfig.

$ export ROS_IP=xxx.xxx.xxx.xxx

$ roscore

One important thing to note in the output of the roscore command is the
ROS_MASTER_URI. It contains the address and port for communication with
master.

Note: The environment variables ROS_IP and ROS_MASTER_URI should
be set in all terminals used for the demonstration.

2.2 Demo-maker environment variables

Open a new terminal and go to litbot directory. The first thing to do is to
source the ros environment of the litbot package. For that, please enter the
following command:

4

$ cd /path/to/folder/litbot/

$ source ros_workspace/devel/setup.[bash, sh, zsh]

The extension of the file relies on the Shell you are using.

The next step is to configure the ROS environment in order to be able to
contact the ROS server :

$ export ROS_IP=xxx.xxx.xxx.xxx

$ export ROS_MASTER_URI=http://<machine-name>:11311

If the roscore and the demo-maker GUI are running in the same computer
and the hostname could be resolved by the DNS, it is not mandatory to set
these variables.

The demo-maker GUI also requires to position some environment vari-
ables.

• The folder where the plugins library are stored.

$ export DEMOMAKER_PLUGINS_PATH=[litbot_dir]/

↪→ ros_workspace/build/litbot/visualization/qt_visu

↪→ /plugins

If you are using the installed version, use instead:

$ export DEMOMAKER_PLUGINS_PATH=[install_dir]/

↪→ demo_maker/plugins

• The root folder of the demo-maker

$ export DEMOMAKER_PLUGINS_PATH=[litbot_dir]/

↪→ global_workspace/visualization/qt_visu/

If you are using the installed version, use instead:

$ export DEMOMAKER_PLUGINS_PATH=[install_dir]/

↪→ demo_maker/

5

3 Start demo-maker GUI

When you are here, the environment should be configured.

3.1 Open a demo in the demo-maker GUI

To start the demo-maker GUI, the base command is:

$ rosrun litbot demo-maker

If the environment is well configured, then you should have the following
screen (see Figure 1). Otherwise, something is missing in the configuration.
For example, if the plugins path is not correctly set, nothing will be displayed
in the bottom left widget (no nodes).

6

Figure 1: Home page of the demo-maker when the environment is well con-
figured.

The first visible screen is the home page of the demo-maker. You can open
an existing demonstration file or create a new one. Click on the Open Demo

button and select the demo file. This file is located at:

$ [litbot_dir]/global_workspace/demo_config/litbot_new_debug.

↪→ demo

or if you use the installed version

$ [install_dir]/share/demo_config/litbot_new_debug.demo

7

You can also open a demo using the key shortcut Ctrl-o. Once the demo
file is loaded, you should have the following screen (Figure 2):

Figure 2: Demo-maker GUI when the demo litbot new debug.demo is loaded.

3.2 The command line options

Some options could be added to the command line in order to automatically
configure the interface.

8

-d --enable-designer ”Enable designer features”
-df --demo-file param value ”Load the demo configura-

tion file when opening the
application”

-h --help ”Display the current mes-
sage”

-i --ros-auto-init ”Initialize ros when opening
the application”

-nc --node-configuration param value ”Load the node configu-
ration file (.config) when
opening the application”

-ns --namespace param value ”Global namespace used for
all the node”

-rec --enable-recorder ”Enable recording features”

The -d and -rec options should not be used during a live demonstration
(features are not useful). You can directly open the demo file using the option
-df, load the launcher configuration file using the -nc option, automatically
initialize ros using the option -i and set a global namespace with the option
ns.

All of these options are used to save some time, but everything could be
configured directly in the interface.

The last step is to initialize ROS . This is done in the Ros Parameters

(See Figure 3) widget of the interface. The field are pre-set using the envi-
ronment variables positionned during the configuration. After checking that
everything is coherent, press the button init ros.

9

Figure 3: Widget used to configure the ROS middle-ware.

WARNING : Once the button init ros is pressed, you cannot modify
the ROS configuration.

4 External Launcher

Some nodes should be started in a specific environment (GPU, robot...) and
could not be directly launched in the host computer of the demo-maker.

The program named demo_maker_external_launcher allows to start
some nodes from the demo-maker interface in remote computer. For that,
you have to follow these steps:

1. Access the remote computer (called RC) using ssh connection.

2. Go to the litbot directory

3. Source the litbot package environment using :

$ source [litbot_dir]/ros_workspace/devel/setup.[bash, sh,

↪→ zsh]

10

4. Position the environment variable ROS_IP if your RC IP address is not
known by the DNS. This address should correspond to IP address of
the current RC.

5. Position the environment variable ROS_MASTER_URI given in the output
of the roscore command.

6. Start the demo_maker_external_launcher node.

$ rosrun litbot demo_maker_external_launcher <name>

The name should be, by convention, the name of the RC (ex : musca,
lito,...).

If everything goes well, you should see in the console :

$ rosrun litbot demo_maker_external_launcher alya

RECEIVE INVITE FROM MASTER

In the demo-maker interface, you could now choose this new computer in
the launcher device list of launchers, under the name you passed in argument.
When the interface requests to start a node, you should see in the console
which nodes has been started by this external launcher and the command
line used to start these nodes.

When the demo-maker interface is closed, all the nodes launched are
terminated and the demo_maker_external_launcher program stays alive
and waits for an invitation from the demo-maker GUI (another instance).

5 Configure nodes

Now, you need to configure the options for each launcher. This step should
be done manually the first time and you can save the configuration into your
computer for futur uses. If the configuration file already exists, go directly
to the next section.

The parameters could be set in the widget Node Properties displayed
in the figure 4. The nodes are organized by plugins.

11

Figure 4: Widget used to modify launchers and subscribers parameters.

5.1 Prepare launchers and subscribers

In the demo-maker GUI, launchers configure the command line used to start
a specific node, and subscribers subscribe to a topic in order to grab the
output of the different nodes.

5.1.1 Launchers

Launchers contains information about the environment and allows to config-
ure the command line used to start the node. You can choose on which com-
puter you want to start the node under the widget launch device. The list
contains the local launcher and all external launchers connected to the demo-
maker. The ros command, ros package, ros program and topic namespace

parameters are well configured by default and you do not have to modify
them. These parameters are used in all launchers and show in figure 5.

12

Figure 5: Parameters used in all launchers.

The end of this section will describe the options for each launchers. Please
refer to the litbot-documentation for a node description. Parameters
present in Figure 5 are presented above and will be no more explained in
the next paragraphs. The nodes which do not have any additional parame-
ters are not displayed here.

• sound provider

Parameter Type Description Value
device line

edit
”Device name of the audio input.
This is required only for LITO
robot.”

”plughw:0.0”

The device parameter could be found using the following command:

$ pacmd list-sources ...

and select the entry corresponding to the USB streamer.

• video driver

13

Parameter Type Description Value
fps spin

box
”Rate of the image input (not
working)”

15

device line
edit

”Device name of the camera.
This parameter is required only
for LITO robot.”

/dev/video0

stereo dir line
edit

”Path to the stereo dir. This
parameter is used only for NAO
robot.”

stereo path

stereo_path = [litbot_dir]/global_workspace/

↪→ external_independant_libraries/rmp/

↪→ RobotSpecificPart/NAO/Properties/Stereo

The device parameter could be found using the following command:

$ v4...

and select the entry corresponding to the robot video device. This is
used only for LITO robot.

• audio resampler

Parameter Type Description Value
rate spin box ”Target sampling rate of audio in-

put”
16000

• face detector

14

Parameter Type Description Value
face detector combo

box
”Choose the algorithm of the face
detector. The CNN one use a
neural network, and the PICO
one is an algorithm not based on
neural network.”

”cnn”

with face fea-
tures

check
box

”Enable face features extraction.
This parameter is enabled only if
the face detector type is ”cnn””

”true”

face finder line
edit

”Path to pico calibration. This
parameter is enabled only if the
face detector type is ”pico””

pico path

pico_path = <litbot_dir>/global_workspace/vision/

↪→ face_detection/config/facefinder

If the face detector uses the cnn algorithm, it should be launched in a
computer with GPU. Usually, we launch it on alya.

• tracker

Parameter Type Description Value
enable siamese
network

check
box

”Use a siamese network for ap-
pearance model.”

true

path to model line
edit

”Path to the appearance model.” appearance path

tracking mode combo
box

”Choose the tracking mode. Vi-
sual performs only a visual track-
ing, VisualWithPartialAudio per-
forms a visual tracking and asso-
ciate the sound direction to the
track, Full performs an audio vi-
sual tracking.”

depends on the
scenario

15

appearance path =

Inside the repository :

<litbot_dir>/global_workspace/vision/

↪→ appearance_model

Inside the install directory:

<install_dir>/lib/python2.7/dist-packages/

↪→ litbot/appearance_model

• mssl

Parameter Type Description Value
audio calibra-
tion

line
edit

”Use the audio calibration file.
Click on the button D if you want
to use elevation features. In this
case, select the folder containing
the grids. Click on the button F
if you want to use only one eleva-
tion. In this case, select the cali-
bration file. This value is specific
to the robot”

mssl grid

mssl_grid =

for lito :

<litbot_dir>/global_workspace/robot_config/

↪→ mssl_calibration/LITO/elevation_grid

<litbot_dir>/global_workspace/robot_config/

↪→ mssl_calibration/LITO/single_grid/

↪→ DPRTF_LITO_grid.txt

for nao :

<litbot_dir>/global_workspace/robot_config/

↪→ mssl_calibration/NAO/elevation_grid

<litbot_dir>/global_workspace/robot_config/

↪→ mssl_calibration/NAO/elevation_grid/

↪→ DPRTF_NAO_grid_XXcm.txt

• behavior (fsm)

16

Parameter Type Description Value
disable motion check

box
”Disable motion of robot head in
the fsm. This is used when the
name dialog system node acti-
vated.”

false

• sentence detector

Parameter Type Description Value
node name line

edit
”Name used when connecting the
node with ros master.”

sentence activity detector

topic adjust-
ment

line
edit

”Modify the input topic on which
this node will subscribe. The
namespace is used for outputs.
This option is used when you
want to subscribe to another
topic than the audio resampled
one (output of the dereverbera-
tion....)”

””

• speech recognition

17

Parameter Type Description Value
google creden-
tials

line
edit

”Credential used for google
speech.”

rely on the ses-
sion/computer

node name line
edit

”Name used when connecting the
node with ros master.”

speech recognition

topic adjust-
ment

line
edit

”Modify the input topic on which
this node will subscribe. The
namespace is used for outputs.
This option is used when you
want to subscribe to another
topic than the audio resampled
one (output of the dereverbera-
tion....)”

””

• speaker charac

Parameter Type Description Value
path to model line

edit
”Path to speaker charac model.
This node should be activated
only when tracker is in Full
mode.”

see node
main_speaker_charac

in litbot docu-
mentation

All of these configurations could be saved into a file. To generate default
value for the different robots (when generating the configuration file), you can
change the global parameter robot in the widget Session Configuration,
and enter the configuration specific to this robot.

WARNING : Some unwanted effects are introduce when you save the
configuration file and the selected robot is NAO. To avoid it, please select
lito robot before saving the configuration.

18

5.1.2 Subscribers

Subscribers can be configured using the Node Properties widget, under
the Subscribers tab. It contains the list of subscribers declared in the
environment. Each subscriber connects to a specific topic. All subscribers
have the following parameters:

• topic name : name of the topic the subscriber have to look for.

• topic namespace : additional namespace used for subscribtion. This
is combined with the global namespace.
The full namespace is /global namespace/topic namespace/topic name.

• replace namespace : additional namespace used for subscribtion. This
replaces the global namespace.
The full namespace is /topic namespace/topic name.

• display fps : if this checkbox is checked, then the fps of this node
will be displayed in the system visualizer.

By default, these parameters are correctly set, but you may need to
change it for specific cases.

5.2 Session configuration

The panel Session Configuration contains two kind of things. The first
one manages predefined selections of nodes, and the second lists some global
parameters which are used by multiple nodes (see Figure 6).

19

Figure 6: Widget used to configure the session.

5.2.1 Predefined Selection

When we show the demonstration, we follow different kind of scenario to
handle different features of the algorithms. To facilitate the selection of the
required node for a given scenario, you can predefine the required scenario
and save it for future uses. The combobox contains a list of all predefined
scenario, and the buttons new, save and remove manage the list of sce-
nario.

To save the predefined scenaria permanently, you need to save the demo
file (using Ctrl-s or the file menu).

5.2.2 Global parameters

The parameters stored in this widget are shared between all nodes. We can
found:

• port : Port used for NAO communication (default : 9559)

• robot ip : IP address used for NAO communication

• robot : Select the robot you are using : lito/nao. The configuration
will be automatically adapted for each robot.

20

• lang : language code used for speech recognition and name dialog
system node.

6 Run the demonstration

In this section, we will explain how start/stop and manage the live demo.

6.1 Start/Stop the demonstration

The following methods can be used to start the demo in the demo-maker
panel:

• You can click on the button start simulation present in the top tool
bar (Figure 7, 1st button) or enter the keyboard shortcut Ctrl+Space.

• You can click on the button start simulation [dual screen] in the
top tool bar (Figure 7, 2nd button), or use the key shortcut Ctrl+Shift+Space.

Figure 7: Buttons used to start/stop the demonstration.

When one of the previous method is used to start the demonstration, all
the launchers selected by the user are launched in their associated computer.
The subscribers start getting data from ROS topics and the surfaces start
their update.

The dual screen is a floating window (not lock inside the demo-maker
GUI) on which the scene of the current demo is displayed. The screens
are controled independantly. The primary screen corresponds to the visual-
ization inside the central widget of the interface, and the secondary screen

21

corresponds to the visualization inside the dual screen. This secondary screen
is usually moved to the external monitor (TV, screen...) because it does not
contains the configuration widget and the size allocated to display the scene
is bigger than the one for central widget.

To stop the demonstration, you can :

• Click on the icon corresponding to this action (Figure 7, 3rd button)

• Use the key shortcut Ctrl+Shift+e

When the simulation is stopped, then all the started nodes are killed. If
the demo is started in dual screen mode, it is not closed when the demon-
stration is stopped.

6.2 Manage viewers

In the demo files, you can create multiple representations of the algorithms
corresponding to different scenario. Each scenario corresponds to a panel in
the demo-maker scene and could be accessed using its name. To manage the
scenario you want to display, you have to use the widget Viewer Controller

(see Figure 8).

In this widget, the primary screen corresponds to the screen of the cen-
tral widget, and the secondary screen corresponds to the viewer located
in the dual screen. These two labels are used to select the screen you want
to control. The label of the target viewer is colored in yellow. If you want
to display the same region on both viewer, you can press the Mirror label.
In this case, the area of the viewer selected before clicking on the label is
replicated on the other viewer. When the mirror option is checked, both
viewer labels are colored, and all actions are applied to both screen.

22

Figure 8: Widget used to manage the different viewers of the scene.

The different panels of the demo are registered in the combo-box Focus on panel.
You can use this combo-box to focus on a specific panel in the selected viewer.
The focus action consists of an optimization of the viewer area in order to
have the highest size of the panel without modify its proportions. If the
Focus label is enabled (ON), the transformation is done automatically. Oth-
erwise, click on the label focus.

The group Control gives a representation of the full scene. A colored
square item is added into the scene. These items represent the visible area
of the activated viewer. The yellow one corresponds to the primary viewer
and the second one to the secondary viewer. If you click and drag the square
of the selected viewer, you can move inside the scene and the corresponding
viewer will apply the transformations. The zoom item at the right of the
scene permits to zoom on a specific region of the screen.

23

6.3 ROS parameter control

The algorithms of the project have some parameters relying on the environ-
ment in which you play the demo. You can dynamically adapt some of these
parameters using the widget displayed in the figure 9.

Figure 9: Dynamically adapt some parameters to the running environment,
using the ROS parameters.

From the right to the left of the figure 9, you can find the following
parameters:

• Speaking Activeness Threshold used by the tracker when the mode
VisualWithPartialAudio or Full is activated. If the value is above
this threshold, the track is considered as speaker. The threshold can
be between [0 - 1] (default : 0.3)

• Peak threshold This threshold is used by the mssl when searching the
peaks over the localization candidates. All peaks under this threshold
are not take into account. It can be set between [0 - 1] (default : 0.1)

• Energy threshold This threshold is used by the sentence activity detector.
It corresponds to the energy of a chunk from which the signal is con-
sidered as speaking. It can be set between [0 10000] (default : 80)

24

7 Visual element of litbot.demo panels

This section briefly explains the different panels defined in the litbot new debug.demo
file.

7.1 Speech panel

The speech panel focus on the speech recognition results. It consists of three
areas that you can see in the figure 10.

Figure 10: Demo maker speech scenario visualization.

25

• Speech surface : This area is designed to display the result of the
speech recognition node. This contains the name and a picture of the
speaker (when its face is visible), and the corresponding text. The cur-
sor is here to point the speaker in the image.

• Image surface : In this surface, you can found the following items:

– Image provided by the robot (left camera for NAO).

– The red line corresponds to the projection of the sound source
localization on the image.

– Tracked faces are visualized with bounding rectangles. A bubble
with dots is added when the user is speaking.

• Audio surface : In this surface, you can see one channel of the audio
signal. The colored rectangle corresponds to sentence segmentation of
the audio signal. One color is used for one ID. The content of each
rectangle is sent to the speech recognition system (google speech).

If the speaker is not in the field of view of the robot, the id of the track
is set to -1 in the speech surface. The colored rectangles in the audio surface
are white and associated with the id -1.

7.2 Tracker panel

The tracker panel focuses on the result of the visual tracker. You can see two
surfaces, the left one corresponds to the robot’s image and the detected faces
bounding boxes. The right one displays the robot’s image and the tracked
faces (the latent variables of the tracker and their corresponding id). The
audio-visual fusion is not displayed in this panel. (See figure 11).

26

Figure 11: Demo maker tracker scenario visualization.

7.3 Mssl panel

This panel shows the mssl results (see Figure 12). It contains:

• The top surface contains the robot’s image, the tracked faces, the pro-
jection of the sound source angle into the image (vertical red line), and
the bubble associated to a track when it is considered as speaker.

• The second surface displays the sound source localization probabilities
for each candidates along time. This is represented by a spectrogram.

27

Figure 12: Demo-maker MSSL panel visualization.

7.4 Debug panel

The debug panel centralizes the visualization results of all algorithms and
provides some information about the frequency rate, the CPU and memory
usage of the host system. This panel is usually displayed in the primary
screen but is not shown to user (see Figure 13)

28

Figure 13: Demo-maker debug panel visualization.

You can find the following items :

• CPU usage and RAM usage : display information about the memory
and CPU usage of the host machine using htop style representation.

• Video : in this surface, you can find the following items:

– The robot’s image

– The detected faces bounding box (blue rectangles)

– The tracked faces bounding box (colored rectangles associate to
an id)

– The projection of the sound localization in the image (vertical red
line)

29

– The audio visual fusion (bubble with dots closed to the speaking
tracks).

• Tracking : in this surface, you can see an history of the track retained
by the tracker node. A picture of each track is displayed.

• FPS : this surface shows a graphic representing the frequency rate of
the nodes along time.

• Audio : this surface shows different informations about audio process-
ing:

– Sentence activity detector : audio time domain representation
with colored rectangles corresponding to sentence segmentation
of the audio signal.

– Mssl histogram : show the probabilities of each candidate for the
current timestep. The horizontal red line corresponds to the peak
threshold from which the peak is retained by the algorithm. Then
the bars of the histogram have several colors, that means that
the MSSL is running using elevation informations. Each color
corresponds to a specific elevation.

– Mssl prior spectrogram : shows the probabilities of each candi-
dates along time, using a spectrogram representation.

• Speech transcription : this surface displays the n-last results of the
speech recognition system, in order to have an ”history” of the conver-
sation.

7.5 Top View panel

The top view panel is another global representation of the litbot system. It
is mainly used when the behavior are activated and the robot moves its head
(see Figure 14). You can find the following surfaces:

30

Figure 14: Demo-maker top view panel visualization.

• The first surface represents the robot’s image, sound localization pro-
jection (red line), tracked faces and audio visual fusion.

• The second one shows the sound source localization histogram at the
current timestep. The horizontal red line is the threshold from which
the peaks are retained. The selected peaks are highlighted with vertical
red line. The bars of the histogram could have different colors if the
mssl is running with elevation features.

• The last surface represents a top view of the environment. You can
found:

– Concentric circles represent the distance from the robot (1m step)
and the central point correspond to the position of the robot.

31

– The green circle with angles represents the angles in the fix coor-
dinate.

– The yellow circle with angles represents the angles in the robot
head coordinates. This circle is rotated according to the robot
head position.

– The field of view of the robot is modelized by a rectangle area
(highlighted with a lighter color). This triangle moves with the
robot head.

– When a track is present, it is modelized by a small circle in the
absolute position (fix over the head rotation).

– When a sound is located, its azimuthal angle is represented with
a straight triangle in the target direction.

– The track circle changes its color when it is associated to a sound
direction.

32

	Introduction
	Configuration
	Ros Server
	Demo-maker environment variables

	Start demo-maker GUI
	Open a demo in the demo-maker GUI
	The command line options

	External Launcher
	Configure nodes
	Prepare launchers and subscribers
	Launchers
	Subscribers

	Session configuration
	Predefined Selection
	Global parameters

	Run the demonstration
	Start/Stop the demonstration
	Manage viewers
	ROS parameter control

	Visual element of litbot.demo panels
	Speech panel
	Tracker panel
	Mssl panel
	Debug panel
	Top View panel

